首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An independent approach, based on a power law relation interconnecting the lead time of precursory signals and the stress drop of forthcoming earthquake, confirms the reported evidence that the observed magnetic field anomaly and consequently, according to Maxwell’s laws, electric field anomaly prior to Mw 6.3 Aquila earthquake in 2009 exhibit features of criticality. Precisely, by inserting the data from Aquila earthquake in this power law, we get an exponent α = 0.329, which is in excellent agreement with previously found ones and falls within the range values (0.3–0.4) for critical exponents for fracture. This fact implies that upon the initiation of the observed magnetic field anomaly and the associated electric signal prior to Aquila earthquake, the prefocal area enters into a critical stage where nonlinear dynamic processes, typical behaviour of a system close to criticality, prevail.  相似文献   

2.
《Tectonophysics》1987,134(4):323-329
Since 1982, eighteen telemetric stations in Greece have continuously been recording variations in the telluric field. Transient changes of the telluric field, called seismic electric signals, SES, have been observed simultaneously at some stations from several hours to several days before an earthquake. The lead-time, Δt, of the SES, which is the time difference between the occurrence of the earthquake and the SES, varies between 6 h and 4 days.Four large earthquakes (M = 5.3–6.4) which occurred in 1983 in the Cephalonia region in Greece, showed clear SES with lead-times falling into two groups (I and II) of several hours and a few days respectively.For the four events, we studied P-wave spectra of the UME Swedish seismological station, at a teleseismic distance of 26°. Both short- and long-period instruments were employed. Brune's model (1970) was used to calculate source dimensions and relative values of other source dynamic parameters.Two groups of high and low stress-drop were found. Events with lead-times of group I show high stress-drop, while events with lead-times of group II show low stress-drop. The relative values of stress-drop differ by a factor of 4 between the two groups (high and low) while within each group they exhibit only a small scatter.The largest relative seismic moment, M0, is found for the largest event. The three other events with comparable magnitudes have similar seismic moments. The same relation was found for the radiated energy, Es.  相似文献   

3.
We investigated the Coulomb stress changes in the active faults surrounding a moderate‐magnitude normal‐faulting earthquake (2009 L'Aquila, Mw 6.3) and the associated variations in the expected ground motion on regional probabilistic seismic hazard maps. We show that the static stress variations can locally increase the seismic hazard by modifying the expected mean recurrence time on neighbouring faults by up to ~290 years, with associated variations in the probability of occurrence of the maximum expected earthquake of up to ~2%. Our findings suggest that the increase in seismic hazard on neighbouring faults following moderate‐magnitude earthquakes is probably not sufficient to necessitate systematic upgrades of regional probabilistic seismic hazard maps, but must be considered to better address and schedule strategies for local‐scale mitigation of seismic risk.  相似文献   

4.
The frequency–magnitude distributions of earthquakes are used in this study to estimate the earthquake hazard parameters for individual earthquake source zones within the Mainland Southeast Asia. For this purpose, 13 earthquake source zones are newly defined based on the most recent geological, tectonic, and seismicity data. A homogeneous and complete seismicity database covering the period from 1964 to 2010 is prepared for this region and then used for the estimation of the constants, a and b, of the frequency–magnitude distributions. These constants are then applied to evaluate the most probable largest magnitude, the mean return period, and the probability of earthquake of different magnitudes in different time spans. The results clearly show that zones A, B, and E have the high probability for the earthquake occurrence comparing with the other seismic zones. All seismic source zones have 100 % probability that the earthquake with magnitude ≤6.0 generates in the next 25 years. For the Sagaing Fault Zone (zones C), the next Mw 7.2–7.5 earthquake may generate in this zone within the next two decades and should be aware of the prospective Mw 8.0 earthquake. Meanwhile, in Sumatra-Andaman Interplate (zone A), an earthquake with a magnitude of Mw 9.0 can possibly occur in every 50 years. Since an earthquake of magnitude Mw 9.0 was recorded in this region in 2004, there is a possibility of another Mw 9.0 earthquake within the next 50 years.  相似文献   

