首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
    
This paper presents a finite element approach to analyse the response of shallow foundations on soils with strain-softening behaviour. In these soils, a progressive failure can occur owing to a reduction of strength with increasing the plastic strains induced by loading. The present approach allows this failure process to be properly simulated by using a non-local elasto-viscoplastic constitutive model in conjunction with a Mohr–Coulomb yield function in which the shear strength parameters are reduced with the accumulated deviatoric plastic strain. Another significant advantage of the method is that it requires few material parameters as input data, with most of these parameters that can be readily obtained from conventional geotechnical tests. To assess the reliability of the proposed approach, some comparisons with experimental results from physical model tests are shown. A fairly good agreement is found between simulated and observed results. Finally, the progressive failure process that occurs in a dense sand layer owing to loading is analysed in details, and the main aspects concerning the associated failure mechanism are highlighted.  相似文献   

2.
岩溶地区桩基承载性能试验研究   总被引:4,自引:0,他引:4  
结合岩溶地区两个工程实例的静载荷试验和应力测试结果,对桩的荷载传递特性进行了对比分析,桩端岩溶对桩承载特性的影响,不仅表现为对桩端阻力的影响,对桩侧摩阻力也会产生影响。应用有限元方法分析了桩端岩土对桩承载力的影响。计算结果表明,桩端岩土的变形模量对承载力影响很大;随着变形模量增大,承载力将大幅提高。   相似文献   

3.
The bearing capacity of footing has been studied by both conventional and numerical methods by many researchers. However, degradation of the microstructure of material, that is, a change in the microstructure of the soil, has not been adequately taken into account. Degradation of microstructure causes strain softening of materials and it leads to strain localization such as shear bands and slip bands. From an engineering point of view the strain localization is crucial because it is a precursor of failure. In the present study, finite element analyses of the bearing capacity of a shallow foundation on homogeneous and inhomogeneous saturated clay strata have been conducted using an elasto-viscoplastic soil constitutive model of microstructure change. A series of analyses of footing on clay deposit with different microstructure parameters have been carried out. Numerical results show that strain localization can be predicted during the loading of rigid footing on highly structured soil and strain localization affects the footing–soil interaction. The effects of footing roughness on the failure mechanism are also discussed in the study.  相似文献   

4.
This paper compares the excavation-induced wall deflection caused by the top-down method (TDM) and the bottom-up method (BUM). First, a total of 26 quality excavation case histories in Taipei silty clay were collected and analyzed. The field observations show that the maximum lateral wall deflection (δhm) induced by the TDM were 1.28 times as large as that induced by the BUM. Factors affecting wall deflection are investigated and four of them are selected for further numerical experimentation to investigate the discrepancy of δhm caused by the two methods. Analysis results showed that the average ratio of δhm induced by the TDM over that induced by the BUM is approximately equal to 1.1, excluding the effect of thermal shrinkage of concrete floor slabs. Both observed data and analysis results revealed that greater δhm is generally induced by the TDM despite its use of floor slabs with higher support stiffness.  相似文献   

5.
    
This paper presents a simple regression to predict settlement of a single floating pile supported by a homogeneous elastic soil and subjected to a vertical load. The regression, which is calibrated by a finite element model, allows the direct computation of the pile length required for serviceability limit state design of deep foundations.  相似文献   

6.
采用浅覆土大盾构施工难免对临近已建建筑物造成不同程度的影响。本文使用有限元数值分析,计算外滩通道工程中,浅覆土大盾构施工产生的竖直沉降和水平位移,从而分析对临近已建建筑物的影响。  相似文献   

7.
    
The tetrapod jacket foundations that are always used to support offshore wind turbines have been investigated primarily in laboratory experiments. In this study, the ultimate lateral soil resistance on this type of foundation was investigated using the finite element method and the analytical upper bound plasticity method. The numerical results show good agreement with the theoretical upper bound solutions under the same pile spacings (S) and soil-pile adhesion factors (α). Three distinct failure mechanisms (mechanisms A, B and C) were established in terms of different pile spacings. The ultimate lateral pressure was subsequently determined using numerical analyses with consideration of the loading direction. The most critical loading direction angles (θ) vary with the soil-pile adhesion factors, and are θ = 0 for α = 1 and θ = π/4 for α = 0. Selected empirical equations were proposed to predict the ultimate lateral bearing capacity for engineering practice, considering the pile spacing, soil-pile adhesion and loading direction.  相似文献   

