首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
The Earth's main magnetic field can be approximated by an axial, geocentric dipole. The remaining non-dipole field is much smaller and is a regional rather than a global feature – quite large changes can occur in a few ka. This review is concerned with changes in the dipole component of the geomagnetic field, and one of the problems is in separating the non-dipole from the dipole contributions to the field. Unlike the many determinations of the direction of the Earth's magnetic field in the past (which have led to fundamental contributions to our understanding of plate tectonics and shown that the field can on occasion reverse its polarity), estimates of the intensity of the field are comparatively few, especially before the Holocene. This is mainly the result of experimental difficulties in obtaining reliable measurements of the field. These problems are discussed in some detail and are followed by a short account of archaeomagnetic intensities and results from Hawaii where many of the first determinations were obtained. Measurements for the last 100 ka from both lavas and lacustrine and oceanic sediments are reviewed and results from different areas compared. An asymmetric saw-tooth pattern has been observed in some of the records over the last few Ma, and this rather controversial question is discussed. Finally an account is given of the far more limited data on palaeointensities in earlier times.A short discussion is given of the interpretation of coherent short wavelength variations which are observed in many marine magnetic profiles. Although short reversals of the field may be responsible for some of these tiny wiggles, it is more likely that in general they are the result of changes in the strength of the Earth's magnetic field.  相似文献   

2.
朱日祥  刘椿 《地震地质》1991,13(1):73-77
地磁场起源及其倒转是地球科学的难题之一。究其原因一方面是由于无法直接观测地球内部发生的物理过程,另一方面是由于缺乏理论与实验相结合的综合研究。本文以磁流体力学为基础,将古地磁学与αω发电机理论结合在一起进行分析和研究。得出了如下新观点:(1)洛仑兹力在地核发电过程起负反馈作用;(2)较差旋转控制着地磁场西向漂移,(3)α作用使地磁极偏离地球自转轴  相似文献   

3.
地磁场能量在地球内部的分布及其长期变化   总被引:7,自引:1,他引:6       下载免费PDF全文
用国际参考地磁场模型(IGRF)分析了地磁场能量在地球内部的分布及其长期变化.结果表明,从1900年到2005年,地核以外地磁场总能量由6.818×1018J减少到6.594×1018J,减小了3.3%,地表以外地磁场总能量由8.658×101J减小到.63×101J,减小了11.4%.分析地球内部不同圈层地磁场能量的变化表明,地壳(A层)、上地幔(B层)、转换带(C层)、下地幔D′层的地磁场总能量在减小,但是下地幔"层的地磁场总能量却在快速增加.磁能密度随时间的变化更清楚地显示出磁能增加和减小的分界面在r=3840km处.上述结果表明,地核和地表以外地磁场总能量在趋势性减小的同时,也在进行重新分配.进一步分析表明,下地幔D"层磁能快速增长,主要是由高阶磁多极子的增强引起的.在地磁场倒转前,偶极矩减小而多极性相对增强在能量分布上的表现就是磁能向下地幔底部(特别是D"层)集中.  相似文献   

4.
The diffusion of the dynamo-generated magnetic field into the electrically conducting inner core of the Earth may provide an explanation for several problematic aspects of long-term geomagnetic field behavior. We present a simple model which illustrates how an induced magnetization in the inner core which changes on diffusive timescales can provide a biasing field which could produce the observed anomalies in the time-averaged field and polarity reversals. The Earth's inner core exhibits an anisotropy in seismic velocities which can be explained by a preferred orientation of a polycrystalline aggregate of hexagonal close-packed (hcp) iron, an elastically anisotropic phase. Room temperature analogs of hcp iron also exhibit a strong anisotropy of magnetic susceptibility, ranging from 15 to 40% anisotropy. At inner core conditions the magnetic susceptibility of hcp iron is estimated to be between 10−4 and 10−3 SI. We speculate here that the anisotropy in magnetic susceptibility in the inner core could produce the observed anomalies in the time-averaged paleomagnetic field, polarity asymmetry, and recurring transitional virtual geomagnetic pole (VGP) positions.  相似文献   

