首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The Håkon Mosby mud volcano is a 1.5-km-diameter geological structure located on the Southwest Barents Sea slope at a water depth of 1,270 m. High-definition seabed mapping of the mud volcano has been carried out in 2003 and 2006. A comparative analysis of the bathymetry and backscatter maps produced from the two surveys shows subtle morphological changes over the entire crater of the mud volcano, interpreted to be the consequence of mud eruption events. Mud temperature measurements point to a persistently warm mud at shallow depth in the crater. This is explained by upward fluid advection, rather than conductive cooling of mud flows. The small-scale spatial variability in the temperature distribution may be related to mud outflows or changes in the fluid flow regime. Furthermore, the locations of free gas venting observed in 2006 were found to differ from those of 2003. Our observations of overall similar topographic profiles across the mud volcano in 2003 and 2006 suggest that eruption events would have been modest. Nevertheless, the data bring evidence of significant change in activity even over short time intervals of only 3 years. This may be a characteristic shared by other submarine mud volcanoes, notably those considered to be in a quiescent stage.  相似文献   

2.
Fluid and solid transfer in mud volcanoes show different cyclic phases of activity, including catastrophic events and periods of relative quiescence characterized by moderate activity. This is notably well-shown by the compilation of historical data onshore Trinidad. It appears that each eruptive mud volcano has its own period of catastrophic activity, and this period is variable from one volcano to another. The frequency of the eruptions seems essentially controlled by local pressure regime within the sedimentary pile. The dynamics of expulsion of the mud volcanoes during the quiescent phases has been studied with the help of temperature measurements within the mud conduits. The mud temperature in these conduits is notably concurrently controlled by the gas flux (endothermic gas depressurizing induces a cooling effect), and by the mud flux (mud is a vector for convective heat transfer). Complex temperature distribution was observed in large conduits and pools. Especially in the bigger pools, the temperature distribution characterizes convective cells with an upward displacement of mud above the deep outlet, and ring-shaped rolls associated with the burial of the mud on the flanks of the pools. In tube-like shaped narrow conduits, the temperature is more regular, but we observed different types of profiles, with either downward increasing or decreasing temperatures. Near constant to even negative gradients compared to the general temperature gradient are typical for very dynamic fluid systems. The temperature profiles varied from one place to another, as well as over time. The temperatures measured within the conduits and their base show that the fluid flow is not constant but highly variable through short time-periods. We observed locally a significant daily change of the temperature of the expelled mud which shows also that the mud flux is changing very rapidly due to the migration dynamics of the mud in fracture systems. We also observed very short time-period cyclic variations with a frequency of several minutes. These high frequencies temperature changes could be related to the dynamics of two-phase flows (gas and mud) through the mud volcano conduits.  相似文献   

3.
A mud volcano LUSI initiated its eruption on 29 May 2006, adjacent to a hydrocarbon exploration well in East Java. Ground subsidence in the vicinity of the LUSI eruptive vent was well recorded by a Synthetic Aperture Radar (SAR) PALSAR onboard the Japanese ALOS satellite. We apply an Interferometric SAR (InSAR) technique on ten PALSAR data scenes, acquired between 19 May 2006 and 21 May 2007, in order to obtain continuous maps of ground displacements around LUSI. Although the displacements in the area closest to the eruptive vent (spatial extension of about 1.5 km) are not detectable because of the erupted mud, all the processed interferograms indicate subsidence in an ellipsoidal area of approximately 4 km (north–south) × 3 km (east–west), centered at the main eruptive vent. In particular, interferograms spanning the first four months until 4 Oct. 2006 and the subsequent 46 days between 4 Oct. 2006 and 19 Nov. 2006 show at least about 70 cm and 80 cm of displacements away from the satellite, respectively. Possible causes of the subsidence, i.e., 1) loading effect of the erupted mud, 2) creation of a cylindrical mud conduit, and 3) pressure decrease and depletion of materials at depth, are investigated. The effects of the first two causes are found to be insufficient to explain the total amount of subsidence observed in the first six months. The third possibility is quantitatively examined using a boundary element approach by modeling the source of deformation as a deflating oblate spheroid. The spheroid is estimated to lie at depths of a few hundred to a thousand meters. The estimated depths are significantly shallower than determined from analyses of erupted mud samples; the difference is explained by presence of significant amount of inelastic deformation including compaction and downward transfer of material.  相似文献   

