首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The sources and distributions of terrigenous organic matter (OM) were investigated in a small tropical estuary in the Hainan Island, South China. Plants, suspended particulate matter (SPM), and surface sediments samples in the estuary and coast were collected. Bulk properties [organic carbon (OC%), total nitrogen (TN%), stable carbon isotope (δ13C) and grain size] and lignin phenol concentrations were measured. OC% of mangrove plants was (43.4 ± 2.1)%, which is similar to the values reported for mangrove plants in other regions. OC% of sediment samples ranged from 0.07% to 1.42%, and they were related to the sediment texture. Lignin phenols in the sediment ranged from 5.16 mg/100 mg OC in the uppermost station to 0.51mg/100mg OC in the coast. The molar ratio of organic carbon to total nitrogen (C/N) (~7) and δ 13 C (~-31.1×10-3 ) of riverine SPM revealed that the major OM sources of riverine SPM were aquatic OM (phytoplankton and/or bacteria). Moreover, the lower lignin concentration (Λ8) and higher (Ad/Al)v of lignin phenols suggest that terrestrial OM in riverine SPM were mainly from soil. Furthermore, C/N ratio, δ13C and lignin phenols reveal that mangrove plants were the predominant OM sources of mangrove surface sediment. Based on the δ13C and lignin phenols, it can be concluded that the major OM sources in estuarine and coastal surface sediments were marine phytoplankton, riverine SPM and mangrove surface sediment. In addition, the higher (Ad/Al)v of lignin phenols in those coastal sediments indicate that seagrass might be a potential OM source in coastal sediments, however, the lower (Ad/Al)v in the estuarine sediments in turn suggests that seagrass could not be transported to the mangrove fringed region. A three-end-member model which is based on lignin concentrations and δ13C was applied to evaluate the contribution of mangroves to the organic matter preserved in the surface sediments. Around the mangrove fringed region, mangrove could contribute more than 50% to the sedimentary OM, and this value is much higher than riverine OM. Nevertheless, mangrove OM could not be efficiently transported to the coastal region. Our study suggests that mangrove forest is an important OM source in this small estuary.  相似文献   

2.
Sea lochs are zones of rapid organic matter (OM) turnover. Most of this OM is of allochthonous origin, being introduced into the lochs via freshwater input. In this study the behaviour of terrestrially derived OM was elucidated using a combination of parameters which indicate OM diagenesis in the near surface sediments from two Scottish sea lochs, Loch Creran and Loch Etive. Alkaline CuO oxidation was used to determine lignin phenols which serve as biomarkers for terrestrial OM in sediments. Stable carbon isotope, total carbon and nitrogen and total OM (including the labile and refractory fractions) compositions were also determined.  相似文献   

3.
Settling organic matter (OM) is the major food source for heterotrophic benthic fauna. The high sorption affinity of many contaminants for OM implies that OM can influence both the distribution and bioavailability of contaminants. Here, we experimentally examine the role of settling OM of various nutritional qualities on the bioaccumulation of cadmium and the flame retardant BDE-99 by three benthic invertebrates; Macoma balthica, Monoporeia affinis and Marenzelleria sp. Contaminants were associated with three types of OM; a microalgae (Tetraselmis spp.), lignin and sediment. Bioaccumulation of Cd was proportional to OM nutritional quality for all three species, and was species-specific in the order Marenzelleria>M. balthica>M. affinis. BDE-99 bioaccumulation was highest in the treatment with the most nutritious OM (Tetraselmis). Consequently, both benthic species composition and the nutritive value of organic matter settling to the seafloor can have a substantial effect on the bioaccumulation of both metals and organic contaminants.  相似文献   

4.
通过对两根沉积柱GHE27L和GHE24L的总有机碳(TOC)、总氮(TN)、C/N比值及稳定碳同位素(δ13Corg)的分析,本文探讨了21.1 ka BP以来南海北部陆坡神狐海域沉积有机质的组成特征及可能的古气候/环境信息。沉积柱GHE27L的TOC含量、TN含量、C/N比值及δ13Corg值分别为0.53%~1.81%,0.07%~0.18%,8.2~16.0和-23.6‰~-20.3‰。沉积柱GHE24L各参数则分布为0.45%~1.65%,0.09%~0.24%,5.3~12.2和-22.6‰~-20.4‰。沉积柱总体有机质的剖面变化显示,末次盛冰期以来南海北部沉积有机质具有海洋和陆地混合来源,但以海洋有机质来源为主。冰期陆源有机质对总有机质的相对贡献比全新世高。末次盛冰期南海北部气候相对干旱,C4植被发育。全新世夏季风增强、降雨增多。自2.0 ka BP以来,人类活动对南海北部海洋初级生产力产生一定的影响。  相似文献   

