首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
探地雷达在探测玉树走滑断裂带活动性中的初步应用   总被引:4,自引:1,他引:3  
探地雷达具有快速、检测范围广、探测深度深、分辨率高及对地表环境无破坏等特点,在活动断层探测应用中具有很大的优势。在简要介绍玉树走滑断裂带活动性的基础上,选择高分辨率的探地雷达对隆宝、昔日达和盘琼沟处断裂带附近的活动断层进行探测。采用时间域有限差分法建立活动断层的数值模型对其雷达波响应特征进行模拟,分析断层在探地雷达剖面上的反射波特征。根据断层的反射波特征解译探地雷达图像,判断断层的位置、走向及空间展布。结合探槽开挖对比,探地雷达图像的解译结果与探槽开挖后的断裂带剖面展示的断层活动性质基本一致。根据隆宝、昔日达和盘琼沟处的探地雷达图像与探槽剖面上断层反射波特征的对比研究,解译了玉树地震震中位置探地雷达剖面上的断层展布。研究表明,探地雷达是一种快速探测活动断层的有效方法,尤其是在地表破裂不明显的区域,不仅可以准确地判断断层的位置、走向及空间展布,还可以将断裂带附近地下岩层的层位信息及探槽断面之外的地表下图像清晰地呈现出来,为以后运用探地雷达探测活动断层提供参考。  相似文献   

2.
地质雷达技术具有操作性强、分辨率高、探测深度深、对地表环境无破坏和可重复探测等特点,在活断层探测中具有很大的优势。为验证综合多中心频率地质雷达天线探测活断层地下浅层结构效果,以民主村处发育的玉树活动断裂为研究对象,采用25 MHz、100 MHz、250 MHz和500 MHz中心频率的地质雷达天线对活断层浅层结构进行探测,并与探槽剖面进行效果对比。研究结果表明:低中心频率的地质雷达天线(25 MHz和100 MHz)可获取大范围内深度较深(约32 m)的活断层地下浅层结构的整体形态,从雷达图像上可识别出主断层分布范围、断层倾向及地下浅层结构等;而中高中心频率的地质雷达天线(250 MHz和500 MHz)则可获取局部范围内深度较浅(约3 m)的地下浅层结构,尤其是500 MHz天线。探测结果与地表构造地貌形态和探槽剖面地质构造一致,表明综合多中心频率地质雷达天线探测玉树活动断裂浅层结构的有效性和适用性,为活断层研究提供多尺度数据及方法支持。   相似文献   

3.
Efforts to map the lithology and geometry of sand and gravel channel‐belts and valley‐fills are limited by an inability to easily obtain information about the shallow subsurface. Until recently, boreholes were the only method available to obtain this information; however, borehole programmes are costly, time consuming and always leave in doubt the stratigraphic connection between and beyond the boreholes. Although standard shallow geophysical techniques such as ground‐penetrating radar (GPR) and shallow seismic can rapidly obtain subsurface data with high horizontal resolution, they only function well under select conditions. Electrical resistivity ground imaging (ERGI) is a recently developed shallow geophysical technique that rapidly produces high‐resolution profiles of the shallow subsurface under most field conditions. ERGI uses measurements of the ground's resistance to an electrical current to develop a two‐dimensional model of the shallow subsurface (<200 m) called an ERGI profile. ERGI measurements work equally well in resistive sediments (‘clean’ sand and gravel) and in conductive sediments (silt and clay). This paper tests the effectiveness of ERGI in mapping the lithology and geometry of buried fluvial deposits. ERGI surveys are presented from two channel‐fills and two valley‐fills. ERGI profiles are compared with lithostratigraphic profiles from borehole logs, sediment cores, wireline logs or GPR. Depth, width and lithology of sand and gravel channel‐fills and adjacent sediments can be accurately detected and delineated from the ERGI profiles, even when buried beneath 1–20 m of silt/clay.  相似文献   

4.
应用GPR获取水文地质参数研究初探   总被引:1,自引:0,他引:1  
探地雷达(GPR)能够在不同空间尺度上采集水文地质数据来对地下特征进行详细描述,近年来被广泛应用于探测地下结构和埋藏体。本文简要介绍了GPR的工作原理、探测方式及其应用条件;探讨了GPR获取多孔介质水力参数的物理机制;分别利用50MHz和25MHz天线对同一断面进行等采样距测量,经分层标定和时间拾取,获取了沿测线非饱和带含水率及饱和带的孔隙度和渗透系数,并将结果与钻孔取样的岩性进行了对比,结果合理。  相似文献   