4.
Mud volcanoes—a significant source of atmospheric methane   总被引:3,自引:0,他引:3  
Mud volcanoes are recognized as a significant geological source of atmospheric carbon, particularly as methane gas. This paper considers the total number of mud volcanoes, types and frequency of their activity, quantities of emissions during quiescence and eruption, and composition of venting gases. Mud volcanoes approximate 1,950 prominent individuals worldwide and about 60 to 65 erupt every year. They sporadically or continuously emit to the atmosphere considerable volumes of gas, mainly methane, in average volumes of 3.3 to 3.6×106 m3 per year during quiescent periods, and about 12×106 m3 to more than 350×106 m3 per single eruption. The total annual amount of methane emitted to the atmosphere through mud volcanoes is estimated to be about 5 Tg, containing almost equal quantities of fossil and modern carbon.  相似文献   

5.
Samples were collected for foraminiferal studies by the Johnson Sea-Link I and II manned submersibles on the Louisiana continental slope. This paper documents that the mud, extruded onto the sea floor from depth by four mud volcanoes, ranges in age from Miocene to Pleistocene based on studies of the planktonic foraminiferal fauna. The vents are in water depths ranging from 300 to 690 m located in Garden Banks Block 382, Green Canyon Blocks 143 and 272, and Mississippi Canyon Block 929. Two mud volcanoes in GB 382 and MC 929 also have rich fossil foraminiferal microfaunas. We suggest that the extrusion of fossil sediments onto the sea floor during the Quaternary is a reasonable explanation for frequent occurrences of displaced fossil microfaunas encountered at depth in wells drilling on the flanks of salt diapirs in the slope environment. Results of this study have important implications for age dating subsurface sediments in bathyal locations.  相似文献   

6.
This paper documents and describes through the use of 3D seismic data a prolific mud volcano province within the Eastern Mediterranean. As many as 386 mud volcanoes were mapped within the post-salt succession of the western slope of the Nile Cone, offshore Egypt, using high resolution 3D seismic data. The mud volcanoes within this field display significant geometrical variability in diameter (c. 550 m to c. 5660 m), height (c. 25 m to c. 510 m) and volume (c. 0.1 km3 to c. 3.3 km3) and lie at depths ranging from c. > 6000 m subsea to c. 3100 m at the seafloor. A close spatial relationship between mud volcanoes and base-salt depressions and regions of anomalous thinning within the immediate pre-salt succession, combined with documented core samples taken from mud volcanoes within this region present a powerful argument for a pre-salt source of mud. 3D seismic interpretation and volumetric analysis of these mud volcanoes and their source region permit the definition and quantification of their depletion zones. A conceptual model for a dynamic liquefaction and sediment withdrawal process is proposed whereby mud is fed into a central conduit as the depletion zone propagates radially and episodically outwards resulting in a the formation of a concentric depletion zones. Prolonged mud volcanism within this region over the last ∼5.3 Ma implies the potential for long lived pre-salt overpressure and continued mud volcanism following the catastrophic hydrodynamic impact of the Messinian Salinity Crisis. It is suggested that the scale of mud volcanism means that this region should be considered as among the largest mud volcano provinces in the world.  相似文献   

