首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
比较分析了2017年南极中山站3种仪器测量地面太阳紫外B(UVB)波段和紫外A(UVA)波段的辐照度。以Brewer光谱仪测值为参考,国产宽波段FSUVB日射表在UVB(波段280~315 nm)的辐照度相对误差为(55±75)%,误差随大气臭氧总量的增加呈上升趋势,但在南极“臭氧洞”期间偏低。Yankee UVB宽波段日射表在UVB(波段280~320 nm)的辐照度相对误差为(-31±22)%;国产宽波段FSUVA日射表在UVA(波段315~400 nm)的辐照度相对误差为(23±5.9)%。太阳天顶角低于80°的晴天以Tropospheric Ultraviolet Visible(TUV)辐射模式计算结果为参考时,FSUVB,Yankee UVB和FSUVA辐照度的平均相对误差分别为(30±37)%,(-22±19)%和(27±6.4)%,而Brewer相对误差未超过3.5%。国产宽波段UV日射表测值偏高,反映出波长较长的杂散光对太阳辐照度测值影响明显。  相似文献   

2.
The ultraviolet (UV) spectra on cloudy days were compared to those on cloud free days to determine which part of the UV spectrum has the greatest enhancement due to the cloud compared to both corresponding measured clear sky spectra as well as other enhanced spectra. In this preliminary study, cloud enhanced UV spectra selected for maximum UVA enhancement compared to a clear sky UV spectrum at similar solar zenith angle (SZA) and ozone values, showed that the ratio of the two sets of spectral irradiances was approximately wavelength independent (approximately 1.1) above the cut-off wavelength of approximately 306 nm. Similarly, above 306 nm the average ratio of the spectral irradiances of a maximum UVB enhanced UV spectrum compared to a clear sky spectrum was 1.2 with maximum values generally above this average between 316 and 344 nm and generally below 1.2 above the wavelength of 344 nm. The UVA and UVB enhanced spectra were separated into five SZA ranges and the irradiance at each wavelength averaged for each range and compared to clear sky spectra in each of the ranges. Above approximately 306 nm, the ratios are wavelength independent for all SZA. However, with the exception of the SZA range centred on 20°, there is an increasing dependency with shorter wavelengths below the 306 nm. Also there appears to be two distinct groupings of the average irradiance ratios, corresponding to the SZA range centred on 20°, 37° and 49° (ratio of 1.2) and 32° and 42° (ratio 1.0), the latter cases suggesting that on average there is no enhancement for these SZA, except for wavelengths less than 306 nm.  相似文献   

3.
Summary The diffuse sky radiation component in the ultraviolet wavelengths is often at least 50% of the global irradiance under clear skies, and is the dominant component of ultraviolet global radiation under translucent overcast skies. The distribution of sky radiance was measured in a rural area and modeled for wavelength bands of ultraviolet-B (UVB, 280–320 nm) and ultraviolet-A (UVA, 320–400 nm). Sky radiance measurements were made during the summer of 1993 over a wide range of solar zenith angles using radiance sensors mounted on a hand-operated hemispherical rotation mount. UVB irradiance measurements were also made during each scan. Since the ratio of measured irradiance under overcast skies and that predicted for clear skies was not correlated with cloud base height, opaque cloud fraction, or solar zenith angle, it was concluded that the scattering from the clouds dominated the global irradiance, and this scattering was relatively unaffected by the scattering off opaque clouds in the translucent atmosphere.Analysis of the translucent overcast sky UVA and UVB radiance measurements using a semi-empirical distribution model showed that the spectral influences on multiple scattering, single scattering, and horizon brightening components of the distributions agreed with basic atmospheric radiation theory. The best model used solar zenith, the sky zenith, and the scattering angle with resultant coefficient of determination values of 0.62 and 0.25 for the UVA and UVB respectively. The developed equations can be applied directly to the diffuse sky irradiance on the horizontal to provide radiance distributions for the sky.With 6 Figures  相似文献   

