首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Dust aerosol optical depth (AOD) and its accompanying shortwave radiative forcing (RF) are usually simulated by numerical models. Here, by using 9 months of Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol product data in combination with Clouds and the Earth's Radiant Energy System Single Scanner Footprint (CERES/SSF) data, dust AOD and its shortwave RF were estimated over the cloud-free northwest (NW) Pacific Ocean in the springs of 2004, 2005, and 2006. The results showed that in this region, the mean dust AOD and its shortwave RF were 0.10 and -5.51 W m^-2, respectively. In order to validate the dust AOD derived by MODIS, results from the Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model were also used here. The correlation coefficient between the monthly averaged dust AOD derived by MODIS measurements and the model simulation results was approximately 0.53. Since the estimates of the dust AOD and its shortwave RF obtained in this study are based mainly on satellite data, they offer a good reference for numerical models.  相似文献   

2.
The first decadal leading mode of East Asian summer rainfall (EASR) is characterized by rainfall anomalies along the East Asian subtropical rain belt. This study focuses on the second decadal leading mode (2DLM), accounting for 17.3% of rainfall decadal vari- ance, as distinct from the other two neighboring modes of EAMR, based on the state-of-the-art in-situ rainfall data. This mode is characterized by a South-China-wet-Huaihe- River-dry pattern, and is dominated by a quasi-30-yr pe- riod. Further analysis reveals the 2DLM corresponds to an enhanced lower-level monsoon jet, an eastward extension of the western North Pacific subtropical high, and a weakened East Asian upper-level westerly jet flow. The Tibetan Plateau surface temperature and Pacific Decadal Oscillation (PDO) are closely linked with the 2DLM. The regressed SST pattern indicates the PDO-like pattern of sea surface temperature anomalies may have a telecon- nection relationship with the 2DLM of EASR.  相似文献   

3.
Thermal convective precipitation (TCP) often occurs over mainland China in summer when the area is dominated by the western Pacific subtropical high (WPSH). It is well known that the WPSH often brings about large scale subsidence, then why could deep moist convection occur and where does the water vapor come from? In this paper, a deep convective precipitation case that happened on 2 August 2003 is studied in order to address these two questions. First, the characteristics of the TCP event are analyzed using the Tropical Rainfall Measuring Mission (TRMM) satellite data, automatic weather station observations, and the data from the US National Centers for Environmental Prediction (NCEP). Second, water vapor sources are identified through examining surface evaporation, water vapor advection, and water vapor flux divergence calculated by using a regionally averaged water vapor budget equation. Furthermore, using an Advanced Regional Eta-coordinate Model (AREM), contributions of sensible and latent heat fluxes to the TCP are compared through four sensitivity experiments. The results show that in the regions controlled by the WPSH, surface temperature rises rapidly after sunrise. Upon receiving enough sensible heat, the air goes up and leads to convergence in the lower atmosphere. Then the water vapor assembled from the surroundings and the ground surface is transported to the upper levels, and a favorable environment for the TCP forms. A model data diagnosis indicates that about half of precipitable water comes from the convergence of horizontal fluxes of water vapor, and the other half from surface evaporation, while little is from advection. Additional sensitivity experiments prove that both sensible and latent heating are essential for the onset of the TCP. The sensible heat flux triggers thermodynamic ascending motion, and the latent heat flux provides water vapor, but the contribution to TCP from the latter is a little smaller than that from the former.  相似文献   