5.
Settling particles collected at 1550 m water depth off the São Francisco River, Brazil, between January and May 1995 showed peak fluxes of amino acids, hexosamines, and carbohydrates, which formed the onset of a three-week period of high organic matter (OM) flux, coinciding with the high discharge period of the river. Two phases of OM deposition exist: (1) the fluvial input of nutrients triggering a bloom of non biomineralizing plankton, and (2) suspended sediment mainly derived from shelf erosion increasing the fluxes of refractory OM. This indicates the importance of seasonally varying hydrodynamic conditions and nutrient input from the continent for the production and sedimentation of OM to the continental margin of eastern Brazil.  相似文献   

6.
Based on simultaneous use of organic and geochemical indicators (δ13C, C/N, and n-alkanes), the genesis of organic matter (OM) in recent bottom sediments of the Kara Sea was characterized. Maps for percentages and absolute masses of marine and terrigenous OM were drawn. The masses of buried marine and terrigenous OM were compared to its supply to the sea and onto the sea bottom.  相似文献   

7.
This study investigates the benthic microbial responses to organic matter (OM) variations in quantity and sources in two shallow water bays (Fortaleza and Ubatuba Bays) on the SE coast of Brazil on six occasions during the year. The pelagic and benthic compartments of the bays were evaluated by: (i) nutrients and chlorophyll a (Chl a) in the water column; (ii) quantity and sources of OM in the sediment (Chl a, total organic carbon and total nitrogen and lipid biomarker composition); and (iii) microbial biomass in sediments as an indicator of active benthic response. Although there were changes in water‐column nutrients during the year, Chl a was fairly constant, suggesting a regular supply of microalgae‐derived OM to the sea bottom. Based on the composition of lipid biomarkers in sediments, OM sources were classified as mostly marine and with high contributions of labile (microalgae‐derived) OM. Labile OM composition varied from diatoms in the summer to phytoflagellates in the winter and tended to accumulate in areas protected by physical disturbances in one of the bays. Microbial biomass followed this trend and was 160% higher in protected than in exposed areas. This study suggests that the coupling between labile OM and benthic microbial biomass occurs primarily in protected areas, irrespective of the time of the year. Since meio‐ and macrofaunal assemblages depend upon secondary microbial production within the sediments, this coupling may have an important role for the benthic food‐web.  相似文献   

8.
Studying complex pore structures is the key to understanding the mechanism of shale gas accumulation. FIB-SEM (focused ion beam-scanning electron microscope) is the mainstream and effective instrument for imaging nanopores in gas shales. Based on this technology, 2D and 3D characteristics of shale samples from Lower Silurian Longmaxi formation in southern Sichuan Basin were investigated. 2D experimental results show that the pores in shale are nanometer-sized, and the structure of those nanopores can be classified into three types: organic pores, inorganic pores and micro fractures. Among the three types, organic pores are dominantly developed in the OM (organic matter) with three patterns such as continuous distributed OM, OM between clay minerals and OM between pyrite particles, and the size of organic pores range from 5 nm to 200 nm.Inveresly, inorganic pores and micro fractures are less developed in the Longmaxi shales. 3D digital rocks were reconstructed and segmented by 600 continuous images by FIB cutting and SEM imaging simultaneously. The pore size distribution and porosity can be calculated by this 3D digital core, showing that its average value is 32 nm and porosity is 3.62%.The 3D digital porosity is higher than its helium porosity, which can be regarded as one important parameter for evaluation of shale gas reserves. The 2D and 3D characterized results suggest that the nanometer-sized pores in organic matter take up the fundamental storage space for the Longmaxi shale. These characteristics have contributed to the preservation of shale gas in this complex tectonic area.  相似文献   