7.
The assessment of gas origin in mud volcanoes and related petroleum systems must consider post-genetic processes which may alter the original molecular and isotopic composition of reservoir gas. Beyond eventual molecular and isotopic fractionation due to gas migration and microbial oxidation, investigated in previous studies, we now demonstrate that mud volcanoes can show signals of anaerobic biodegradation of natural gas and oil in the subsurface. A large set of gas geochemical data from more than 150 terrestrial mud volcanoes worldwide has been examined. Due to the very low amount of C2+ in mud volcanoes, isotopic ratios of ethane, propane and butane (generally the best tracers of anaerobic biodegradation) are only available in a few cases. However, it is observed that 13C-enriched propane is always associated with positive δ13CCO2 values, which are known indicators of secondary methanogenesis following anaerobic biodegradation of petroleum. Data from carbon isotopic ratio of CO2 are available for 134 onshore mud volcanoes from 9 countries (Azerbaijan, Georgia, Ukraine, Russia, Turkmenistan, Trinidad, Italy, Japan and Taiwan). Exactly 50% of mud volcanoes, all releasing thermogenic or mixed methane, show at least one sample with δ13CCO2 > +5‰ (PDB). Thermogenic CH4 associated with positive carbon isotopic ratio of CO2 generally maintains its δ13C-enriched signature, which is therefore not perturbed by the lighter secondary microbial gas. There is, however, high variability in the δ13CCO2 values within the same mud volcanoes, so that positive δ13CCO2 values can be found in some vents and not in others, or not continuously in the same vent. This can be due to high sensitivity of δ13CCO2 to gas–water–rock interactions or to the presence of differently biodegraded seepage systems in the same mud volcano. However, finding a positive δ13CCO2 value should be considered highly indicative of anaerobic biodegradation and further analyses should be made, especially if mud volcanoes are to be used as pathfinders of the conditions indicative of subsurface hydrocarbon accumulations in unexplored areas.  相似文献   

8.
《Marine Geology》2005,219(1):1-17
The El Arraiche field is a new mud volcano field discovered near the Moroccan shelf edge in the Gulf of Cadiz that consists of 8 mud volcanoes in water depths from 200 to 700 m. The largest mud volcano in the field (Al Idrissi mud volcano) is 255 m high and 5.4 km wide. The cluster was discovered during a survey with the RV Belgica and studied further during Leg 2 of the TTR 12 survey onboard the R/V Prof Logachev. The 2002 surveys yielded detailed multibeam bathymetry over a 700 km2 study area, dense grids of high-resolution seismic data, deep-tow sub bottom profiles, sidescan sonar mosaics over the major structures. Selected video imagery lines, video guided grab samples, dredge samples, gravity cores, and box cores were collected for groundtruthing purposes. Eight mud volcanoes in water depths from 200 to 700 m cluster around two, sub-parallel anticlines and associated active extensional faults. Rock clasts and regional seismic data locate the El Arraiche field over a Late Miocene–Pliocene extensional basin. The onset of mud volcanic activity is estimated at about 2.4 Ma and probably roots in the Cretaceous–Miocene accretionary wedge. Stacked outflows are visible up to a depth of about 500 m below the sea floor. The occurrence of long-lived mud volcanoes bear witness to continued overpressure generation at depth, either by in situ oil and gas generation or by focussed flow and accumulation in the area. Geochemical analyses of pore water from cores demonstrate the presence of thermogenic hydrocarbon processes. The activity of the mud volcanoes is indicated by the thickness of hemi-pelagic sediments covering extruded mud breccia, the occurrence of seep-typical fauna, the degree of mixing between thermogenic and biogenic hydrocarbon processes, or the depth to the base of the sulphate reduction zone. Given its structural setting and the evidence of thermogenic and biogenic hydrocarbons, the area has promising hydrocarbon potential but remains untested.  相似文献   

9.
Acoustic investigations of mud volcanoes in the Sorokin Trough, Black Sea   总被引:1,自引:0,他引:1  
The Sorokin Trough (Black Sea) is characterized by diapiric structures formed in a compressional tectonic regime that facilitate fluid migration to the seafloor. We present acoustic data in order to image details of mud volcanoes associated with the diapirs. Three types of mud volcanoes were distinguished: cone-shaped, flat-topped, and collapsed structures. All mud volcanoes, except for the Kazakov mud volcano, are located above shallow mud diapirs and diapiric ridges. Beyond the known near-surface occurrence of gas hydrates, bottom simulating reflectors are not seen on our seismic records, but pronounced lateral amplitude variations and bright spots may indicate the presence of gas hydrates and free gas.  相似文献   