5.
地磁活动对气候要素影响的研究进展   总被引:2,自引:0,他引:2       下载免费PDF全文
地磁活动是太阳爆发现象引起地球近地空间磁场扰动的重要空间天气过程之一.地球磁场的变化具有多种时间尺度,其中从数十年到数世纪的长时间地磁场变化主要是由地核磁场引起的,而从数秒到数年的短时间地磁变化与太阳活动有关.近年来,越来越多的统计研究表明,地磁活动与太阳活动和地球气候变化之间存在着显著的相关性.地球磁场和地球大气系统的耦合现象驱动着人们探索地磁活动对地球天气和气候系统影响的研究.本文的目的就是综述国内外地磁变化对气候影响的研究进展,介绍我们最新的研究成果,探索地磁活动对气候要素的影响特征和可能机理过程,为深入研究地磁活动对地球天气和气候的影响提供基础和依据,以期对地磁活动和气候要素关系有进一步的认识.  相似文献   

6.
Abstract

The geomagnetic field and its frequent polarity reversals are generally attributed to magnetohydrodynamic (MHD) processes in the Earth's metallic and fluid core. But it is difficult to identify convincingly any MHD timescales with that over which the reversals occur. Moreover, the geological record indicates that the intervals between the consecutive reversals have varied widely. In addition, there have been superchrons when the reversals have been frequent, and at least two, and perhaps three, 35-70 Myr long superchrons when they were almost totally absent. The evaluation of these long-term variations in the palaeogeophysical record can provide crucial constraints on theories of geomagnetism, but it has generally been limited to only the directional or polarity data. It is shown here that the correlation of the palaeogeomagnetic field strength with the field's protracted stability during a fixed polarity superchron provides such a constraint. In terms of a strong field dynamo model it leads to the speculation that the magnetic Reynolds number, and the toroidal field, increase substantially during a superchron of frequent reversals.  相似文献   

7.
Preliminary paleointensity results are presented from 36 sites with virtual geomagnetic pole (VGP) latitudes of about 30–90° normal polarity in the Quaternary West Eifel volcanic field. A strong correlation between VGP latitude and the Earth's virtual magnetic dipole moment (VDM) is observed, with low intensities for low VGP latitudes indicating possibly an emplacement during an excursion or event of the Brunhes epoch. The age distribution of the West Eifel volcanics is, as yet, poorly known. Also, the mean VDM value for sites with high VGP latitudes is considerably lower than the present day dipole moment of the Earth.  相似文献   

8.
地磁急变(jerk)是起源于地球外核并在导电地幔过滤效应后在地球表面观测到的一种地磁现象,其反映了地核内部某些动力学过程.Jerks在空间范围上既可以是区域性的,也可以是全球性的.中国地区地磁台能否检测到2014年jerk?针对这一问题,利用中国大陆10个地磁台的磁静日月均值和CHAOS-6全球磁场模型,分析了X、Y和Z分量2008—2018年期间的长期变化,估算了2014年前、后的长期加速度值,确定了2014年地磁jerk的时间和强度.研究表明中国地磁台Y分量的长期变化为"Λ"型,Z分量存在明显的"V"型,具有典型的jerk特点.Y分量jerk出现的时间大约在2014年6月,比非洲大陆的Algeria TAM台和南美洲French Guiana KOU台时间滞后大约4个月.这暗示着产生jerks的地核流体波动的时序特点.中国西部和东北部地磁台的长期变化形态有明显的差别,主要由非偶极磁场引起.CHAOS-6模型与地面台站的长期变化形态并非始终一致.本文结果有助于更好地理解和解释长期变化的时间演变和地理分布,并为深入探讨jerks的地核起源和驱动机制提供新的观测约束.  相似文献   