4.
Summary At the high-mountain station Jungfraujoch (3576 m a.s.l., Switzerland), measurements of the radiation fluxes were made during 16 periods of six to eight weeks by means of a Robertson—Berger sunburn meter (UVB data), an Eppley UVA radiometer and an Eppley pyranometer. Cloudiness, opacity and altitude of clouds were recorded at 30-minute intervals. A second set of instruments was employed for separate measurement of the diffuse radiation fluxes using shadow bands. The global and diffuse UVA- and UVB radiation fluxes change less with cloudiness than the corresponding total radiation fluxes. When the sun is covered by clouds, the global UVA- and UVB radiation fluxes are also affected less than the global total radiation flux. The roughly equal influence of cloudiness on the UVA- and UVB radiation fluxes suggests that the reduction is influenced more by scattering than by ozone. Also, the share of diffuse irradiance in global irradiance is considerably higher for UVA- and UVB irradiance than for total irradiance. At 50° solar elevation and 0/10 cloudiness, the share is 39% for UVB irradiance, 34% for UVA irradiance and 11% for total irradiance. The increased aerosol turbidity after the eruptions of El Chichon and Pinatubo has caused a significant increase in diffuse total irradiance but has not produced any significant changes in diffuse UVA- and UVB irradiances.With 7 Figures  相似文献   

5.
昆明地面生物有效紫外辐照度的初步计算   总被引:12,自引:0,他引:12  
近年来,大气平流层臭氧含量普遍呈下降趋势。这将对人类的生存环境构成极大威胁, 应当引起人们的高度重视。 其中,太阳紫外辐射是一大因素。 太阳紫外光( UVB和UVA,尤其是波长为280~320 nm)对动植物生长及人类健康具有重要的生物学效应 。但太阳光在大气中的传输过程极其复杂,涉及到大气臭氧吸收、空气分子散射、 气溶胶颗粒以及云滴的散射等作用。 针对昆明地处低纬高原、季风云系影响显著等特点 , 本文在同时考虑上述几种情况下, 用二流模式(two-stream model)方法对太阳紫外辐射传输问题进行了研究,得出了一些有意义的计算结果,并对其作了讨论。  相似文献   

6.
This work accounts for an investigation about the diurnal variation of total spectral transmittance of solar irradiance under dominant wind conditions as case studies. Such a work is carried out in Athens for the first time. The spectral transmittance values estimated were derived using ground-based spectral measurements of beam irradiance in the range 310–575 nm (UV and VIS). The data were recorded by a system consisting of an automatic solar tracker and a spectrometer. All data were recorded under clear-sky conditions in the city center of Athens and the spectral total atmospheric transmittance was estimated towards zenith to avoid optical mass effects. The comparison reveals that the total atmospheric transmittance is higher under the influence of strong Etesian compared to sea-breeze conditions. The influence of low-pressure systems also plays a depollution role in the basin. Various features of diurnal variation are discussed with respect to emission sources, topographic peculiarities and wind pattern.  相似文献   

7.
北京地面紫外辐射(光谱)的观测与分析   总被引:13,自引:0,他引:13       下载免费PDF全文
通过对北京大气物理研究所与长春光机所合作研制的地基太阳紫外辐射光谱仪观测资料的分析,和用辐射传输模式UVSS计算的结果,对影响到达地面的UVB辐照度的主要因子太阳高度角(SZA)、臭氧总量和地表反照率进行了分析研究。最后对紫外光谱仪的观测资料做了总量和谱分析。  相似文献   

8.
《Atmospheric Research》2008,87(3-4):315-329
In this work, daylight reference years (DRYs), based on daylight and solar radiation measurements, are designed for two European cities, Athens, Greece and Bratislava, Slovakia, by using the Danish method, the Festa–Ratto technique and the Modified Sandia National Laboratories methodology. The data basis consists of 5-minute values of global and diffuse horizontal illuminance, global and diffuse horizontal irradiance, zenith luminance and solar altitude as well as of daily values of sunshine duration for 5 years for Athens and 8 years for Bratislava. Moreover, Linke's turbidity factor, luminous turbidity factor and relative sunshine duration are calculated and utilized. Then, for each DRY, the predominant sky-luminance distributions over Athens and Bratislava are identified, by using the methodology of Kittler et al., who corresponded the main sky conditions to 15 theoretical sky standards in diagrams of the ratio of zenith luminance to diffuse horizontal illuminance against solar altitude.For both cities the three aforementioned methods do not create identical DRYs. Despite the differences, the sky types defined for each of the two places seem not to depend on the choice of DRY. The predominant sky standard, for all of them, is a cloudless, polluted sky with a broad solar corona for Athens and an overcast sky with slight brightening towards the sun as well as very clear sky with low atmospheric turbidity for Bratislava. However, the selection of the DRY, which represents best the daylight conditions, is necessary for studies in saving energy in buildings. The DRY, which is created by the Modified Sandia National Laboratories method, is chosen for most cases, while the one created by the Danish method is also useful on certain occasions.  相似文献   