10.
The Gulf of Cádiz area has been extensively surveyed in recent years and several gas-related fluid escape seafloor structures have been identified. In this study, gravity cores, collected during the ANASTASYA/00 and ANASTASYA/01 cruises, on mud volcanoes, hemipelagic sediments and dredged material from diapiric structures, have been studied. A comparative mineralogical analysis by XRD and SEM of samples from different areas has been performed in order to determine whether there is a characteristic mineralogy related to these fluid escape structures, and also to determine the origin of the mud matrix and constrain the depth of the parent units. The mineralogical analysis reflects the different origins of the different units described in the cores: hemipelagic material of the slope, clays that underlie the mud volcanoes and are discharged at the sea bottom surface, and authigenic and diagenetic minerals possibly involved in the anaerobic oxidation of methane in the mud volcano sediments.  相似文献   

11.
Mud volcanoes are cold seeps, in which the escape of gas and fluids associated with mud creates 3-D bottom structures that enhance the spatial heterogeneity and potentially alter the functioning of the benthic ecosystems. We investigated a complex system of mud volcanoes of the Mediterranean Sea characterised by the presence of different structures (i.e., isolated domes, domes surrounded by moats, clustered domes, and ridges) displaying different levels of seepage. We hypothesize that the combined effects of seafloor heterogeneity (i.e., different 3-D structures as revealed by detailed topographic analysis), fluid emissions and trophic characteristics of these systems can influence the structural and functional biodiversity of meiofauna (with special focus on the nematodes). We found that sediments affected by intensive seepage displayed the lowest faunal abundances and number of higher taxa. However, mud volcanoes without emissions, but characterized by a high structural complexity (such as the ridges), were associated with the highest meiofaunal abundances and number of higher taxa. Mud volcanoes hosted also a remarkable abundance of rare taxa specifically associated with these structures (e.g., acarians, cumaceans, tanaids, cladocerans and hydroids) and absent in slope sediments (used as a control). Each mud-volcano area displayed a different nematode species composition. Overall 76 nematode species (from a total of 235) were exclusively associated with mud-volcano structures, whilst 29 were exclusively encountered in slope sediments. We conclude that the presence of mud volcanoes, for their contribution to increase spatial heterogeneity and for the extreme conditions associated with gas emissions, promotes higher levels of beta diversity, thus enhancing the regional (gamma) benthic diversity. These findings provide new insights on the factors controlling meiobenthic biodiversity in mud volcanoes and clues for future action of conservation of the biodiversity specifically associated with these habitats.  相似文献   

12.
The potential for fluid leakage from sub-surface reservoirs has important implications for CO2 storage, hydrocarbon reservoirs and water resources. Understanding the genesis, morphology, fluid flow mechanisms and extent of fluid escape from reservoirs allows for better risking of geological resources and storage potential. Here we describe in detail the structures of fluid escape pipes from the Loyal Field, observed from a 3D full and partial stack seismic dataset. The seismic imagery suggests that the fluid escape pipes are rooted at least in the main Paleocene reservoir and by-pass the reservoir seal to cross the post Lista Formation overburden up to the intra-Neogene units. The pipes extend for a few hundred meters to a few kilometres and show varying shape and structure from blow-out structures to incipient mud volcanoes. A detailed analysis of the seismic characteristics observed both from main baseline and partial stack data allows a division of the pipes into two families: (1) seeps and pipes following structural discontinuities and (2) pipes unrelated to the pre-existing structural features. The pipes internal seismic response, the reflector termination of the main conduits and the distribution of stacked bright reflectors suggest an upward migration mechanism (during pipe birth and development), requiring a cyclic switching from non-Darcy hydrofracturing (during overpressure) to Darcy flow lateral migration (during low-pressure stage).  相似文献   