5.
Seismic Electric Signals (SES) were recorded by VAN-group on April 18–19, 1995, at Ioannina station; they resulted in an official prediction that was sent (two weeks before the earthquake occurrence) to the Greek authorities as well as to various International Institutes.The observation of these electrical variations was confirmed by Gruszow et al. (1996); however, they claim that these signals could be attributed to a (non determined) nearby artificial source with huge intensity (IL≈4 × 104Am, for r ≈ 2 km. or 1.6 × 105Am, for r ≈ 4 km). This claim is not valid, because, such an artificial source (cf. horizontal point current dipole) should have produced: (a) electrical field variations having amplitudes two orders of magnitude, larger than the observed ones; this is theoretically shown and experimentally verified and (b) magnetic field variations mainly on the horizontal field, while, in the present case, they have been recorded mainly on the vertical component.Furthermore, we show that the above SES obey the criteria, suggested by Varotsos and Lazaridou (1991), for discriminating SES from noise.  相似文献   

6.
The fractal characteristics of the ultra-low-frequency (ULF) magnetic field variations recorded prior to the Tohoku earthquake (EQ) with M W = 9 which happened on 11 March 2011 are studied in this article with the use of detrended fluctuation analysis and Higuchi fractal dimension algorithm. In the specific study, we use for our calculations only nighttime (LT = 3 a.m. ± 2 h) data because of their lowest contamination by industrial noise. A key aspect of our analysis is the investigation about any possible correlation of the ULF magnetic field variations or their calculated fractal characteristics with geomagnetic indices. Different preprocessing approaches are examined aiming at the minimization of any possible influences from global phenomena in the fractal analysis results, while in the same time retaining the scale-invariant character of ULF magnetic field variations after preprocessing. The obtained fractal analysis results imply locally driven change in the fractal characteristics of the ULF data prior to the Tohoku EQ, which is compatible with the change that has been reported prior to other large EQs.  相似文献   

7.
Two years of radon-222 observations collected at L’Aquila (Italy) in the atmospheric surface layer during 2004–2006 were analyzed in correlation with meteorological data and other atmospheric tracers. A box model was developed to better understand the mechanisms of diurnal and seasonal variability of the tracer and to indirectly assess the magnitude of the monthly averaged radon soil flux in the L’Aquila measurement site. The model was successfully validated with measurements, with a 0.8 average correlation coefficient between hourly values for the whole period of radon observations. Measurements taken during March 2009 were analyzed to find possible signs of perturbation due to the ongoing seismic activity that would have reached its peak on the 6 April 2009 destructive earthquake. Contrary to the professed (and unpublished) dramatic increases of radon activity unofficially announced to the inhabitants at that time, the study presented here shows that no radon activity increase took place in L’Aquila with respect to a previous ‘seismically unperturbed’ year (same month with similar meteorological conditions), but that an average 30 % decrease was experienced. This conclusion is reached from a direct comparison of observed data and also as a result of the previously validated radon box model constrained by actual meteorological data, from which an indirect estimate of a 17 % reduction of the radon soil flux is obtained.  相似文献   

8.
We present data analysis of multi-electrode measurements performed in the tectonosphere-atmosphere interface at Pizzoli and Chieti observatories located at distances 30–50 km and 90–110 km from earthquakes epicenters in Central Italy accordingly. Time intervals include 30 days of observations before earthquakes occurred on 24 August (M6.2), on 26 October (M6.1) and on 30 October, 2016 (M6.6). The recorded signals are two component time series with time step 1 s representing alternative and direct electromotive force components. Alternative electromotive force component in frequency band of 0.01 Hz to 4000 Hz is being recorded. Basic study has been carried out since 1989 at Kamchatka peninsula and since 2012 across Eurasia. The observation of nonstationary electric processes illustrates the nucleation of seismogenetic activity. We propose the hypothesis that nonstationary (sudden, abrupt in amplitude) electrical signals illustrate the proton permeability of rocks laying underneath the measuring sensor including a unique phenomenon of anomalous spontaneous deformation due to combination of proton environment and polymorphic transformation in condensed media. One of the interesting results is distinguishing the main zone of major earthquake nucleation which is corresponding as the earthquakes epicenters in Central Italy with M > 6. We suggest that by covering the northern, central and southern parts of Italy with a network of multi-electrode observatories near fault lines, towns and villages could pinpoint the possible coordinates of earthquake epicenter in a 30 day time window. The Chieti and Pizzoli observatories can form the basis of an extended network.  相似文献   