4.
By employing the NCEP/NCAR reanalysis data (1000-10 hPa, 2.5°×2.5°), the impact of the vortex in the easterlies (EV) over the tropical upper troposphere on the zonal movement of the western Pacific subtropical anticyclone (WPSA) during 19-25 June 2003 is analyzed in this paper. It is shown that the EV can extend from middle troposphere to the height of 50 hPa, reaching a maximum at 200 hPa. The vertical thermal distribution appears to be "warmer in the upper layer and colder in the lower layer". The WPSA retreats eastward abnormally when the EV and the vortex in the westerlies (WV) encounter around the same longitude while they move toward each other. It is also shown that the vorticity variation extends from the troposphere to the height of 50 hPa, with the most prominent change occurring at 200 hPa by the diagnostic analyses of the vertical vorticity equation. The WPSA appears to retreat abnormally eastward while the negative/positive vorticity change becomes stronger near the east/west side of the EV, and the areas with positive vorticity tendency both in the EV and WV join together into one belt along 130°E during the process of the EV and the WV moving toward each other. In the vorticity equation, the positive contribution caused by the horizontal advection term is the maximum, and the minimum is caused by theβ effect. It is also found that enhanced horizontal vorticity advection andβ effect, as well as the "barotropic development" resulted from the in-phase superposition of the southerly and the northerly winds in the easterlies and westerlies near 130~E, are in agreement with the WPSA eastward retreat.  相似文献   

5.
In this study, the authors demonstrate that the Coupled Model Intercomparison Project Phase 5 (CMIP5) models project a robust response in changes of mean and climate extremes to warming in China. Under a scenario of a 1% CO2 increase per year, surface temperature in China is projected to increase more rapidly than the global average, and the model ensemble projects more precipitation (2.2%/℃). Responses in changes of climate extremes are generally much stronger than that of climate means. The majority of models project a consistent re- sponse, with more warm events but fewer cold events in China due to CO2 warming. For example, the ensemble mean indicates a high positive sensitivity for increasing summer days (12.4%/℃) and tropical nights (26.0%/℃), but a negative sensitivity for decreasing frost days (-4.7%/℃) and ice days (-7.0%/℃). Further analyses indicate that precipitation in China is likely to become more extreme, featuring a high positive sensitivity. The sensitivity is high (2.4%/℃) for heavy precipitation days (〉 10 mm d l) and increases dramatically (5.3%/℃) for very heavy precipitation days (〉 20 mm d-1), as well as for precipitation amounts on very wet days (10.8%/℃) and extremely wet days (22.0%/℃). Thus, it is concluded that the more extreme precipitation events generally show higher sensitivity to CO2 warming. Additionally, southern China is projected to experience an increased risk of drought and flood occurrence, while an increased risk of flood but a decreased risk of drought is likely in other regions of China.  相似文献   

6.
The accurate simulation of the equatorial sea surlhce temperature (SST) variability is crucial for a proper representation or prediction of the El Nino-Southern Os- cillation (ENSO). This paper describes the tropical variability simulated by the Max Planck Institute (MPI) forr meteorology coupled atmosphere-ocean general circulation model (CGCM). A control simulation with pre-industrial greenhouse gases is analyzed, and the simulation of key oceanic features, such as SST, is compared with observa- tions. Results from the 400-yr control simulation show that the model's ENSO variability is quite realistic in terms of structure, strength, and period. Also, two related features (the annual cycle of SST and the-phase locking of ENSO events), which are significant in determining the model's performance of realistic ENSO prediction, are further validated to be well reproduced by the MPI cli mate model, which is an atmospheric model ECHAM5 (which fuses the EC tbr European Center and HAM for Hamburg) coupled to an MPI ocean model (MPI-OM), ECHAMS/MPI-OM.  相似文献   

7.
This study estimates direct radiative forcing by tropospheric ozone and all aerosols between the years 1850 and 2000, using the new IPCC AR5 (the Intergovernmental Panel on Climate Change Fifth Assessment Report) emissions inventories and a fully coupled chemistry-aerosol general circulation model. As compared to the previous Global Emissions Inventory Activity (GEIA) data, that have been commonly used for forcing estimates since 1990, the IPCC AR5 emissions inventories report lower anthropogenic emissions of organic carbon and black carbon aerosols and higher sulfur and NOx emissions. The simulated global and annual mean burdens of sulfate, nitrate, black carbon (BC), primary organic aerosol (POA), secondary organic aerosol (SOA), and ozone were 0.79, 0.35, 0.05, 0.49, 0.34, and 269 Tg, respectively, in the year 1850, and 1.90, 0.90, 0.11, 0.71, 0.32, and 377 Tg, respectively, in the year 2000. The estimated annual mean top of the atmosphere (TOA) direct radiative forcing of all anthropogenic aerosols based on the AR5 emissions inventories is -0.60 W m^-2 on a global mean basis from 1850 to 2000. However, this is -2.40 W m-2 when forcing values are averaged over eastern China (18-45°N and 95-125°E). The value for tropospheric ozone is 0.17 W m^-1 on a global mean basis and 0.24 W m^-2 over eastern China. Forcing values indicate that the climatic effect of aerosols over eastern China is much more significant than the globally averaged effect.  相似文献   