9.
The Umbrian Apennines were the site of pelagic sedimentation throughout most of the Jurassic. Magnetic stratigraphy from four sections spanning many of the Jurassic stages indicates that the geomagnetic field at this time was characterized by two intervals of mixed polarity, separated by an interval of predominantly normal polarity corresponding to the Jurassic “quiet-zone” in the oceanic magnetic anomaly record. Unfortunately, ammonites are poorly preserved or absent throughout most of these sections; the duration of this “quiet-interval” cannot be well defined, although it is probably restricted to the Callovian and Oxfordian stages.  相似文献   

10.
Induction studies with satellite data   总被引:2,自引:0,他引:2  
The natural variations of the Earth's magnetic field of periods spanning from milliseconds to decades can be used to infer the conductivity-depth profile of the Earth's interior. Satellites provide a good spatial coverage of magnetic measurements, and forthcoming missions will probably allow for observations lasting several years, which helps to reduce the statistical error of the estimated response functions.Two methods are used to study the electrical conductivity of the Earth's mantle in the period range from hours to months. In the first, known as the potential method, a spherical harmonic analysis of the geomagnetic field is performed, and the Q-response, which is the transfer function between the internal (induced) and the external (inducing) expansion coefficients is determined for a specific frequency. In the second approach, known as the geomagnetic depth sounding method, the C-response, which is the transfer function between the magnetic vertical component and the horizontal derivative of the horizontal components, is determined. If one of these transfer functions is known for several frequencies, models of the electrical conductivity in the Earth's interior can be constructed.This paper reviews and discusses the possibilities for induction studies using high-precision magnetic measurements from low-altitude satellites. The different methods and various transfer functions are presented, with special emphasis on the differences in analysing data from ground stations and from satellites. The results of several induction studies with scalar satellite data (from the POGO satellites) and with vector data (from the Magsat mission) demonstrate the ability to probe the Earth's conductivity from space. However, compared to the results obtained with ground data the satellite results are much noisier, which presumably is due to the shorter time series of the satellite studies.The results of a new analysis of data from the Magsat satellite indicate higher resistivity in oceanic areas than in continental areas. However, since this holds for the whole range of periods between 2 and 20 days, this difference probably is not caused purely by differences in mantle conductivity (for which one would expect less difference for the longer periods). Further studies with data from recently launched and future satellites are needed.  相似文献   

11.
The paleosecular variation (PSV) and polarity transitions are two major features of the Earth’s magnetic field. Both PSV and reversal studies are limited when age of studied units is poorly constrained. This is a case of Central and western Mexico volcanics. Although many studies have been devoted to these crucial problems and more than 200 paleomagnetic directions are available for the last 5 Ma, only few sites were dated directly. This paper presents new paleomagnetic results from seventeen independent cooling units in the Michoacán-Guanajuato Volcanic Field (MGVF) in western Mexico. Twelve sites are directly dated by 40Ar/39Ar or K-Ar methods and span from 2.78 to 0.56 Ma. The characteristic paleodirections are successfully isolated for 15 lava flows. The mean paleodirection (inclination I and declination D) obtained in this study is I = 28.8°, D = 354.9°, and Fisherian statistical parameters are k = 28, α95 = 7.3°, N=15, which corresponds to the mean paleomagnetic pole position Plat = 83.9°, Plong = 321.6°, K = 34, A95 = 6.6°. The paleodirections obtained in present study compiled with those, previously reported from the MGVF, are practically undistinguishable from the expected Plio-Quaternary paleodirections. The paleosecular variation is estimated through the study of the scatter of the virtual geomagnetic poles giving SF = 15.9 with SU =21.0 and SL = 12.7 (upper and lower limits respectively). These values agree reasonably well with the recent statistical Models. The oldest sites analyzed (the Santa Teresa and Cerro Alto) yield normal polarity magnetizations as expected for the cooling units belonging to the Gauss geomagnetic Chron. The interesting feature of the record comes from lava flows dated at about 2.35 Ma with clearly defined normal directions. This may point out the possible existence of a normal polarity magnetization in the Matuyama reversed Chron older than the Reunion and may be correlated to Halawa event interpreted as the Cryptochron C2r.2r-1. Another important feature of the geomagnetic record obtained from the MGVF is the evidence of fully reversed geomagnetic field within Bruhnes Chron, at about 0.56 Ma corresponding to the relative paleointensity minimum of global extent found in marine sediments at about 590 ka.  相似文献   