9.
本文测定了海南儋州湾南岸柱状沉积物的粒度、总有机质参数(TOC、C/N和 δ13C)和类脂生物标志物含量,并通过端元混合模型使用红树植物特征标志物蒲公英萜醇含量、长链正构烷烃含量和δ13C值半定量区分了海南儋州湾南岸沉积有机质来源,尤其是红树林的贡献.另外,通过估算沉积物的有机碳储量来评估儋州湾红树林区域的储碳能力.在...  相似文献   

10.
The geochemical signatures of fifty-four rock samples and three supplementary drill stem test(DST) oils from the Yacheng-Sanya formations in the central Qiongdongnan Basin(CQB) were analysed. Reconstruction of the early Oligocene-early Miocene(36–16 Ma) palaeovegetation and source analyses of organic matter(OM) were conducted using aliphatic biomarkers in ancient sediments and DST oils. Both the interpreted aquatic and terrigenous OM contributed to the CQB source rocks(SRs) but had varying relat...  相似文献   

11.
The organic matter (OM) pool has been studied in two sub-arctic north Norwegian fjords, Balsfjord and Ullsfjord, in July 2001 and June 2003. Besides general OM parameters such as dissolved organic carbon (DOC), particulate organic carbon and nitrogen (POC and PON), the distribution of specific compounds such as folic acid and surface active substances (SAS) was followed. The results are supported with data of salinity, temperature, and chlorophyll a (Chl a). This approach allowed assessment of the fate of the OM pool, and its distinct vertical, spatial, and seasonal variations. Fjord waters could be vertically divided into two layers: the upper mixed layer (UML), until 40 m depth, and the deep aphotic layer. Spatial variability between the two fjords is a consequence of different influences of shelf waters on the fjords. Significant enrichment of POC and PON concentrations (3–5 times), as well as those of particulate SAS and folic acid (up to 3.2 times) in the UML was recorded during the period of new production, in early June. Depletion of particulate OM in deep waters was ascribed to fast dissolution or remineralization in the UML or upper part of aphotic layer. OM in July 2001 was characterized with 15.9% higher DOC pool compared to June 2003, and had refractory properties, suggesting the fjords to be an important source of organic matter for the continental shelf ecosystem. The DOC pool in these subarctic fjords represents the major component of the OM pool. The DOC concentrations in fjords are lower than those in previously studied warmer seas (e.g. the Adriatic Sea), whereas the concentrations of folic acid and SAS are comparable to those in the Adriatic Sea.  相似文献   

12.
Detailed bulk geochemistry and organo-petrography of outcrop Cretaceous sediments (with no significant effects of weathering) from the Calabar Flank, southeast Nigeria were performed to understand the organic carbon source, accumulation and degradation, and paleo-climatic, paleoceanographic and paleoenvironmental conditions in West Africa during Early Cretaceous (Aptian) to Maastrichtian times. This study was based on microscopic, elemental analyses (organic carbon, nitrogen, iron and sulphur), Rock-eval pyrolysis and carbon-isotope analyses. In general, the Calabar Flank shales are characterised by highly variable total organic carbon (TOC) contents, which range between 0.1% in Aptian–Albian Mfamosing Limestone and 9.9% in the Awi Formation sediments. The organic matter (OM) is a mixture of immature to early-mature marine and terrigenous OM of types III and IV. This is indicated by low hydrogen indices (HI value (10–190 mg HC/g TOC), Tmax (417–460 °C), vitrinite reflectance %Ro (0.39–0.62 %Ro), low to high C/N ratios (3.4–1158.0) and high amounts of terrigenous macerals (vitrinite + inertinite). Based on carbon isotope, C/N ratios and sulphate reduction index (SRI), OM degradation (up to 70%, SRI > 2.5) is most pronounced for shales deposited in a marine environment. The geochemical and petrographic data indicate that local factors such as low bioproductivity, down slope transport and redeposition of sediments from a fluvial–deltaic basin to nearshore facies, shallower, oxic and mildly oxygen-deficient environments, humid–arid paleogeographic conditions, specifically controlled the amount and quality of the OM during Aptian–Mastrichtian stages where marine sediments have been assumed to be deposited during the global anoxic events. Therefore, the order of the main factors controlling OM content in sediments are: input of terrigenous material transported from the land > low OM productivity by marine photoautotrophs > low preservation.  相似文献   