8.
Simulations of oxidized nitrogen performed withglobal transport tracer models systematicallyunderestimate the concentrations of total nitrate atremote marine locations in the Mid-Pacific. Higheremission rates in the models of nitrogen oxides( ) from continental sources or alarger influx from the stratosphere do not seem tobe able to account for the shortfall. We are led toconclude that there has to be a substantial sourcelocated in oceanic areas. We speculate that -emission from electrical discharges overthe oceans could be the source we are looking for.Airborne observations of atmospheric concentrationsof oxidized nitrogen and ozone in the remoteatmosphere and observations of nitrate wetdeposition in remote sites are used as additionalconstraints to check the plausibility of thishypothesis. We find that a larger emission of due to lightning activity over the oceansindeed results in a much improved simulation oftotal nitrate in the remote Pacific, particularly inthe Equatorial and Tropical South Pacific and thatsuch a scenario is generally consistent withavailable observations of nitrate wet deposition andatmospheric concentrations of oxidized nitrogen andozone. An alternative hypothesis is that there is ahitherto unknown in situ source of over thePacific Ocean.  相似文献   

9.
An overview of Chinese contribution to Coupled Model Intercomparison Project-Phase 5 (CMIP5) is presented. The performances of five Chinese Climate/Earth System Models that participated in the CMIP5 pro ject are assessed in the context of climate mean states, seasonal cycle, intraseasonal oscillation, interan-nual variability, interdecadal variability, global monsoon, Asian-Australian monsoon, 20th-century historical climate simulation, climate change pro jection, and climate sensitivity. Both the strengths and weaknesses of the models are evaluated. The models generally show reasonable performances in simulating sea surface tem-perature (SST) mean state, seasonal cycle, spatial patterns of Madden-Julian oscillation (MJO) amplitude and tropical cyclone Genesis Potential Index (GPI), global monsoon precipitation pattern, El Ni-no-Southern Oscillation (ENSO), and Pacific Decadal Oscillation (PDO) related SST anomalies. However, the perfor-mances of the models in simulating the time periods, amplitude, and phase locking of ENSO, PDO time periods, GPI magnitude, MJO propagation, magnitude of SST seasonal cycle, northwestern Pacific mon-soon and North American monsoon domains, as well as the skill of large-scale Asian monsoon precipitation need to be improved. The model performances in simulating the time evolution and spatial pattern of the 20th-century global warming and the future change under representative concentration pathways pro jection are compared to the multimodel ensemble of CMIP5 models. The model discrepancies in terms of climate sensitivity are also discussed.  相似文献   

10.
In this paper, a coupled model was used to estimate the responses of soil moisture and net primary production of vegetation (NPP) to increasing atmospheric CO2 concentration and climate change. The analysis uses three experiments simulated by the second-generation Earth System Model (CanESM2) of the Canadian Centre for Climate Modelling and Analysis (CCCma), which are part of the phase 5 of the Coupled Model Intercomparison Project (CMIP5). The authors focus on the magnitude and evolution of responses in soil moisture and NPP using simulations modeled by CanESM, in which the individual effects of increasing CO2 concentration and climate change and their combined effect are separately accounted for. When considering only the single effect of climate change, the soil moisture and NPP have a linear trend of 0.03 kg m^-2 yr^-1 and-0.14 gC m^- 2 yr^-2, respec- tively. However, such a reduction in the global NPP results from the decrease of NPP at lower latitudes and in the Southern Hemisphere, although increased NPP has been shown in high northern latitudes. The largest negative trend is located in the Amazon basin at -1.79 gC m^-2 yr^-2. For the individual effect of increasing CO2 concentration, both soil moisture and NPP show increases, with an elevated linear trend of 0.02 kg m^-2 yr^-1 and 0.84 gC m^-2 yr^-2, respectively. Most regions show an increasing NPP, except Alaska. For the combined effect of increasing atmospheric CO2 and climate change, the increased soil moisture and NPP exhibit a linear trend of 0.04 kg m^2 yr^-1 and 0.83 gC m^2 yr^-2 at a global scale. In the Amazon basin, the higher reduction in soil moisture is illustrated by the model, with a linear trend of-0.39 kg m^-2 yr^-1, for the combined effect. Such a change in soil moisture is caused by a weakened Walker circulation simulated by this coupled model, compared with the single effect of increasing CO2 concentration (experiment M2), and a consequence of the reduction in NPP is also shown in this area, with a linear trend of-  相似文献   