5.
The geological characterization of the shallow subsurface in the unconsolidated sediments of the Atlantic Coastal Plain, and other unconsolidated sediment regimes, may involve jointing, faulting, and channeling not readily detectable by conventional drilling and mapping. A knowledge of these features is required in environmental, geotechnical, and geomorphological studies. Ground-penetrating radar (GPR) may be used to routinely map these structures. Three principal shallow subsurface features are readily detectable using GPR: paleochannels, joints or fractures, and faults. The detection of paleochannels is dependent on the scale of the GPR survey and the attitude of the channel within the survey area. Channel morphological features such as scour surfaces, point bars, and thalwegs are observable. Joints and fractures are more difficult to detect depending upon size, patterns, orientation, and fill material. Vertical joints may not be visible to radar unless they are wider than the sampling interval or are filled with radar-opaque materials such as limonite. Angled joints or fractures may be distinguished by an apparent continuous reflector on the radar profile. Faulting on radar profiles may be observed by the offset of reflectors, the image of the fault plane, or the coherent interpretation of a fault system.  相似文献   

6.
van der Kruk  J.  Slob  E.C.  Fokkema  J.T. 《Geologie en Mijnbouw》1998,77(2):177-188
Characterization of the shallow subsurface (0.25 to 10 m) is of growing importance for engineering activities, solutions of environmental problems, and archaeological investigations. Ground-penetrating radar (GPR) is an appropriate technique considering the depth range of interest, the strength of electric and magnetic contrasts between different subsurface layers and buried objects, and the required resolution. GPR surveys can detect subsurface structures by recording electromagnetic reflections from discontinuities. The detectability of objects and the delineation of subsurface structures increases with increasing wave velocity and conductivity differences between the object and its surroundings or between adjacent layers. However, unwanted reflections from objects above the surface influence the images. Shielded antennas can be used to avoid strong reflections from these objects. The data thus obtained are, however, more difficult to interpret. The fundamentals of GPR and two different acquisition setups for a GPR system are discussed. Basic interpretation tools for travel-time and velocity estimation are described, and finally, case studies are presented, followed by conclusions.  相似文献   

7.
A landslide located on the Quesnel River in British Columbia, Canada is used as a case study to demonstrate the utility of a multi-geophysical approach to subsurface mapping of unstable slopes. Ground penetrating radar (GPR), direct current (DC) resistivity and seismic reflection and refraction surveys were conducted over the landslide and adjacent terrain. Geophysical data were interpreted based on stratigraphic and geomorphologic observations, including the use of digital terrain models (DTMs), and then integrated into a 3-dimensional model. GPR surveys yielded high-resolution data that were correlated with stratigraphic units to a maximum depth of 25 m. DC electrical resistivity offered limited data on specific units but was effective for resolving stratigraphic relationships between units to a maximum depth of 40 m. Seismic surveys were primarily used to obtain unit boundaries up to a depth of >80 m. Surfaces of rupture and separation were successfully identified by GPR and DC electrical resistivity techniques.  相似文献   

8.
This study is a comparative investigation of the debris layer and underlying ice of the Koxkar Glacier using multi-frequency GPR with antennae having different frequencies. Together with analysis of the fluctuation of the radar signal amplitude and polarity, the debris layer and underlying ice were analyzed on the basis of high-resolution GPR images. It was found that the optimal average velocity in the shallow layer (0–4 m) is 0.06 m/ns. Images obtained with different frequency antennas have different characteristics; and the performance of the 200 MHz antenna for a debriscovered glacier is the best. The interpretation of typical GPR image is validated by using FDTD numerical model. Combining the debris layer thickness and the underlying ice structure, the effect of debris layer on ablation of glacier ice and forecast of the glacier change in the aspect of thickness-thinning and glacier retreat can be estimated. This study can provide as a reference to the formation mechanisms and estimation of the ice volume of glaciers covered by debris.  相似文献   