13.
The sources and distribution of organic matter (OM) in surface waters and sediments from Winyah Bay (South Carolina, USA) were investigated using a variety of analytical techniques, including elemental, stable isotope and organic biomarker analyses. Several locations along the estuary salinity gradient were sampled during four different periods of contrasting river discharge and tidal range. The dissolved organic carbon (DOC) concentrations of surface waters ranged from 7 mg l−1 in the lower bay stations closest to the ocean to 20 mg l−1 in the river and upper bay samples. There was a general linear relationship between DOC concentrations and salinity in three of the four sampling periods. In contrast, particulate organic carbon (POC) concentrations were significantly lower (0.1–3 mg l−1) and showed no relationship with salinity. The high molecular weight dissolved OM (HMW DOM) isolated from selected water samples collected along the bay displayed atomic carbon:nitrogen ratios ([C/N]a) and stable carbon isotopic compositions of organic carbon (δ13COC) that ranged from 10 to 30 and from −28 to −25‰, respectively. Combined, such compositions indicate that in most HMW DOM samples, the majority of the OM originates from terrigenous sources, with smaller contributions from riverine and estuarine phytoplankton. In contrast, the [C/N]a ratios of particulate OM (POM) samples varied significantly among the collection periods, ranging from low values of 5 to high values of >20. Overall, the trends in [C/N]a ratios indicated that algal sources of POM were most important during the early and late summer, whereas terrigenous sources dominated in the winter and early spring.In Winyah Bay bottom sediments, the concentrations of the mineral-associated OM were positively correlated with sediment surface area. The [C/N]a ratios and δ13COC compositions of the bulk sedimentary OM ranged from 5 to 45 and from −28 to −23‰, respectively. These compositions were consistent with predominant contributions of terrigenous sources and lesser (but significant) inputs of freshwater, estuarine and marine phytoplankton. The highest terrigenous contents were found in sediments from the river and upper bay sites, with smaller contributions to the lower parts of the estuary. The yields of lignin-derived CuO oxidation products from Winyah Bay sediments indicated that the terrigenous OM in these samples was composed of variable mixtures of relatively fresh vascular plant detritus and moderately altered soil OM. Based on the lignin phenol compositions, most of this material appeared to be derived from angiosperm and gymnosperm vascular plant sources similar to those found in the upland coastal forests in this region. A few samples displayed lignin compositions that suggested a more significant contribution from marsh C3 grasses. However, there was no evidence of inputs of Spartina alterniflora (a C4 grass) remains from the salt marshes that surround the lower sections of Winyah Bay.  相似文献   

14.
Ulyantsev  A. S.  Prokuda  N. A.  Streltzova  E. A.  Belyaev  N. A.  Romankevich  E. A. 《Oceanology》2021,61(5):727-735
Oceanology - The paper presents approaches to typing organic matter (OM) from bottom sediments based on molecular indicators and statistical analysis. The results of analyzing the molecular...  相似文献   

15.
Sedimentary, isotopic and bulk geochemical proxies measured in sediment samples of five gravity cores collected in the distal part of the Ogooue turbidite system (around 4000 m-depth) were used to develop a conceptual model to describe the accumulation of terrigenous organic matter (OM) during the last 200,000 yrs BP in the eastern part of the Gulf of Guinea. This model takes into account the influence of the different depositional processes (turbiditic vs hemipelagic sedimentation), geomorphological features and sea-level variations.Total organic carbon (TOC) and the stable organic carbon isotopes of the OM (δ13C) variability follow the highstand/lowstand (interglacial/glacial) cyclicity with a very low accumulation rate of terrigenous OM during periods of high sea-level and higher accumulation rate during period of low sea-level. A sea-level of 80–120 m below present day seems to favor the transfer of terrigenous sediments to the deep offshore environment through the turbidite system and thanks to the connection of the canyons heads with the river system presently located at the shelf edge at −120 m water depth.In this system, terrigenous OM matter delivered by the river accumulate in the sediments via two main processes. Indeed, a part of the terrigenous OM settles in combination with the finest particles forming hemipelagites, while another part, formed of very well preserved land plant debris, is transported and deposited far offshore with turbidity currents. The proportion of terrigenous OM accumulated due to turbidity currents is important as it can represent more than 70% of the carbon accumulated during sea-level lowstand. Moreover, terrigenous OM seems to preferentially accumulate in the levees and the lobes of the system notably due to the higher frequency of organic-rich turbidites.This study demonstrates that gravity flows, influenced by the sea-level variations, can significantly affect the terrigenous OM budget of the deep offshore Atlantic margins and that channel-levee complexes as well as turbidite lobes can be regarded as good sink for terrestrial organic carbon. These processes should be taken into consideration in the context of source rocks exploration but also for the estimation of the general carbon accumulation in ocean sediment.  相似文献   