9.
In this work, daylight reference years (DRYs), based on daylight and solar radiation measurements, are designed for two European cities, Athens, Greece and Bratislava, Slovakia, by using the Danish method, the Festa–Ratto technique and the Modified Sandia National Laboratories methodology. The data basis consists of 5-minute values of global and diffuse horizontal illuminance, global and diffuse horizontal irradiance, zenith luminance and solar altitude as well as of daily values of sunshine duration for 5 years for Athens and 8 years for Bratislava. Moreover, Linke's turbidity factor, luminous turbidity factor and relative sunshine duration are calculated and utilized. Then, for each DRY, the predominant sky-luminance distributions over Athens and Bratislava are identified, by using the methodology of Kittler et al., who corresponded the main sky conditions to 15 theoretical sky standards in diagrams of the ratio of zenith luminance to diffuse horizontal illuminance against solar altitude.For both cities the three aforementioned methods do not create identical DRYs. Despite the differences, the sky types defined for each of the two places seem not to depend on the choice of DRY. The predominant sky standard, for all of them, is a cloudless, polluted sky with a broad solar corona for Athens and an overcast sky with slight brightening towards the sun as well as very clear sky with low atmospheric turbidity for Bratislava. However, the selection of the DRY, which represents best the daylight conditions, is necessary for studies in saving energy in buildings. The DRY, which is created by the Modified Sandia National Laboratories method, is chosen for most cases, while the one created by the Danish method is also useful on certain occasions.  相似文献   

10.
Measurements of total ozone column and solar UV radiation under different atmospheric conditions are needed to define variations of both UV and ozone and to study the impact of ozone depletion at the Earth’s surface. In this study, spectral and broadband measurements of UV-B irradiance were obtained along with total ozone observations and aerosol optical depth measurements in the tropical urban region of Hyderabad, south India. We specifically used an Ultra-Violet Multifilter Rotating Shadow band Radiometer (UVMFR-SR), to measure UV irradiance in time and space. To assess the aerosol and O3 effects on ground-reaching UV irradiance, we used measurements from a Microtops II sun photometer in addition to the Tropospheric Ultraviolet Visible radiation (TUV) model. We also assessed the Defense Meteorological Satellite Program – Operational Line Scanner (DMSP-OLS) night time satellite data for inferring biomass burning fires during the study period. Results clearly suggested a negative correlation between the DMSP-OLS satellite derived fire count data and UVMFR-SR data suggesting that aerosols from biomass burning are directly attenuating UV irradiance in the study region. Also, correlation analysis between UV index and ozone measurements from sun photometer and TOMS-Ozone Mapping Instrument (OMI) indicated a clear decrease in ground reaching UV-B irradiance during higher ozone conditions. The higher levels are attributed to photochemical production of O3 during the oxidation of trace gases emitted from biomass burning. Results also suggested a relatively high attenuation in UV irradiance (~6% higher) from smoke particles than dust. We also found a relatively good agreement between the modeled (TUV) and measured UV irradiance spectra for different atmospheric conditions. Our results highlight the factors affecting UV irradiance in a tropical urban environment, south India.  相似文献   

11.
This study explores the influence of air gaseous pollutants–aerosols and solar zenith angle (SZA) on the spectral diffuse-to-direct beam E /E irradiances ratio. It does so using ground-based spectroradiometric measurements taken over the Athens atmosphere during May 1995. It was found that the spectral E /E ratio decreases rapidly with increasing wavelength and regression curves of the form E /E  = aλ?b fitted the experimental data. These curves are strongly modified by aerosols–air pollutants, aerosol optical properties, and SZA. The log–log plot of E /E versus λ reveals a significant departure from linearity, which is likely to be associated with aerosol physical properties and SZA effects. The effect of atmospheric turbidity, as expressed through the aerosol optical at 500 nm and SZA on the spectral E /E ratio, is investigated in detail for two discernible atmospheric conditions observed in the urban Athens atmosphere. The first case includes different atmospheric turbidity levels under the same SZA, while the second corresponds to different SZA values under the same turbidity levels. It was found that the correlation between E /E and spectral aerosol optical depth can be a useful tool in determining the aerosol optical properties and aerosol types composition.  相似文献   