11.
Data from the World Wide Lightning Location Network (WWLLN) for the period 2005-2011 and data composite of the Lightning Imaging Sensor/Optical Transient Detector (LIS/OTD) for 1995-2010 are used to analyze the lightning activity and its diurnal variation over land and ocean of the globe. The Congo basin shows a peak mean annual flash density of 160.7 fl km-2 yr-1 according to the LIS/OTD. The annual mean land to ocean flash ratio is 9.6:1, which confirms the result from Christian et al. in 2003 based on only 5-yr OTD data. The lightning density detected by the WWLLN is in general one order of magnitude lower than that of the LIS/OTD. The diurnal cycle of the lightning activity over land shows a single peak, with the maximum activity occurring around 1400-1900 LT (Local Time) and a minimum in the morning from both datasets. The oceanic diurnal variation has two peaks: the early morning peak between 0100 and 0300 LT and the afternoon peak with a stronger intensity between 1100 and 1400 LT over the Pacific Ocean, as revealed from the WWLLN dataset; whereas the diurnal variation over ocean in the LIS/OTD dataset shows a large fluctuation.  相似文献   

12.
In this study, the authors developed an en- semble of Elman neural networks to forecast the spatial and temporal distribution of fossil-fuel emissions (ff) in 2009. The authors built and trained 29 Elman neural net- works based on the monthly average grid emission data (1979-2008) from different geographical regions. A three-dimensional global chemical transport model, God- dard Earth Observing System (GEOS)-Chem, was applied to verify the effectiveness of the networks. The results showed that the networks captured the annual increasing trend and interannual variation of ff well. The difference between the simulations with the original and predicted ff ranged from -1 ppmv to 1 ppmv globally. Meanwhile, the authors evaluated the observed and simulated north-south gradient of the atmospheric CO2 concentrations near the surface. The two simulated gradients appeared to have a similar changing pattern to the observations, with a slightly higher background CO2 concentration, - 1 ppmv. The results indicate that the Elman neural network is a useful tool for better understanding the spatial and tem- poral distribution of the atmospheric C02 concentration and ft.  相似文献   

13.
The Brazilian coast is characterized by dif- ferent tidal regimes and distinct meteorological influ- ences. The northern part has larger tidal amplitudes and is permanently affected by trade winds and tropical distur- bances; the southern portion has smaller tidal amplitudes and is frequently influenced by extratropical cyclone ac- tivity. Besides these aspects, many features regarding current structure and behavior are also present, such as the equatorial system of currents, the subtropical gyre and the corresponding western boundary currents, and the Bra- zil-Malvinas confluence region. Within this context, ef- forts were made to develop the BRAZCOAST system, capable of describing the processes that determine the oceanic circulation from large to coastal scales. A cus- tomized version of the Princeton Ocean Model (POM) was implemented in a basin-scale domain covering the whole of the tropical and southern Atlantic Ocean, with 0.5° spatial resolution, as well as three nested grids with (1/12)° resolution covering the different parts of the Bra- zilian shelf, in a one-way procedure. POM was modified to include tidal potential generator terms and a par- tially-clamped boundary condition for tidal elevations. The coarse grid captured large-scale features, while the nested grids detailed local circulations affected by bathymetry and coastal restrictions. An interesting aspect at the coarse grid level was the relevance of the Weddell Sea to the location of the tidal amphidromic systems.  相似文献   