16.
Mangroves sediments contain large reservoirs of organic material (OM) as mangrove ecosystems produce large quantities and rapidly burial OM. Sediment accumulation rates of approximately 2.0 mm year−1, based on 210Pbex dating, were estimated at the margin of two well-developed mangrove forest in southern Brazil. Regional data point to a relative sea level (RSL) rise of up to ∼4.0 mm year−1. This RSL rise in turn, may directly influence the origin and quantity of organic matter (OM) deposited along mangrove sediments. Lithostratigraphic changes show that sand deposition is replacing the mud (<63 μm) fraction and OM content is decreasing in successively younger sediments. Sediment accumulation in coastal areas that are not keeping pace with sea level rise is potentially conducive to the observed shifts in particle size and OM content.  相似文献   

17.
The Lower Silurian Longmaxi Shale in the southeastern Upper Yangtze Region, which has been the main target for shale gas exploration and production in China, is black marine organic-rich shale and rich in graptolites. Graptolites, usually only periderms preserved in shales, are important organic component of the Longmaxi Shale. However, the pore structure of graptolite periderms and its contribution to gas storage has not yet been studied before. A combination of optical microscopy for identification and “mark” of graptolite and scanning electron microscope (SEM) for pore observations were conducted for the Longamxi Shale samples. Results show that pores are anisotropic developed in the Longmaxi graptolite periderms and greatly associated with their fine structure. Micrometer-sized fractures and spindle-shaped pores between cortical fibrils in the cortical bandage are greatly developed at section parallel to the bedding, while they are rare at section perpendicular to the bedding. Besides, numerous sapropel detritus rich in nanometer-sized pores are discretely distributed in the shale. Though graptolite periderms are low porosity from SEM image analysis, microfractures and elongated pores along the graptolite periderm wall may still make the graptolite an interconnected system. Together with the discrete porous sapropel detritus in shale, these graptolite-derived Organic Matter (OM) may form an interconnected organic pore system in the shale. The difference of pore development observed in graptolite periderms and sapropel detritus also give us new insight for the organic pore heterogeneity study. The OM composition, their fine structure and orientation in the rock may be important factors controlling OM pore development. The combination of identifying OM type under optical microscopy and pores observation under SEM for may be an effective method to study the OM pore development especially in shale that contain more OM.  相似文献   

18.
In order to define the nature and distribution of the organic matter (OM) preserved in the modern Ogooué deep sea turbidite system (Gabon), bulk geochemical techniques (Rock-Eval pyrolysis, elemental and isotopic analyses) and palynofacies were applied to three piston cores collected in the Cape Lopez Canyon and lobe and on the continental slope, north of the canyon.The hemipelagic sedimentation in the study area is characterized by high accumulations of well-preserved OM (∼2-3 wt. TOC %). Bulk geochemical and palynofacies analysis indicate both a marine and terrestrial origin of the OM. Contribution of the marine source is higher on the slope than in the canyon and lobe.OM accumulation in turbidites is strongly controlled by the combined influence of the Cape Lopez Canyon and littoral drift. In the canyon and lobe, turbidites show generally low TOC content (0.5 wt. %) and OM is oxidized. The origin of the OM is interpreted as both marine and terrestrial, with a higher contribution of continental source versus marine source. The low TOC contents are due to the large siliciclastic fraction transported by the littoral drift and diverted in the Cape Lopez Canyon during high energy processes (e.g. storms) which tend to dilute the OM in the turbidites. Transport by long-shore currents and/or turbiditic flows leads to oxidation of the OM.On the continental slope located north of the Cape Lopez Canyon, large amounts of OM are deposited in turbidites (up to 14 wt. %). The OM is predominantly derived from terrestrial land plants and has not been subjected to intense oxidation. These deposits are characterized by high hydrocarbon potential (up to 27 kg HC/t rock), indicating a good potential as gas-prone source rock. Because Cape Lopez Canyon captures a significant part of the sediment transported by the littoral drift, the siliciclastic sedimentary flux is reduced north of the canyon; OM is thus concentrated in the turbidites. Variation in TOC content within turbidite laminae can be explained by the burst and sweep deposition process affecting the boundary layer of the turbulent flow.This study confirms that gravity flows play a preponderant role in the accumulation and preservation of OM in deep water and that deep sea turbidite systems could be regarded as an environment where organic sedimentation occurs.  相似文献   