12.
Summary Measurements of solar radiation in the ultraviolet B band have been made at Sutton Bonington in the English East Midlands and relationships with more routinely measured meteorological variables have been established. On clear days, linear relationships have been found between the logarithm of irradiance and airmass and between the ratio of UVB to visible irradiance and the cosine of solar zenith angle. The ratio of diffuse to global radiation (D/I) in the UVB band is always greater than 0.5 and on clear days there is a linear relationship with (D/I) for the visible and full solar wave-bands, suggesting an effect of atmospheric turbidity. Such relationships may enable UVB exposures to be estimated without the need for special instrumentation.
Messung der UVB-Sonnenstrahlung in Mittelengland
Zusammenfassung In Sutton Bonington in den East Midlands von England wurden Messungen der ultravioletten Sonnenstrahlung im B-Spektrum vorgenommen. Es wurden dabei Beziehungen zu routinemäßig gemessenen meteorologischen Variablen festgestellt.An klaren Tagen wurden lineare Beziehungen zwischen dem Logarithmus der Bestrahlung und der Luftmasse und zwischen dem Verhältnis von UVB zur sichtbaren Strahlung und dem Cosinus des Zenitwinkels der Sonne festgestellt. Das Verhältnis Himmelsstrahlung zu Globalstrahlung (D/I) im UVB-Spektrum ist immer größer als 0,5. An klaren Tagen besteht eine lineare Beziehung zu (D/I) für den sichtbaren und den vollen Wellenbereich des Sonnenlichtes, die den Eindruck einer atmosphärischen Trübung erzeugt. Solche Beziehungen machen es möglich, UVB-Bestrahlung ohne spezielle Instrumente abzuschätzen.


With 6 Figures  相似文献   

13.
Radiative transfer model simulations were used to investigate the erythemal ultraviolet(EUV) correction factors by separating the UV-A and UV-B spectral ranges. The correction factor was defined as the ratio of EUV caused by changing the amounts and characteristics of the extinction and scattering materials. The EUV correction factors(CFEUV) for UV-A[CFEUV(A)] and UV-B [CFEUV(B)] were affected by changes in the total ozone, optical depths of aerosol and cloud, and the solar zenith angle. The differences between CFEUV(A) and CFEUV(B) were also estimated as a function of solar zenith angle, the optical depths of aerosol and cloud, and total ozone. The differences between CFEUV(A) and CFEUV(B) ranged from-5.0% to 25.0% for aerosols, and from-9.5% to 2.0% for clouds in all simulations for different solar zenith angles and optical depths of aerosol and cloud. The rate of decline of CFEUV per unit optical depth between UV-A and UV-B differed by up to 20% for the same aerosol and cloud conditions. For total ozone, the variation in CFEUV(A) was negligible compared with that in CFEUV(B) because of the effective spectral range of the ozone absorption band. In addition, the sensitivity of the CFEUVs due to changes in surface conditions(i.e., surface albedo and surface altitude) was also estimated by using the model in this study. For changes in surface albedo, the sensitivity of the CFEUVs was 2.9%–4.1% per 0.1 albedo change,depending on the amount of aerosols or clouds. For changes in surface altitude, the sensitivity of CFEUV(B) was twice that of CFEUV(A), because the Rayleigh optical depth increased significantly at shorter wavelengths.  相似文献   

14.
Summary The dependency of erythemal weighted solar UV irradiance on tilted surfaces with different orientation is investigated with respect to solar zenith angle, variable atmospheric conditions and albedo of the location. For overcast conditions or a cloud in front of the sun, the irradiance on a horizontal surface in general is largest, with the consequence that it is reduced for surfaces with any tilted position. For cloud free conditions the irradiance on a tilted plane, in comparison to that on a horizontal flat surface, is increased for orientations towards the sun, but reduced for other orientations. The increase is strongest for low sun in combination with clear atmosphere and high ground albedo, as is typical for snow covered mountain conditions.  相似文献   

15.
Abstract

This study analyzes changes in solar ultraviolet (UV) irradiances at 305 and 325?nm at selected sites located at high latitudes of both hemispheres. Site selection was restricted to the availability of the most complete UV spectroradiometric datasets of the past twenty years (1990–2011). The results show that over northern high latitudes, between 55° and 70°N, UV irradiances at 305?nm decreased significantly by 3.9% per decade, whereas UV irradiance at 325?nm remained stable with no significant long-term change. Over southern high latitudes (55°–70°S), UV irradiances did not show any significant long-term changes at either 305 or 325?nm. Changes in solar UV irradiances are discussed in the context of long-term ozone and other atmospheric parameters affecting UV variability at ground level.  相似文献   