13.
泥火山是地球运动和深部含流体物质向表层迁移的一种重要形式, 其喷溢及喷出物对认识地质动力、地层岩性和资源环境具有重要的意义。东沙海区新生界薄(~1km), 中生界厚(>5km), 是南海最典型的中生代沉积区和油气勘探待突破区。区内有众多的海山海丘, 过去都被推测为不利于油气成藏的岩浆火山。但近年来针对这些海山进行的调查发现了大量海底地层底辟形变与断裂、流体充注空白反射带和喷溢释放结构。通过浅表层取样采获了丰富的自生碳酸盐岩结核及深水珊瑚、海绵等生物, 表明众多海山、海丘具有明显的泥火山活动特征。东沙泥火山的发现表明区内具有良好的油气生成和运移条件, 为勘探源于中生界的油气和水合物提供了重要线索; 而大量深水珊瑚和海绵的出现指示东沙泥火山区可能是深水珊瑚礁、海绵礁发育区, 为研究油气泄漏、化养生物和环境三者的关系提供了重要的研究对象。  相似文献   

14.
In February 2008, cruise P362/2 was undertaken aboard R/V Poseidon to the Giza and North Alex mud volcanoes (MVs) on the upper slope of the western Nile deep-sea fan. Emitted fluids were strongly depleted in chloride and rich in hydrocarbons, predominantly of thermogenic origin. In-situ sediment temperature measurements indicate extremely high and moderate levels of activity for the North Alex MV and Giza MV, respectively, and suggest rapid changes from dormant to active stages. Both the physical properties of core sediments (e.g., color and magnetic susceptibility), and their assemblages of micro- and nannofossils point to different sources for the two mud volcanoes. Biostratigraphic dating suggests source depths of 2,100–2,450 mbsf for the Giza MV and 1,150–1,550 mbsf for the North Alex MV. Very high temperatures of up to 70°C in shallow sediments at the North Alex MV can be explained only if the fluid source were warmer and deeper than the sediment source.  相似文献   

15.
A geological and geochemical study has been carried out to investigate the relationships between major mud volcano structures and deep fluid migration in the Cheleken peninsula, in the South Caspian Basin. The fluid geochemistry allowed the origin and migration of the saline waters and the hydrocarbons to be deduced along with the regional source and reservoir rocks. The emitted waters formed by the mixing of deep highly saline water from the main source rocks of the Maykop Fm with the Caspian-like pore water contained in the Pliocene reservoirs. The water composition is very similar to that emitted by the mud volcanoes in Azerbaijan, allowing comparisons to be done between the reservoirs in the western and eastern sides of the South Caspian Basin. The associated oil is derived from a mixed type II/III kerogen deposited in a sub-oxic marine environment and generated during the early oil window. The oil biomarkers indicate that the source rock is the Maykop Fm., as previously determined for the other areas of the South Caspian Basin.The spontaneous emissions, showing different morphologies, are mainly aligned along normal and transtensive fault systems, which provide effective pathways for rapid fluid ascent from deep reservoirs to the surface.  相似文献   

16.
Mud volcanoes and gas vents in the Okhotsk Sea area   总被引:5,自引:0,他引:5  
Gas emissions from mud volcanoes on Sakhalin Island and water-column gas flares arising from cold seeps in the Okhotsk Sea appear to be related. They are likely activated by tectonic movements along the transform plate boundary separating the Okhotsk Sea Plate from the Eurasian and Amur plates. Gas vents (flares) and methane anomalies occur in the waters offshore Sakhalin Island, along with NE-SW-trending mounds and fluid escape structures on the seafloor. The intersection of the NE-striking transverse faults on land with the Central Sakhalin and Hokkaido-Sakhalin shear zones apparently determines the sites of mud volcanoes, a pattern that continues offshore where the intersection with the East Sakhalin and West Derugin shear zones determines the sites of the submarine gas vents.  相似文献   