9.
Ground-penetrating radar (GPR) is applied to detect subsurface tectonic structures and to map the geometry of faulted blocks. Tectonic interpretations from a profile crossing the graben fault and a grid in a second-order graben structure providing a 3D data set are correlated to the structural inventory of the outcrop. Folded layers of the roll-over anticline are identified by continuous curved reflectors and an increasing dip towards the main graben fault. Faults are indicated by arrays of reflector terminations. Variations in the water and clay content caused by karstification and brecciation on fault planes are displayed by changing amplitudes of the detected signal. The 3D visualization of the second-order graben structure with a grid of GPR profiles illustrates the local stress pattern which coincides with structural observations in the outcrop and photo lineations.  相似文献   

10.
探地雷达是一种利用电磁波的反射原理探测地下介质分布特征的地球物理勘探技术,在冰川研究中发挥了重要作用。在天山一号冰川上用探地雷达进行了探测,获得了能够清晰地分辨冰一岩界面的雷达剖面。根据这些雷达剖面读出冰厚值,再结合最新的冰川地形图,作出了天山一号冰川的冰厚等值线图和冰下地形图;并由天山一号冰川最新的表面积数据推算了冰储量。  相似文献   

11.
Ground-penetrating radar (GPR) is a geophysical technique widely used to study the shallow subsurface and identify various sediment features that reflect electromagnetic waves. However, little is known about the exact cause of GPR reflections because few studies have coupled wave theory to petrophysical data. In this study, a 100- and 200-MHz GPR survey was conducted on aeolian deposits in a quarry. Time-domain reflectometry (TDR) was used to obtain detailed information on the product of relative permittivity (ɛr) and relative magnetic permeability (μr), which mainly controls the GPR contrast parameter in the subsurface. Combining TDR data and lacquer peels from the quarry wall allowed the identification of various relationships between sediment characteristics and ɛrμr. Synthetic radar traces, constructed using the TDR logs and sedimentological data from the lacquer peels, were compared with the actual GPR sections. Numerous peaks in ɛrμr, which are superimposed on a baseline value of 4 for dry sand, are caused by potential GPR reflectors. These increases in ɛrμr coincide with the presence of either organic material, having a higher water content and relative permittivity than the surrounding sediment, or iron oxide bands, enhancing relative magnetic permeability and causing water to stagnate on top of them. Sedimentary structures, as reflected in textural change, only result in possible GPR reflections when the volumetric water content exceeds 0·055. The synthetic radar traces provide an improved insight into the behaviour of radar waves and show that GPR results may be ambiguous because of multiples and interference.  相似文献   

12.
源-汇系统研究已成为世界范围内地球科学领域广为关注的重要课题.陆相盆地作为源-汇系统研究的重要方面,相对于洋陆边缘源-汇系统,其源-汇系统要素多样、过程复杂、沉积体系多变,耦合模型预测难度大,且尚处于起步阶段.陆相盆地源-汇系统研究主要集中于驱动机制及地球动力学过程、深时古气候、沉积盆地古物源区演化恢复与古水系重建、源-汇系统要素分析及剥蚀-搬运-沉积过程单因素分析与耦合模式探讨.基于钻井、岩心、分析化验数据的多方法物源示踪分析与三维地震数据的地震地貌学或地震沉积学分析,为地下陆相盆地古源区恢复、古水系重建及沉积体系的沉积地貌和沉积过程研究提供了重要的技术支撑.关注不同母岩区源-汇系统差异,开展现代考察与古代源-汇相结合,并尝试定量化源-汇系统耦合-过程研究,最终形成工业化标准与规范是陆相盆地源-汇研究的发展趋势.   相似文献   

13.
Mark Stephens   《Sedimentary Geology》1994,90(3-4):179-211
A well exposed outcrop in the Kayenta Formation (Lower Jurassic) in southwestern Colorado was examined in order to delineate the stratigraphy in the subsurface and test the usefulness of ground-probing radar (GPR) in three-dimensional architectural studies.

Two fluvial styles are present within the Kayenta Formation. Sandbodies within the lower third of the outcrop are characterized by parallel laminations that can be followed in the cliff-face for well over 300 m. These sandbodies are sheet-like in appearance, and represent high-energy flood deposits that most likely resulted from episodic floods. The remainder of the outcrop is characterized by concave-up channel deposits with bank-attached and mid-channel macroforms. Their presence suggests a multiple channel river system.