9.
Fractal dynamics of geomagnetic storms   总被引:1,自引:1,他引:0  
We explore fluctuations of the horizontal component of the Earth’s magnetic field to identify scaling behaviour of the temporal variability in geomagnetic data recorded by the Intermagnet observatories during the solar cycle 23 (years 1996 to 2005). In this work, we use the remarkable ability of scaling wavelet exponents to highlight the singularities associated with discontinuities present in the magnetograms obtained at two magnetic observatories for six intense magnetic storms, including the sudden storm commencements of 14 July 2000, 29–31 October and 20–21 November 2003. In the active intervals that occurred during geomagnetic storms, we observe a rapid and unidirectional change in the spectral scaling exponent at the time of storm onset. The corresponding fractal features suggest that the dynamics of the whole time series is similar to that of a fractional Brownian motion. Our findings point to an evident relatively sudden change related to the emergence of persistency of the fractal power exponent fluctuations precedes an intense magnetic storm. These first results could be useful in the framework of extreme events prediction studies.  相似文献   

10.
In April 2013, a 7.0 Mw earthquake struck along the Longmen Shan fault in the city of Ya’an, Sichuan Province, China, causing serious damage. The invaluable contributions of the non-governmental organizations (NGOs) in dealing with this disaster highlighted the significance of government–NGO relationships in post-disaster reconstruction and the effect this has on the efficiency and quality of post-disaster reconstruction. This paper examines government–NGO relationships (GNR) in the post-Lushan earthquake period as a multi-stakeholder collaborative problem based on organizational lifecycle perspectives through the birth, growth, stability, and saturation stages. Two-year field research was conducted in the affected areas which identified the GNR as a bridged government–NGO relationship (BGNR) during the reconstruction period, with the Ya’an service center acting as the bridging organization. The BGNR’s experience was compared to the previous Wenchuan earthquake, and the general BGNR post-disaster reconstruction situation is discussed on two dimensions: mutuality and organizational identity.  相似文献   

11.
The consistency of the critical exponent in the power law relation between the stress drop of the earthquake and the lead time of the precursory seismic electric signal is checked using new data from the recent M w 4.9 earthquake of strike-slip mechanism that occurred on 12 November 2013 in northern Evia island, Greece and the megathrust M w 9.0 Tohoku earthquake on 11 March 2011, in Japan. For the first case, the derived exponent is in excellent agreement with previous ones obtained from all non thrust events analysed by the author and matches the value of critical exponent for fracture. On the other hand, the megathrust Tohoku earthquake follows the behaviour of all thrust events studied by the author, and thus, the calculated exponent significantly deviates from this critical value. The different behaviour between non thrust and thrust-type events could be attributed to the fact that thrust mechanism earthquakes usually occur in collision or subduction zones which are characterised by high accumulation of strain. However, a larger number of thrust events are required in order to obtain reliable results and shed light in the above experimental findings.  相似文献   

12.
《International Geology Review》2012,54(12):1462-1470
The Pacific coast of Mexico has repeatedly been exposed to destructive tsunamis. Recent studies have shown that rock magnetic methods can be a promising approach for identification of tsunami- or storm-induced deposits. We present new rock magnetic and anisotropy of magnetic susceptibility (AMS) results in order to distinguish tsunami deposits in the Ixtapa–Zihuatanejo area. The sampled, 80 cm-deep sequence is characterized by the presence of two anomalous sand beds within fine-grained coastal deposits. The lower bed is probably associated with the 14 March 1979 Petatlán earthquake (M W = 7.6), whereas the second one formed during the 21 September 1985 Mexico earthquake (M W = 8.1). Rock magnetic experiments discovered significant variations within the analysed sequence. Thermomagnetic curves reveal two types of behaviour: one in the upper part of the sequence, after the occurrence of the first tsunami, and the other in the lower part of the sequence, during that event and below. Analysis of hysteresis parameter ratios in a Day plot also allows us to distinguish two kinds of behaviour. The samples associated with the second tsunami plot in the pseudo-single-domain area. In contrast, specimens associated with the first tsunami and the time between both tsunamis display a very different trend, which can be ascribed to the production of a considerable amount of superparamagnetic grains, which might be due to pedogenic processes after the first tsunami. The studied profile is characterized by a sedimentary fabric with almost vertical minimum principal susceptibilities. The maximum susceptibility axis shows a declination angle D = 27°, suggesting a NNE flow direction which is the same for both tsunamis and normal currents. Standard AMS parameters display a significant enhancement within the transitional zone between both tsunamis. The study of rock magnetic parameters may represent a useful tool for the identification and understanding of tsunami deposits.  相似文献   