8.
This paper presents results of meticulous laboratory testing and numerical simulations on the effect of reinforcement on the low-strain stiffness and bearing capacity of shallow foundations on dry sand. The effect of the location and the number of reinforcement layers is studied in the laboratory, whereas numerical simulations are used to study the reinforcement-foundation interaction. Laboratory tests show an increase of 100, 200, and 275% not only in bearing capacity but also in low-strain stiffness (linear load–displacement behaviour) of a square foundation when one, two, and three layers of reinforcement are used, respectively. The specimen preparation technique is found to be crucial for the repeatability and reliability of the laboratory results (less than 5% variability). Numerical simulations demonstrate that if reinforcements are placed up to a depth of one footing width (B) below the foundation, better re-distribution of the load to deeper layers is achieved, thus reducing the stresses and strains underneath the foundation. Numerical simulations and experimental results clearly identify a critical zone between 0.3 and 0.5B, where maximum benefits not only on the bearing capacity but also on the low-strain stiffness of the foundation are obtained. Therefore, soil reinforcement can also be used to reduce low-strain vibrations of foundations.  相似文献   

9.
    
A rigorous lower bound solution, with the usage of the finite elements limit analysis, has been obtained for finding the ultimate bearing capacity of two interfering strip footings placed on a sandy medium. Smooth as well as rough footing–soil interfaces are considered in the analysis. The failure load for an interfering footing becomes always greater than that for a single isolated footing. The effect of the interference on the failure load (i) for rough footings becomes greater than that for smooth footings, (ii) increases with an increase in ?, and (iii) becomes almost negligible beyond S/B > 3. Compared with various theoretical and experimental results reported in literature, the present analysis generally provides the lowest magnitude of the collapse load. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
本文以龙井水库大坝为例,运用有限单元法对粘土心墙坝的渗流进行分析计算,同时运用瑞典圆弧滑动法和简化Bishop法对粘土心墙坝的坝体稳定进行分析计算,在此基础上对水库大坝进行了渗流安全评价和稳定性安全评价。  相似文献   

11.
    
This letter is concerned with the undrained bearing capacity of rectangular footings with various aspect ratios and embedment ratios in uniform clay. It covers thin plate foundations with low aspect ratios and high embedment depth with embedment ratio up to 150. The work is based on small strain finite element analysis (FEA). After verification of the FEA model against existing solutions of the bearing capacity factors of rectangular footings, a series of FEA results are obtained. Based on the FEA results, a simple formulation is proposed to calculate the bearing capacity factor for rectangle footing with different aspect ratio in any embedment depth, extending the existing solutions to cover a wider ranges of footing aspect ratios and embedment ratios.  相似文献   

12.
    
The effect of directional behaviour of correlation structure of cone tip resistance on the bearing capacity of shallow strip footing resting on cohesionless soil deposit in 2-D random field is analysed using probabilistic approach. The results obtained from the analysis show that the assumption of perfect (or infinite) correlation of cone tip resistance data leads to lower values of probability of failure. In contrast, the isotropic assumption of correlation behaviour based on vertical scale of fluctuation leads to higher values of probability of failure. The results also show that the transformation model would play a major role in the evaluation of variability of design property. In conclusion, the need for a proper evaluation methodology for calculation of correlation lengths of soil properties and their influence in foundation design is highlighted.  相似文献   

13.
Plate anchors, such as suction embedded plate anchors and vertically driven plate anchors, offer economically attractive anchoring solutions for deep/ultra-deep water offshore developments. The rotation/keying processes of plate anchors will cause embedment losses, which lead to decreases of the uplift resistances of the anchors in normally consolidated soil. In the present paper, the keying processes of vertically installed strip and square plate anchors are simulated using the 3-D large deformation finite element method. The effects of loading eccentricity and pullout angle on the embedment loss during keying are investigated. Both the development of the uplift resistance and the soil flow mechanisms are presented. The numerical results show that the loading eccentricity e/B has a much larger effect on the embedment loss than the pullout angle does. The anchor shape has a minimal effect on the loss in anchor embedment. The shape factors (square/strip) are 1.05–1.09 for loss of embedment and 1.10–1.19 for capacity.  相似文献   

14.
    
Circular foundations are widely employed in offshore engineering to support facilities and are generally subjected to fully three-dimensional loading due to the harsh offshore environmental load and complex operational loads. The undrained capacity of surface circular foundations on soil with varying strength profiles and under fully three-dimensional loading is investigated and presented in the form of failure envelopes that obtained from finite element analyses. The combined ultimate limit state of circular foundations is defined as the two-dimensional failure envelopes in resultant H-M loading space accounting for the vertical load and torsion mobilisation. The effects of vertical load and torsion mobilisation, soil shear strength heterogeneity and loading angle from moment to horizontal load on the shape of normalised H-M failure envelopes are explored. A series of expressions are proposed to describe the shape of failure envelopes obtained numerically, enabling essentially instantaneous generation of failure envelopes and optimisation of a circular foundation design based on constraint of any input variable through implementation in an automated calculation tool. An example application is ultimately provided to illustrate how the proposed expressions may be used in practice.  相似文献   

