共查询到17条相似文献,搜索用时 46 毫秒
1.
2.
分析机载LiDAR点云与影像数据特点,提出了一种建筑物点云与配准后影像相结合的建筑物轮廓信息提取方法。首先,采用α-shapes算法从点云中提取粗糙的建筑物轮廓多边形;然后,采用基于线支撑区域的直线段提取算法从影像中提取边缘信息,并利用投票机制,以点到直线的距离为因子,从中过滤出真实的建筑物边界;最后,提出一种建筑物轮廓精化的新方法,利用从影像中提取的边缘信息修正从点云中提取的粗糙轮廓,并对修正后的轮廓采用道格拉斯-普克算法去除冗余节点,采用强制相交方法恢复建筑物转角,最终得到了准确的建筑物外轮廓多边形,并通过实验验证了该方法的有效性。 相似文献
3.
一种基于LiDAR点云的建筑物提取方法 总被引:2,自引:0,他引:2
从机载雷达点云数据中快速准确提取建筑物是当前研究的难点和热点。在对现有建筑物点云提取方法充分研究和分析的基础上,本文提出了一种基于LiDAR点云的建筑物提取方法。首先根据建筑物的几何特性提取初始建筑物轮廓点;然后构建局部协方差矩阵计算点云分布特征,剔除非建筑物轮廓点;最后利用DBSCAN聚类算法对建筑物轮廓点聚类,以聚类结果为基础构建缓冲区,以缓冲区内所有建筑物轮廓点为初始种子点,采用圆柱体邻域进行多种子点区域增长,实现建筑物点云的提取。通过两组试验,共5组数据验证本文算法的性能。试验结果表明,该方法能够准确、有效地提取多层复杂的建筑物点云,效率高,且具有一定的适用性。 相似文献
4.
机载LiDAR技术为探测建筑物提供了大量三维点云坐标.为了能从植被中有效识别建筑物面域,首先利用渐进式TIN加密法识别非地面点云,经过移除低于地面3 m的点云和孤立点云后生成菲地面点云的二值化格网,依据自定义的分割算子打断建筑物和植被间的可能连接;然后通过区域生成算法以高差阈值来聚类二者的面域,并使用大坡度密度阈值来提取建筑物的面域;最后使用形态学闭算子填充面域孔洞并平滑其边缘.选取3个典型的复杂城市区域进行测试,结果显示,各区域的提取质量与完成率均高于91%,表明该算法能够达到自动识别建筑物的目的. 相似文献
5.
以自动生成测地线活动轮廓(geodesic active contour,GAC)模型的初始曲线及改进其外力为出发点,提出一种基于LiDAR点云和随机影像数据,利用改进的GAC模型进行建筑物边界提取的方案。首先利用形态学交替序贯滤波自动获得模型演化的初始曲线;进而利用LiDAR深度梯度影像改进模型演化的外力,得到了改进的测地线活动轮廓(improved geodesic active contour,IGAC)模型。仿真试验表明,采用IGAC模型,可抑制弱边界泄漏,并提高建筑物边界提取的完整性和形状精确度。 相似文献
6.
建筑物LiDAR点云的屋顶边界提取 总被引:3,自引:0,他引:3
提出了一种建筑物LiDAR点云的屋顶边界提取方法.首先构建了离散的建筑物屋顶LiDAR点的TIN模型,在TIN模型中根据点的空间几何关系,过滤整个三角网的边界线,从而过滤出初始边界点.在初始边界点构成的边界中,过滤出边界斜率变化显著的点作为拐点.利用所有的屋顶LiDAR点将拐点扩展,得到边界的扩展点,由扩展点构成的屋顶边界为最终提取的建筑物屋顶边界. 相似文献
8.
针对全自动建筑物3D重建存在需要后续人工检验,且发现重建错误需要花费额外时间修改的问题,提出了一种半自动的面向对象的机载LiDAR点云建筑物3D重建方法。基于建筑物类别点云的联通分析和平面生长分割结果,提出了自动的建筑物栋数检测、单栋建筑物外轮廓提取、单栋建筑物内部结构线提取方法;同时,在计算机无法完成部分工作时,人工辅助计算机完成高程阶越线提取、识别建筑物屋顶附属物点云等工作。实验证明,该方法可以适用于高密度机载LiDAR点云数据中城区大部分建筑物的3D模型重建。 相似文献
9.