13.
Investigating the period 1983–1994 for western Greece, a possible correlation between the selectivity characteristics of the SES (seismic electric signals of the VAN method) and earthquake parameters has been reported by Uyeda et al. [Uyeda, S., Al-Damegh, K.S., Dologlou, E., Nagao, T., 1999. Some relationship between VAN seismic electric signals (SES) and earthquake parameters, Tectonophysics, 304, 41–55.]. They found that the earthquake source mechanism changed from largely strike-slip type to thrust type at the end of 1987, and this coincided with a shift in the SES sensitive site from Pirgos (PIR) to Ioannina (IOA) VAN station. Here, we report the results for the period January 1, 2002–July 25, 2004, during which the SES sensitive site of PIR became again active, after a 10-year period of “quiescence”. This activation was followed by strike slip earthquakes (on August 14, 2003 and March 17, 2004 with magnitude 6.4 and 6.5, respectively) in the Hellenic arc, which provides additional evidence on the correlation reported by Uyeda et al. The SES activities recorded at PIR have been discriminated from “artificial” noise by employing the natural time-domain analysis introduced recently.  相似文献   

14.
The Load/Unload Response Ratio (LURR) method is often defined as the ratio between Benioff strains released during the time periods of loading and unloading, corresponding to earth tide induced Coulomb Failure Stress change on optimally oriented faults. According to the method, anomalous increase in the time series of LURR usually occurs prior to occurrence of a large earthquake. Previous studies have indicated that the stress field that existed before a large earthquake has strong influence on the evaluation of LURR. In order to augment the sensitivity of LURR in measuring the criticality of stress accumulation before an earthquake, we replace the circular region usually adopted in LURR practice with an area within which the tectonic stress change would mostly affect the Coulomb stress on a potential seismogenic fault of a future event. Coulomb stress change before the hypothetical earthquake is calculated based on a simple back-slip dislocation model of the event. Retrospective test of this new algorithm on the 2008 Mw7.9 Wenchuan earthquake shows remarkable enhancement of the LURR precursory anomaly. To illustrate the variation of LURR time series associated with our choice of identified areas with increased Coulomb stress before the earthquake, we calculate the spatial distributions of LURR within a circular region of 700 km radius centered at epicenter of the event. Comparing the spatial LURR distributions of different periods, the change of LURR within the Coulomb stress increase areas looks more prominent than the others: it remains at a low level for most of the time and markedly increases few years before the quake. This result further shows the validity of the Coulomb stress algorithm. Unlike circular regions, areas of increased Coulomb stress with anomalously increased LURR values before a large earthquake could provide a relatively more precise estimation of the criticality of the ensuing event.  相似文献   

15.
《Tectonophysics》1986,125(4):371-378
Periodic anomalies, period 24 h, have been observed in the electrotelluric field prior to a large imminent earthquake in Greece. The periodic anomaly is modulated by an exponential term which implies that successive peaks increase toward the time of the impending earthquake. It is shown that the amplitudes of the periodic variations are much bigger than those accompanying changes of the geomagnetic field.  相似文献   