14.
1961-200年中国各季降水趋势变化   总被引:1,自引:0,他引:1       下载免费PDF全文
Trends in six indices of precipitation in China for seasons during 1961-2007 were analyzed based on daily observations at 587 stations. The trends were estimated by using Sen's method with Mann-Kendall's test for quantifying the significance. The geographical patterns of trends in the seasonal indices of extremes were similar to those of total precipitation. For winter, both total and extreme precipitation increased over nearly all of China, except for a small part of northern China. Increasing trends in extreme precipitation also occurred at many stations in southwestern China for spring and the midlower reaches of the Yangtze River and southern China for summer. For autumn, precipitation decreased in eastern China, with an increasing length of maximum dry spell, implying a drying tendency for the post-rainy season. Wetting trends have prevailed in most of western China for all seasons. The well-known 'flood in the south and drought in the north' trend exists in eastern China for summer, while a nearly opposite trend pattern exist for spring.  相似文献   

15.
敦煌莫高窟大气颗粒物中水溶性离子变化及来源解析   总被引:1,自引:0,他引:1  
为探明莫高窟大气颗粒物污染特征,采集了2014年4-12月第16窟及72窟外环境中大气颗粒物PM2.5和PM10~2.5样品,对比分析了样品中水溶性离子变化及影响因素,通过主成分分析法解析了其主要来源.结果表明:(1)窟区主风向为南风,起沙风频率仅为0.01%,不利于污染物的扩散;(2)窟外PM2.5和PM10~2.5...  相似文献   

16.
A right annual cycle is of critical importance for a model to improve its seasonal prediction skill. This work assesses the performance of the Grid-point Atmospheric Model of IAP LASG (GAMIL) in retrospective prediction of the global precipitation annual modes for the 1980 2004 period. The annual modes are gauged by a three-parameter metrics: the long-term annual mean and two major modes of annual cycle (AC), namely, a solstitial mode and an equinoctial asymmetric mode. The results demonstrate that the GAMIL one-month lead prediction is basically able to capture the major patterns of the long-term annual mean as well as the first AC mode (the solstitial monsoon mode). The GAMIL has deficiencies in reproducing the second AC mode (the equinoctial asymmetric mode). The magnitude of the GAMIL prediction tends to be greater than the observed precipitation, especially in the sea areas including the Arabian Sea, the Bay of Bengal (BOB), and the western North Pacific (WNP). These biases may be due to underestimation of the convective activity predicted in the tropics, especially over the western Pacific warm pool (WPWP) and its neighboring areas. It is suggested that a more accurate parameterization of convection in the tropics, especially in the Maritime Continent, the WPWP and its neighboring areas, may be critical for reproducing the more realistic annual modes, since the enhancement of convective activity over the WPWP and its vicinity can induce suppressed convection over the WNP, the BOB, and the South Indian Ocean where the GAMIL produces falsely vigorous convections. More efforts are needed to improve the simulation not only in monsoon seasons but also in transitional seasons when the second AC mode takes place. Selection of the one-tier or coupled atmosphere-ocean system may also reduce the systematic error of the GAMIL prediction. These results offer some references for improvement of the GAMIL seasonal prediction skill.  相似文献   

17.
In this study, the effects of soil moisture on sand saltation and dust emission over the Horqin Sandy Land area are investigated, based on observations of three dust events in 2010. The minimum friction velocity initiating the motion of surface particles, namely, the threshold friction velocity, is estimated to be 0.34,0.40, and 0.50 m s-1under the very dry, dry, and wet soil conditions, respectively. In comparison with the observations during the dust events under the very dry and dry soil conditions, the dust emission flux during the wet event is smaller, but the saltation activities of sand particles(d 50 μm) are stronger. The size distributions of airborne dust particles(0.1 d 20 μm) show that concentrations of the finer dust particles(0.1 d 0.3 μm) have a secondary peak under dry soil conditions, while they are absent under wet soil conditions. This suggests that the surface soil particle size distribution can be changed by soil moisture. Under wet soil conditions, the particles appear to have a larger size, and hence more potential saltating particles are available. This explains the occurrence of stronger saltation processes observed under wet soil conditions.  相似文献   