17.
渤海湾的油田大部分为砂岩储层,地层胶结较为疏松,在完井作业负压射孔过程中,地层出砂较为严重,增加了射孔枪遇卡的风险,尤其是在大斜度套管井的射孔作业中,常规的射孔液不能满足作业的要求.采用PRD射孔液,能够在射孔段形成薄的泥饼,减少地层出砂,减少射孔液漏失进入地层,保护油藏,而通过后期破胶又可以清除泥饼,因而不会堵塞油流通道.PRD射孔液提高了射孔作业的安全性,减少了事故的发生,同时提高了油井完井的完善程度,值得推广.  相似文献   

18.
An anomalous strong, shallow reflector has been observed in several deep-tow subbottom profiler records in a region of the northern Black Sea characterised by seafloor fluid seeps, mud volcanoes, and the occurrence of gas hydrates. The digital data were processed using adapted seismic processing methods. Synthetic seismograms created to model representative traces from the observed profiles require anomalous alternations of acoustic properties in the upper sediments which can best be explained by interbedded layers of normal sediments and sediments with gas hydrates. The enigmatic strong reflector can be explained by constructive interference of reflections from five of these thin layers. It is proposed that the uppermost region of the gas hydrate stability zone here is represented by thinning layers of interbedded gas hydrates or layers with lower concentrations of gas hydrates.  相似文献   

19.
During the MVSEIS-08 cruise of 2008, ten new mud volcanoes (MVs) were discovered on the offshore Moroccan continental margin (Gulf of Cádiz) at water depths between 750 and 1,600?m, using multibeam bathymetry, backscatter imagery, high-resolution seismic and gravity core data. Mud breccias were recovered in all cases, attesting to the nature of extrusion of these cones. The mud volcanoes are located in two fields: the MVSEIS, Moundforce, Pixie, Las Negras, Madrid, Guadix, Almanzor and El Cid MVs in the western Moroccan field, where mud volcanoes have long been suspected but to date not identified, and the Boabdil and Al Gacel MVs in the middle Moroccan field. Three main morphologies were observed: asymmetric, sub-circular and flat-topped cone-shaped types, this being the first report of asymmetric morphologies in the Gulf of Cádiz. Based on morpho-structural analysis, the features are interpreted to result from (1) repeated constructive (expulsion of fluid mud mixtures) and destructive (gravity-induced collapse and submarine landsliding) episodes and (2) interaction with bottom currents.  相似文献   

20.
Mud volcanoes, mud cones, and mud ridges have been identified on the inner portion of the crestal area, and possibly on the inner escarpment, of the Mediterranean Ridge accretionary complex. Four areas containing one or more mud diapirs have been investigated through bathymetric profiling, single channel seismic reflection profiling, heat flow measurements, and coring. A sequence of events is identified in the evolution of the mud diapirs: initially the expulsion on the seafloor of gasrich mud produces a seafloor depression outlined in the seismic record by downward dip of the host sediment reflectors towards the mud conduit; subsequent eruptions of fluid mud may create a flat topped mud volcano with step-like profile; finally, the intrusion of viscous mud produces a mud cone.The origin of the diapirs is deep within the Mediterranean Ridge. Although a minimum depth of about 400 m below the seafloor has been computed from the hydrostatic balance between the diapiric sediments and the host sediments, a maximum depth, suggested by geometric considerations, ranges between 5.3 and 7 km. The presence of thermogenic gas in the diapiric sediments suggests a better constrained origin depth of at least 2.2 km.The heat flow measured within the Olimpi mud diapir field and along a transect orthogonal to the diapiric field is low, ranging between 16 ± 5 and 41 ± 6 mW m–2. Due to the presence of gas, the thermal conductivity of the diapiric sediments is lower than that of the host hemipelagic oozes (0.6–0.9 and 1.0–1.15 W m–1 K–1 respectively).We consider the distribution of mud diapirs to be controlled by the presence of tectonic features such as reverse faults or thrusts (inner escarpment) that develop where the thickness of the Late Miocene evaporites appears to be minimum. An upward migration through time of the position of the décollement within the stratigraphic column from the Upper Oligocene (diapiric sediments) to the Upper Miocene (present position) is identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号