16.
On Tuesday, November 17, 2015 at 07:10:07 (UTC) a strong earthquake struck Lefkas Island (Ionian Sea, Western Greece) with magnitude Mw 6.4, depth of about 6 km and epicenter located 20 km southwest of Lefkas town. It was felt in Lefkas Island and the surrounding region and caused the death of two people, the injury of eight others, many earthquake environmental effects (EEE) and damage to buildings and infrastructures. Secondary EEE were observed in western Lefkas and classified as ground cracks, slope movements and liquefaction phenomena. Primary effects directly linked to surface expression of seismogenic source were not detected in the field. The maximum intensity VIIIESI 2007 was assigned to large-volume slope movements along western coastal Lefkas. Damage to buildings was mainly observed in villages located in Dragano-Athani graben arranged almost parallel to the northern segment of the Cephalonia Transform Fault Zone (Lefkas segment). Among structures constructed with no seismic provisions, the stone masonry buildings and monumental structures suffered most damage, while the traditional buildings of the area with dual structural system performed relatively well and suffered minor damage. Reinforced-concrete buildings were affected not so much by the earthquake itself but by the generation of secondary EEE. The maximum seismic intensities VIIIEMS-98 were assigned to villages located in Dragano-Athani graben due to very heavy structural damage observed on masonry buildings mainly attributed to the combination of the recorded high PGA values, the poor antiseismic design and construction of buildings and the geological and tectonic structure of the affected area.  相似文献   

17.
Here, we propose an alternative physical model, based on the concept of criticality, for the explanation of the observed magnetic signals prior to the M6.0 Parkfield and the M5.4 Alum Rock earthquakes. Motivated by an analogous experience from major earthquakes in Greece, where both magnetic field variations and seismic electric signals were also recorded few weeks before the main shock, we suggest that in all these cases, similar dynamic processes characterized by critical behaviour should govern the corresponding pre-focal areas when the relevant precursory signals emerged.  相似文献   

18.
We report methane concentrations in the bottom water layer and the upper layer of bottom sediments and the results of acoustic explorations of methane seeps on the shelf bordering the continental slope of the Sea of Japan region, in which electromagnetic Schumann’s resonance oscillations were earlier recorded at continental-slope water depths of 500, 1000, and 2000 m. The occurrence of Schumann’s resonances at such great depths is explained by an increase (a factor of more than 25) in the electrical resistivity of a ~ 2000 m thick sediment layer with the pore space largely filled with free methane. A new method is proposed for determining the depth of the sources of anomalous concentrations of methane in bottom sediments or in the bottom water layer on a deep shelf. The method is based on recording Schumann’s resonances during measurements of the natural electric field at a series of increasing depths in areas bordering the continental slope.  相似文献   

19.
In this study, seismological aspects and field observation of the 2010 Kuh-Zar earthquake has been investigated. The Kuh-Zar earthquake, of magnitude 5.7 (Mw), occurred in northeastern Iran on August 27, 2010. The area is surrounded by branches of the active faults which are coated by the quaternary alluvium. During the past several decades, this area has been struck by a number of earthquakes. This earthquake with a moderate magnitude caused a higher rate of damage contrasted with previous earthquakes of the same magnitude range in Iran. Fortunately, the source of the Kuh-Zar earthquake was in a sparsely populated area, and therefore, it caused a few loss of life with the highest observed intensity of shaking VII (modified Mercalli intensity) in the Kuh-Zar village. The shock killed 4 people, injured 40, and destroyed more than 12 villages. According to the field observation, the mechanism of this shock is defined as a left-lateral strike slip. We also checked out the properties of strong ground motions in this earthquake using the records availed by Iranian strong motion network. At KUZ station, about 7 km east of the epicenter, the recorded PGA and PGV in both horizontal and vertical components were remarkably large for an event of this size, and visual inspection of the velocity time history reveals a pulse-like shape. Unfortunately no other recording stations were located close enough to the fault to capture a directivity pulse. Finally, according to the strong-motion properties and observed information, ShakeMaps of the earthquake have been generated by the native intensity observations and the recorded strong motions.  相似文献   

20.
Gravity Recovery and Climate Experiment(GRACE) observations have been used to de-tect the co-seismic and post-seismic gravity field variations due to the Mw=9.3 Sumatra-Andaman earthquake that occurred on December 26,2004.This article focuses on investigating some gravita-tional effects caused by this huge earthquake.We computed the geoid height changes,the equivalent water height(EWH) changes,and the gravity changes using the GRACE Level-2 monthly spherical harmonic(SH) solutions released by University of ...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号