The GPR data collected on the cliff-top, together with sedimentological data, provided a partial three-dimensional picture of the paleo-river system within the Kayenta Formation. The 3-D picture consists of stacked channel-bar lenses approximately 50 m in diameter.

The GPR technique offers a very effective means of delineating the subsurface stratigraphy. Its high resolution capabilities, easy mobility, and rapid rate of data collection make it a useful tool. Its shallow penetration depth and limitation to low-conductivity environments are its only drawbacks.  相似文献   


14.
Ground penetrating radar (GPR) is an effective geophysical method for environmental and engineering exploration. However, significant background interference occurs around most work sites, which increases the difficulty of analyzing and interpreting GPR profiles. For time-distance profile analyses, more accurate results can be obtained using the instantaneous parameters of the analytic signals. In this study, these instantaneous parameters are extracted and compared using 1D model waveform and 2D model strong interference profiles. The results show that the instantaneous amplitude gradient effectively reflects the model information, even under strong interference. The instantaneous amplitude gradient is applied to GPR survey data from a study site, and the results indicate that the technique reflects the underground structure information of the survey area. Drilling verification further confirms that the instantaneous amplitude gradient accurately reflects the underground structure information.  相似文献   

15.
探地雷达(GPR)波阻抗反演是一种准确获取地下介质本征参数的有效方法,该方法依赖于测井资料提供的低频信息,而在GPR实际应用中,钻孔资料很少。为此,提出利用共中心点(CMP)速度分析为波阻抗反演提供大尺度纵向约束,实现在CMP速度分析结果的约束框架下,精细重构介质的介电参数信息。首先,以层状模型为算例,验证了CMP速度分析结果作为波阻抗反演的初始模型约束的可行性;在此基础上,开展了2个随机介质模型的波阻抗反演测试,反演结果的整体结构与模型接近,细微结构得到了较好的重构,与理论值的平相对误差为8.73%。结果表明,该方法在随机介质模型的探地雷达的波阻抗反演中更高效和经济,并且成像结果中包含着丰富的细节信息,在土壤介质其他物理参数估计中具有可行性和适用性。   相似文献   

16.
地质雷达探测以其分辨率高、定位准确、快速经济、灵活方便、剖面直观、实时图像显示等优点,成为地质调查中广泛使用的一种探测方法。本次宁夏青铜峡地区1∶5万新构造与活动构造区填图中运用地质雷达探测技术对第四系和隐伏断层进行了探测。结果表明,40 MHz地质雷达可以有效地探测地表以下30 m内的第四系结构,可清晰地识别出3套第四纪地层。这一地层结构划分被第四系浅钻证实,其为第四系全新统灵武组,自下而上由泥岩、砂砾石层和含砾的砂或泥等3套地层组成。对测区主干断裂——柳木高断裂南段的地质雷达探测表明,断裂带表现为近地表发散向下汇聚的正花状结构,这与探槽揭露的特征一致,表明地质雷达探测可以准确标定隐伏断层平面位置与垂向精细结构。本次宁夏地质填图证实,地质雷达技术是浅覆盖活动构造区进行隐伏断裂调查和第四纪地层层序划分的可行、高效、便捷的技术方法之一。  相似文献   

17.
Morend  Pugin  & Gorin 《地学学报》1998,10(3):155-159
Two shallow high-resolution seismic reflection profiles acquired across part of the western Molasse Basin near Geneva have been processed and interpreted. Three seismic facies have been identified in the Chattian Lower Freshwater Molasse. They are associated with depositional environments in a sand-bed meandering river setting. A distal floodplain environment, characterized by alternations of thick shales and thin sandstones and by palustrine-lacustrine limestones, is represented by a poorly reflective seismic facies with discontinuous reflections. Thick sand-filled channels generate a highly reflective facies with continuous reflections. Highly re-flective and continuous reflections characterize the third facies, which is generated by shales and thick proximal clastic deposits, indicative of a proximal floodplain environment. This scientific approach leads to applications in subsurface lithological predictions associated with geotechnical and environmental assessments in the densely populated Swiss Plateau where Molasse sediments form a large part of the substrate.  相似文献   