19.
Grain-size distributions, total organic carbon (TOC) and total nitrogen (TN) concentrations, and TOC/TN ratios (C/N) were analysed for surface sediments from the Lower Yangtze River-East China Sea (ECS) shelf system. Hierarchical cluster analysis of grain-size parameters (mode, mean, sorting, skewness and kurtosis) has been employed to characterize grain-size compositions. The results suggest there are five grain-size compositional types (type-I–V) that fingerprint distinct depositional conditions. In areas with high sedimentation rates, hydrological sorting preferentially enriches the fraction coarser than 6.4ø (12 μm) in shallow seafloor sediments (water depth<30 m) by transporting the finer fraction to the deeper seafloor (water depth>30 m), and thus forms grain-size compositional type-I (shallow) and type-II (deep). In the open shelf, where modern sediment supply is very limited, grain-size types-III–V are identified according to different winnowing intensity. Overall TOC contents significantly correlate with mud proportions, suggesting muddy sediments are the primary control on OM accumulation. However, de-association of terrestrial OM from fine sediments in the Estuary and the occurrence of presumably relict OM in the open shelf exert additional controls on OM dispersal and carbon cycling in the ECS. By considering geography, oceanography, sediment source, and the relation between sedimentation conditions and sedimentary OM distributions, we define six depositional settings: the lower river, the estuary, the coast, the offshore upwelling area, the erosional area, and the open shelf. These settings describe the sediment dispersal and associated organic matter cycling in the Lower Yangtze River-ECS shelf system.  相似文献   

20.
In most natural sedimentary systems labile and refractory organic material (OM) occur concomitantly. Little, however, is known on how different kinds of OM interact and how such interactions affect early diagenesis in sediments. In a simple sediment experiment, we investigated how interactions of OM substrates of different degradability affect benthic nitrogen (N) dynamics. Temporal evolution of a set of selected biogeochemical parameters was monitored in sandy sediment over 116 days in three experimental set-ups spiked with labile OM (tissue of Mytilus edulis), refractory OM (mostly aged Zostera marina and macroalgae), and a 1:1 mixture of labile and refractory OM. The initial amounts of particulate organic carbon (POC) were identical in the three set-ups. To check for non-linear interactions between labile and refractory OM, the evolution of the mixture system was compared with the evolution of the simple sum of the labile and refractory systems, divided by two. The sum system is the experimental control where labile and refractory OM are virtually combined but not allowed to interact. During the first 30 days there was evidence for net dissolved-inorganic-nitrogen (DIN) production followed by net DIN consumption. (Here ‘DIN’ is the sum of ammonium, nitrite and nitrate.) After  30 days a quasi steady state was reached. Non-linear interactions between the two types of OM were reflected by three main differences between the early-diagenetic evolutions of nitrogen dynamics of the mixture and sum (control) systems: (1) In the mixture system the phases of net DIN production and consumption commenced more rapidly and were more intense. (2) The mixture system was shifted towards a more oxidised state of DIN products [as indicated by increased (nitrite + nitrate)/(ammonium) ratios]. (3) There was some evidence that more OM, POC and particulate nitrogen were preserved in the mixture system. That is, in the mixture system more particulate OM was preserved while a higher proportion of the decomposed particulate N was converted into inorganic N. It can be concluded that during the first days and weeks of early diagenesis the magnitude and composition of the flux of decompositional dissolved N-compounds from sediments into the overlying water was influenced by non-linear interactions of OM substrates of different degradability. Given these experimental results it is likely that the relative spatial distributions of OM of differing degradability in sediments control the magnitude and composition of the return flux of dissolved N-bearing compounds from sediments into the overlying water column.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号