15.
湛江市地处海滨地带,滨海沉积的粘性土较发育。粘性土是该地区工程建设地基的主要基础持力层。对粘性土物理指标变化与压缩模量的相关性探讨,找出土的物理性质与土的力学强度的关系,从各种关系中总结出各因数的相关性,对工程建设持力层的选择有着重要的实际应用意义。  相似文献   

16.
In the present study, the effects of multiple-footing configurations in sand on bearing capacity were investigated using field plate load tests and finite element analyses. Both strip and spread footings were considered in the finite element analyses. In each case, different footing distances were applied for the purposes of comparison among all of the results. From these results, it was observed that the load responses of multiple footings are similar to those of the single footing at distances greater than three times the footing width. Design equation and correlation parameters, necessary for quantifying the values of the bearing capacity ratio for the different multiple-footing configuration, were derived. Experimental test results from the literature were selected and used in verifying the proposed method.  相似文献   

17.
    
In order to capture the influence of the cavity expansion velocity, this paper presents a semianalytical solution for dynamic spherical cavity expansion in modified Cam Clay (MCC) soil. The key problem is solving the six coupled partial differential equations (PDEs) of cavity expansion, in which the dynamic term is considered in the stress equilibrium equation. The similarity transformation technique is used to transform the PDEs into ordinary differential equations (ODEs). Subsequently, the numerical method using the function “ODE45” in MATLAB is selected to solve the ODEs, which allows the stress and excess pore pressure around the expanding spherical cavity wall to be obtained. The proposed semianalytical solution for dynamic spherical cavity expansion was validated by comparting the degenerate solution with the published quasistatic solution for the MCC model. Parametric study was then conducted to capture the influence of the cavity wall velocity on the cavity expansion response. The proposed solution has potential application to geotechnical problems such as dynamic pile driving, the dynamic cone penetration test, and so forth.  相似文献   

18.
    
Methane hydrate (MH) is extensively found in outer continental margins where offshore infrastructures with pile foundations are also common. The presence of MHs significantly alters the mechanical properties of the host marine sediments, and therefore affects the behavior of piles inside. This paper presents an attempt to investigate the performance of a single pile in methane hydrate bearing sands in seabed using the distinct element method. A novel bond contact model was employed for sandy grains cemented by MHs at contacts, and calibrated from the triaxial compression tests on synthetic specimens of methane hydrate bearing sands. The response of the pile subjected to axial pullout loads and lateral loads was simulated under different subsurface conditions characterized by different saturation levels of MHs. The results show that the presence of MHs increases the uplift capacity of the pile by changing the failure mode of the soils from the perimeter failure to the conical failure. The uplift capacity of the pile significantly deteriorates as a result of de-bonding, while the onset of the rapid de-bonding triggers the softening of the uplift load. In addition, the lateral capacity of the pile largely increases due to the presence of MHs. The pile in methane hydrate bearing sands is considered flexible rather than rigid as a result of the increased deformation modulus of soils due to MH cementation between particles. The lateral load–displacement diagram of the pile in methane hydrate bearing sands is not as smooth as that in clean sands with an abrupt drop associated with the onset of de-bonding.  相似文献   

19.
Design of shallow foundations relies on bearing capacity values calculated using procedures that are based in part on solutions obtained using the method of characteristics, which assumes a soil following an associated flow rule. In this paper, we use the finite element method to determine the vertical bearing capacity of strip and circular footings resting on a sand layer. Analyses were performed using an elastic–perfectly plastic Mohr–Coulomb constitutive model. To investigate the effect of dilatancy angle on the footing bearing capacity, two series of analyses were performed, one using an associated flow rule and one using a non-associated flow rule. The study focuses on the values of the bearing capacity factors Nq and Nγ and of the shape factors sq and sγ for circular footings. Relationships for these factors that are valid for realistic pairs of friction angle and dilatancy angle values are also proposed.  相似文献   

20.
    
The stress characteristics method (SCM) has been used to compute the bearing capacity of smooth and rough ring foundations. Two different failure mechanisms for a smooth footing, and four different mechanisms for a rough footing have been considered. For a rough base, a curvilinear non-plastic wedge has been employed below the footing. The analysis incorporates the stress singularities at the inner as well as outer edges of the ring footing. Bearing capacity factors, Nc, Nq and Nγ are presented as a function of soil internal friction angle (ϕ) and the ratio (ri/ro) of inner to outer radii of the footing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号