18.
In this study, a groundwater exploration survey was conducted using the DC Resistivity (DCR) method in a hydrogeological setting containing a perched aquifer. DCR data were gathered and an electrical tomography section was recovered using conventional four-electrode instruments with a Schlumberger array and a two-dimensional (2D) inversion scheme. The proposed scheme was tested over a synthetic three-dimensional (3D) subsurface model before deploying it in a field situation. The proposed method indicated that gathering data with simple four-electrode instruments at stations along a line and 2D inversion of datasets at multiple stations can recover depth intervals of the studied aquifer in the hydrogeological setting even if it has a 3D structure. In this study, 2D inversion of parallel profiles formed a pseudo-3D volume of the subsurface resistivity structures and mapped out multiple resistive (>25 ohm·m) bodies at shallow (between 50–100 m) and deep sections (>150 m). In general, the proposed method is convenient to encounter geological units that have limited vertical and spatial extensions in any direction and presents resistivity contrast from groundwater-bearing geologic materials.  相似文献   

19.
This study documents the suite of processes associated with source-to-seafloor fluid migration in the Connemara field area on the basis of 3D seismic data, well logs, 2D high-resolution seismic profiles, subbottom profiles, short cores and sidescan sonar data. The combination of datasets yields details about fluid migration pathways in the deep subsurface, in the unlithified shallow subsurface and about the distribution of fluid and gas seeps (pockmarks) at the sea floor. The Connemara field area is characterized by vertical fluid migration pathways (“seismic chimneys” or “gas chimneys”) that extend from the top of the Jurassic sequence, cross-cutting the entire Cretaceous sequence to the Upper Tertiary deposits over a vertical distance of up to 1.5 km. Their localization is mainly structurally controlled to the crest of tilted fault blocks along the main hydrocarbon migration pathways. These chimneys are important conduits for focused vertical fluid/gas flow from the deep to the shallow subsurface. However, gas seeps (pockmarks) at the sea floor are almost randomly distributed, which indicates a change from focused to diffuse fluid/gas migration in shallow, unconsolidated sediment. Where the vertical chimneys reach up to unlithified Eocene to Miocene sands, widespread deformation, interpreted as fluidization, occurs around the main conduit. This deformation affects about 32% of the entire unconsolidated Tertiary section (Late Eocene – Miocene). A Plio-Pleistocene glaciomarine drift with up to five horizons with iceberg ploughmarks seals the Tertiary sands. In the near surface sediments it is observed that gas accumulation occurs preferentially at iceberg ploughmarks. It is inferred that lateral migration at five levels of randomly oriented ploughmarks dispersed gas over larger areas and caused random pockmark distribution at the sea floor, independent from the underlying focused migration pathways. This study demonstrates that fluid flow migration changes from structurally controlled focused flow in the deep consolidated subsurface to diffuse flow, controlled by sediment variability, in the shallow subsurface. This result is relevant to a better understanding of the distribution of seepage-induced features at the seafloor related to focused hydrocarbon migration pathways known from industry data and fluid flow modeling.  相似文献   

20.
在深海水道研究过程中,识别出深海弯曲水道内部存在一种特殊的沉积单元--凹岸坝,基于尼日尔三角洲陆坡区浅层高频三维地震资料,利用地震相分析技术,探究了凹岸坝的沉积结构特征和形成机制,讨论了其与水道弯曲丘(nested mounds)、曲流河凹岸滩坝之间的差异。研究结果表明:凹岸坝是分布于曲率较大、以垂向加积为主的末期水道弯曲凹岸处的坝体沉积单元,该沉积单元在地震剖面上表现为强振幅、连续性较好的反射特征,其内部沉积界面倾向于水道弯曲凸岸处,倾角约1°~20°,且在凹岸弧顶处达到最大值。凹岸坝形成的关键在于惯性作用,其造成水道内部重力流流体在弯曲处发生溢岸,导致流量减少,流体动能相应降低,流体携砂能力小于沉积物负载,造成沉积物快速沉降,从而形成凹岸坝。由于凹岸坝是一种连续性较好的砂体沉积,所以其可成为潜在的、储集性能较好的油气储集体。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号