12.
Summary The harmonically variable magnetic field, generated by a tangential magnetic dipole (TMD), located eccentrically at the surface of the Earth's core, is investigated for various periods of time variations and for a three-layer conductivity model of the Earth. Numerical computations have shown that the field is inductively damped for variation periods of less than 500 years as compared to the field of a static TMD. It is proved that the field appropriate to the TMD, has a more complicated distribution of the Earth's surface than the field of a radial magnetic dipole. Comparison with maps of the non-dipole part of the geomagnetic field shows that the TMD is not as suitable for interpreting the observed non-dipole field and its variations as the eccentric radial magnetic dipole.  相似文献   

13.
This paper attempts to reveal whether long-term trends in the ionosphere are reflected in the amplitude range of the geomagnetic daily variation recorded at ground level. The smooth and regular variation observed in the magnetograms on magnetically quiet days is induced by the ionospheric currents flowing in the dynamo region. So it is likely that trends in the conductivity or in the dynamics of this region could produce changes in the current densities, and consequently in the range of the geomagnetic variation. The crucial aspect is how to separate the changes produced by the geomagnetic activity itself, or by secular changes of the Earth's magnetic field, from the part of the variation produced by factors affecting trends in the ionosphere, which could have an anthropogenic origin. To investigate this, we synthesized for several geomagnetic observatories the daily ranges of the geomagnetic field components with a comprehensive model of the quiet-time, near-Earth magnetic field, and finally we removed the synthetic values from the observed ranges at those observatories. This comprehensive model accounts for contributions from Earth's core, lithosphere, ionosphere, magnetosphere and coupling currents, and, additionally, accounts for influences of main field and solar activity variations on the ionosphere. Therefore, any trend remaining in the residuals, assuming that all the contributions mentioned above are properly described and thus removed by the comprehensive model, should reflect the influence of other sources. Results, based on series of magnetic data from observatories worldwide distributed, are presented. Trends in the X and Z components are misleading, since the current system changes in form as well as in intensity, producing changes of the focus latitude in the course of a solar cycle and from one cycle to another. Some differences exist between the long-term trends in the Y component between the real and modelled ranges, suggesting that other non-direct solar causes to the amplitude changes of the solar quiet geomagnetic variation should not be ruled out. Nevertheless, the results also reflect some short-comings in the way that the comprehensive modelling accounts for the influence of the solar activity on the range of the daily geomagnetic variation.  相似文献   

14.
为计算地球磁极处的磁感应强度,建立地球的磁场是由带电的地球外核的旋转产生的模型.先根据毕奥-萨伐尔定律计算球形模型绕自转轴旋转时在自转轴直径上产生的磁感应强度;再利用已知的地球外核的内外半径及地球半径和磁极处的磁感应强度值,计算出地球外核的电荷体密度及面密度.结果表明:若外核的电荷呈均匀的体密度分布,则其电荷体密度为3.5507 C/m3;若外核的电荷均匀分布在外核的外表面,则其面密度为2.4581×106 C/m2.通过地球表面的磁感应强度信息利用物理规律和地球物理数据推测地球内部难以直接进行探测的相关信息,具有实际意义.根据地震学方法对地球外核厚度、转向等变化的最新研究数据按该文模型可推测地球磁场强度、极性等的变化.而地球磁场的变化对地球上的人类生活颇有影响.  相似文献   