18.
This paper presents a numerical model that simulates the wind fields, turbulence fields, and dispersion of gaseous substances in urban areas on building to city block scales. A Computational Fluid Dynamics(CFD) approach using the steady-state, Reynolds-Averaged Navier-Stokes(RANS) equations with the standard k-ε turbulence model within control volumes of non-uniform cuboid shapes has been employed. Dispersion field is computed by solving an unsteady transport equation of passive scalar. Another approach based on Gaussian plume model is used to correct the turbulent Schmidt number of tracer, in order to improve the dispersion simulation. The experimental data from a wind tunnel under neutral conditions are used to validate the numerical results of velocity, turbulence, and dispersion fields. The numerical results show a reasonable agreement with the wind tunnel data. The deviation of concentration between the simulation with corrected turbulent Schmidt number and the wind tunnel experiments may arise from 1) imperfect point sources, 2) heterogeneous turbulent difusivity, and 3) the constant turbulent Schmidt assumption used in the model.  相似文献   

19.
A nondivergent barotropic model (Model 1) and a barotropic primitive equation vortex model (Model 2) are linearized respectively in this paper. Then their perturbation wave spectrums are computed with a normal mode approach to study the instability problem on an appointed tropical cyclone (TC)-like vortex, thereby, the dynamic instability properties of spiral cloud bands of TCs are discussed. The results show that the unstable mode of both models exhibits a spiral band-like structure that propagates away from the vortex outside the radius of maximum winds. The discrete modal instability of the pure vortex Rossby wave can account for the generation of the eyewall and the inner spiral band. The unstable mode in Model 2 has three parts, i.e., eyewall, inner and outer spiral bands. This mode can be interpreted as a mixed vortex Rossby-inertia gravitational wave. The unbalanced property of the wave outside the stagnation radius of the vortex Rossby wave is one of the important reasons for the formation of the outer spiral band in TCs. Accordingly, the outer spiral band can be identified to possess properties of an inertial-gravitational wave. When the formation of unstable inner and outer spiral bands is studied, a barotropic vortex model shall be used. In this model, the most unstable perturbation bears the attributes of either the vortex Rossby wave or the inertial-gravitational wave, depending on the vortex radius. So such perturbations shall be viewed as an unbalanced and unstable mixed wave of these two kinds of waves.  相似文献   

20.
The structures and characteristics of the marine-atmospheric boundary layer over the South China Sea during the passage of strong Typhoon Hagupit are analyzed in detail in this paper. The typhoon was generated in the western Pacific Ocean, and it passed across the South China Sea, finally landfalling in the west of Guangdong Province. The shortest distance between the typhoon center and the observation station on Zhizi Island(10 m in height) is 8.5 km. The observation data capture the whole of processes that occurred in the regions of the typhoon eye, two squall regions of the eye wall, and weak wind regions,before and after the typhoon's passage. The results show that:(a) during the strong wind(average velocityˉu 10 m s-1) period, in the atmospheric boundary layer below 110 m, ˉu is almost independent of height,and vertical velocity ˉw is greater than 0, increasing with ˉu and reaching 2–4 m s-1in the squall regions;(b) the turbulent fluctuations(frequency 1/60 Hz) and gusty disturbances(frequency between 1/600 and1/60 Hz) are both strong and anisotropic, but the anisotropy of the turbulent fluctuations is less strong;(c) ˉu can be used as the basic parameter to parameterize all the characteristics of fluctuations; and(d) the vertical flux of horizontal momentum contributed by the average flow(ˉu ·ˉw) is one order of magnitude larger than those contributed by fluctuation fluxes(u w and v w), implying that strong wind may have seriously disturbed the sea surface through drag force and downward transport of eddy momentum and generated large breaking waves, leading to formation of a strongly coupled marine-atmospheric boundary layer. This results in ˉw 0 in the atmosphere, and some portion of the momentum in the sea may be fed back again to the atmosphere due to ˉu ·ˉw 0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号