16.
Summary Measurements of spectral ultraviolet irradiance require spectroradiometers with high resolution and stability, and well known behavior of the instrument. A UV-spectrophotometer is described and methods of calibrations are shown. A set of measurements in the Utah Rocky Mountains (Snowbird-Hidden Peak, in 3300 m elevation) compared to those at the Wasatch Front (Logan, 1400 m) is discussed. Several sets of measurements are used to show the effect of solar zenith angle, elevation and cloudcover on direct solar and diffuse irradiance.At the time of the instrument design and measurements all were at Utah State University, Department of Soil Science and Biometeorology, Logan, Utah.With 11 Figures  相似文献   

17.
This research examines the influence of cloud on the cataract effective UV (UVCat) irradiances on a horizontal plane over an extended period of 12months that included the range of cloud conditions, solar zenith angle (SZA) and ozone conditions experienced over that time. The data were collected at five minute intervals. Cloud modification factors were determined from the influence of clouds on the global broadband solar radiation and these were applied to the cloud free cataract effective UV to evaluate the UVCat irradiances on a horizontal plane for all cloud conditions. A comparison of the measured and calculated UVCat irradiances for the 2004 data set in the range of SZA of 70° or less provided an R2 value of 0.85. The data in the first 6months of 2005 for an SZA of 70° or less that were at a different time to that when the technique was developed provided an R2 value of 0.83 for the comparison of the measured and calculated UVCat irradiances.  相似文献   

18.
Summary It is investigated how long-term UV trends can be assessed by analysing the longest time series of measured spectral UV irradiance in Europe, which have been started in the early 1990s in Thessaloniki, Greece and Sodankylä, Finland. It can be concluded that both time series do not yet show an unambiguous yearly trend in UV irradiance. The regression lines show no uniform behaviour and vary irregularly in strength and from one solar zenith angle to the next if all sky conditions are analysed. It is emphasised that these findings do not disagree with previous studies, that significant changes in UV irradiance have been observed over Europe especially in spring.Our study introduces a new method to estimate the required time series length for trend detection using the measured time series in combination with model calculations. At Sodankylä, a reduction of the total ozone column of –5.7% per decade has been observed from 1979 to 1998. A positive UV trend due to such conditions may be detected after 12 years at the earliest. For Thessalonki, a decrease in total ozone of –4.5% per decade has been observed. A corresponding increase of UV irradiance should be detectable after 15 years. It should be noted that a constant ozone trend over the whole period had to be assumed for this analysis.Since 1990 there has been a considerable variability of total ozone, but no steady decrease could be observed. Consequently, no general UV increase could be expected due to ozone changes. Even if there was a constant ozone trend over that period it is shown that even the longest European time series of UV irradiance are still too short to show distinct trends. However, this does not imply that no changes have occurred, it only shows that the large natural variability of UV irradiance has so far hindered the identification of unambiguous trends. The only way to find significant and consistent UV trends is the continuation of high-quality long-term measurements of spectral UV irradiance.  相似文献   

19.
The comparison between the precipitable water vapor w obtained by classical sounding and that obtained by high resolution measurements of spectral solar direct irradiance in the 400–1000 nm spectral range is shown. Three different water vapor absorption functions in the πστ band are used to determine the water vapor w by optical measurements. An episode of attenuation of direct solar irradiance by cirrus clouds is also shown.  相似文献   

20.
Summary The modifications of the solar spectral diffuse and direct-beam irradiances as well as the diffuse-to-direct-beam ratio, E/E, as a function of the aerosol optical depth, AOD, and solar zenith angle, SZA, is investigated. The E/E ratios decrease rapidly with wavelength and exponential curves in the form E/E = aλ−b can be fitted with a great accuracy. These curves are strongly modified by the solar spectrum distribution, which is affected by the aerosol loading, aerosol optical properties and SZA. The spectral dependence of the above E/E ratios in logarithmic coordinates does not yield a straight line, while a significant departure from the linearity is revealed. The reasons for this departure are investigated in detail and it is established that the aerosol physical properties such as single scattering albedo and size distribution along with the effect of SZA are responsible. These parameters strongly affect the scattering processes in the atmosphere and as a consequence the diffuse spectral distribution. The E/E ratio, which is an indicator of the atmospheric transmittance (King, 1979), exhibits a strong wavelength and aerosol-loading dependence. The observed differences between turbid and clear atmospheres constitute a manifestation of contrasting air properties and influence solar irradiance spectra. The present work aims at investigating the effect of atmospheric turbidity and SZA on the E/E ratio. For this reason, two distinct cases are examined: one having different atmospheric turbidity conditions but same SZA and a second having different SZAs and same atmospheric turbidity levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号