15.
Models of geomagnetic reversals as a stochastic or gamma renewal process have generally been tested for the Heirtzler et al. [1] magnetic polarity time scale which has subsequently been superseded. Examination of newer time scales shows that the mean reversal frequency is dominated in the Cenozoic and Late Cretaceous by a linearly increasing trend on which a rhythmic fluctuation is superposed. Subdivision into two periods of stationary behavior is no longer warranted. The distribution of polarity intervals is visibly not Poissonian but lacks short intervals. The LaBrecque et al. [2] polarity time scale shows the positions of 57 small-wavelength marine magnetic anomalies which may represent short polarity chrons. After adding these short events the distribution of all polarity intervals in the age range 0–40 Myr is stationary and does not differ significantly from a Poisson distribution. A strong asymmetry develops in which normal polarity chrons are Poisson distributed but reversed polarity chrons are gamma distributed with indexk = 2. This asymmetry is of opposite sense to previous suggestions and results from the unequal distribution of the short polarity chrons which are predominantly of positive polarity and concentrated in the Late Cenozoic. If short-wavelength anomalies arise from polarity chrons, the geomagnetic field may be more stable in one polarity than the other. Alternative explanations of the origin of short-wavelength marine magnetic anomalies cast doubt on the inclusion of them as polarity chrons, however. The observed behavior of reversal frequency suggests that core processes governing geomagnetic reversals possess a long-term memory.  相似文献   

16.
A paleomagnetic record of the geomagnetic field during its change of polarity from the reversed Matuyama epoch to the normal Brunhes epoch has been obtained from sediments of ancient Lake Tecopa in southeastern California. The polarity switch occurs in siltstone of uniform composition, and anhysteretic magnetization experiments indicate that the magnetic mineralogy does not change markedly across the transition. Within the transition interval, intensity of the magnetization drops to a minimum of 10% of the intensity after the transition. The interval of low field intensity preceded and lasted longer than the interval during which the field direction reversed, the latter being shorter than the interval of low intensity by a factor of at least 2.5. The VGP's make a smooth transit from reversed to normal polarity, with the path lying in the sector of longitude between 30°E and 60°W. Pole paths for the Brunhes-Matuyama transition recorded in California and Japan are completely different, indicating that the dipole field decayed. The transition field appears to be nondipolar, and there is no evidence for an equatorial component. Since there is little dispersion of the VGP's about a great circle path, it is possible that large-scale drift of the nondipole field ceased during this polarity transition.  相似文献   

17.
Gauss-Matuyama极性转换期间地球磁场方向和强度变化特征   总被引:13,自引:2,他引:11  
粒度分析和风化强度研究表明 ,黄土高原渭南阳郭剖面黄土层L33沉积期间成壤化作用相对较弱 .在此基础上 ,为研究极性转换期间地球磁场变化特征 ,本文对黄土层L33进行了详细的岩石磁学和古地磁学研究 ,其结果表明黄土层L33的主要载磁矿物为磁铁矿和磁赤铁矿 ,并以沉积剩磁为主 ;由逐步热退磁确定的特征剩磁 (ChRM )揭示了G M(Gauss Matuyama)极性转换过程的持续时间为 9 43± 0 64ka;在G M极性转换之前 ,地球磁场曾发生过持续时间为 2 2± 0 1 3ka的短极性漂移事件 ;相对强度研究表明 ,G M极性转换期间地球磁场强度减弱 .  相似文献   

18.
Reversals and excursions of Earth's geomagnetic field create marker horizons that are readily detected in sedimentary and volcanic rocks worldwide. An accurate and precise chronology of these geomagnetic field instabilities is fundamental to understanding several aspects of Quaternary climate, dynamo processes, and surface processes. For example, stratigraphic correlation between marine sediment and polar ice records of climate change across the cryospheres benefits from a highly resolved record of reversals and excursions. The temporal patterns of dynamo behavior may reflect physical interactions between the molten outer core and the solid inner core or lowermost mantle. These interactions may control reversal frequency and shape the weak magnetic fields that arise during successive dynamo instabilities. Moreover, weakening of the axial dipole during reversals and excursions enhances the production of cosmogenic isotopes that are used in sediment and ice core stratigraphy and surface exposure dating. The Geomagnetic Instability Time Scale (GITS) is based on the direct dating of transitional polarity states in lava flows using the 40Ar/39Ar method, in parallel with astrochronologic age models of marine sediments in which oxygen isotope and magnetic records have been obtained. A review of data from Quaternary lava flows and sediments gives rise to a GITS that comprises 10 polarity reversals and 27 excursions that occurred during the past 2.6 million years. Nine of the ten reversals bounding chrons and subchrons are associated with 40Ar/39Ar ages of transitionally-magnetized lava flows. The tenth, the Gauss-Matuyama chron boundary, is tightly bracketed by 40Ar/39Ar dated ash deposits. Of the 27 well-documented geomagnetic field instabilities manifest as short-lived excursions, 14 occurred during the Matuyama chron and 13 during the Brunhes chron. Nineteen excursions have been dated directly using the 40Ar/39Ar method on transitionally-magnetized volcanic rocks and these form the backbone of the GITS. Excursions are clearly not the rare phenomena once thought. Rather, during the Quaternary period, they occur nearly three times as often as full polarity reversals.  相似文献   

19.
Research into the properties of past geomagnetic fields (paleo-geomagnetism) has been carried out worldwide for over half a century. This research utilizes rocks which are to a varying degree inadequate for that purpose, and evaluation of the results is therefore not always on firm ground. One resource which can be utilized to constrain several aspects of the interpretation of other paleo-geomagnetic data, consists of stable primary remanence vectors in large homogeneous collections of dated fresh lava flows. We outline how the available remanence data from several thousand lavas in Iceland may be analysed in a semi-quantitative way to test some of current results, methodology and concepts of paleo-geomagnetism. Among topics where such analysis provides new insights, are the geomagnetic polarity time scale, the frequency distribution of virtual geomagnetic poles in latitude and longitude, and the relative intensity of the magnetic field as a function of virtual pole latitude. Comparison of the scatter in remanence intensities and in absolute paleointensity determinations on Icelandic lavas indicates, along with other evidence, that quality criteria for the latter are in need of revising. It is also confirmed here that long-term changes have occurred in the amplitude of the geomagnetic secular variation; they should be taken into account in studies on other properties of the paleo-geomagnetic field.  相似文献   

20.
Paleomagnetic records of the Gauss-Matuyama reversal were obtained from two loess sections at Baoji on the Chinese Loess Plateau. Stepwise thermal demagnetization shows two obvious magnetization components. A low-temperature component isolated between 100 and 200–250°C is close to the present geomagnetic field direction, and a high-temperature component isolated above 200–250°C reveals clearly normal, reversed, and transitional polarities. Magnetostratigraphic results of both sections indicated that the Gauss-Matuyama reversal consists of a high-frequency polarity fluctuation zone, but the characteristic remanent magnetization directions during the reversal are clearly inconsistent. Rock magnetic experiments demonstrated that for all the specimens with normal, reversed, and transitional polarities magnetite and hematite are the main magnetic carriers. Anisotropy of magnetic susceptibility indicates that the studied loess sediments have a primary sedimentary fabric. Based on virtual geomagnetic pole latitudes, the Gauss-Matuyama reversal records in the two sections are accompanied by 14 short-lived geomagnetic episodes (15 rapid polarity swings) and 12 short-lived geomagnetic episodes (13 rapid polarity swings), respectively. Our new records, together with previous ones from lacustrine, marine, and aeolian deposits, suggest that high-frequency polarity swings coexist with the Gauss-Matuyama reversal, and that the Gauss-Matuyama reversal may have taken more than 11 kyr to complete. However, we need more detailed analyses of sections across polarity swings during reversals as well as more high-resolution reversal records to understand geomagnetic behavior and inconsistent characteristic remanent magnetization directions during polarity reversals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号