针对仅基于LiDAR点云的几何特征难以区分高程相似地物,且建筑物轮廓边缘信息提取精度不高的问题,该文提出一种基于几何特征与纹理特征的建筑物点云提取方法。利用圆柱体邻域计算16个与强度、高程、平面和密度相关的空间几何特征;通过Gabor滤波器提取24个纹理特征;再通过ReliefF特征选择前10个最优特征训练随机森林分类器,实现建筑物点分类。通过3组机载点云数据试验,对比仅使用点云几何特征(OP)、几何与纹理特征(OP+TE)、几何与纹理特征并特征选择(OP+TE+FS)3种方法的建筑物提取效果。实验结果表明,加入点云纹理特征并进行特征选择,能够进一步减少点云建筑物的漏提取和误提取现象,具有更高的完整率和准确率。 相似文献
10.
11.
12.
Zeynep Akbulut Samed Özdemir Hayrettin Acar Fevzi Karsli 《Journal of the Indian Society of Remote Sensing》2018,46(12):2057-2068
Automatic building extraction is an important topic for many applications such as urban planning, disaster management, 3D building modeling and updating GIS databases. Its approaches mainly depend on two data sources: light detection and ranging (LiDAR) point cloud and aerial imagery both of which have advantages and disadvantages of their own. In this study, in order to benefit from the advantages of each data sources, LiDAR and image data combined together. And then, the building boundaries were extracted with the automated active contour algorithm implemented in MATLAB. Active contour algorithm uses initial contour positions to segment an object in the image. Initial contour positions were detected without user interaction by a series of image enhancements, band ratio and morphological operations. Four test areas with varying building and background levels of detail were selected from ISPRS’s benchmark Vaihingen and Istanbul datasets. Vegetation and shadows were removed from all the datasets by band ratio to improve segmentation quality. Subsequently, LiDAR point cloud data was converted to raster format and added to the aerial imagery as an extra band. Resulting merged image and initial contour positions were given to the active contour algorithm to extract building boundaries. In order to compare the contribution of LiDAR to the proposed method, the boundaries of the buildings were extracted from the input image before and after adding LiDAR data to the image as a layer. Finally extracted building boundaries were smoothed by the Awrangjeb (Int J Remote Sen 37(3): 551–579. https://doi.org/10.1080/01431161.2015.1131868, 2016) boundary regularization algorithm. Correctness (Corr), completeness (Comp) and accuracy (Q) metrics were used to assess accuracy of segmented building boundaries by comparing extracted building boundaries with manually digitized building boundaries. Proposed approach shows the promising results with over 93% correctness, 92% completeness and 89% quality. 相似文献
13.
Roof plane segmentation is a complex task since point cloud data carry no connection information and do not provide any semantic characteristics of the underlying scanned surfaces. Point cloud density, complex roof profiles, and occlusion add another layer of complexity which often encounter in practice. In this article, we present a new technique that provides a better interpolation of roof regions where multiple surfaces intersect creating non-manifold points. As a result, these geometric features are preserved to achieve automated identification and segmentation of the roof planes from unstructured laser data. The proposed technique has been tested using the International Society for Photogrammetry and Remote Sensing benchmark and three Australian datasets, which differ in terrain, point density, building sizes, and vegetation. The qualitative and quantitative results show the robustness of the methodology and indicate that the proposed technique can eliminate vegetation and extract buildings as well as their non-occluding parts from the complex scenes at a high success rate for building detection (between 83.9% and 100% per-object completeness) and roof plane extraction (between 73.9% and 96% per-object completeness). The proposed method works more robustly than some existing methods in the presence of occlusion and low point sampling as indicated by the correctness of above 95% for all the datasets. 相似文献
14.
15.
基于Geoway 3DMapping软件,对LiDAR点云处理后生成的2×2 m间隔的DEM数据进行滤波,提取1∶10000的等高线数据。经过实验,研究总结出提取等高线的最优方法、步骤及生产中的常见问题和解决方法,提取的等高线成果地貌形态逼真,等高线连续性好、形态美观、精度高,符合规范要求,为提高成图质量和作业效率提供了良好的技术保障。 相似文献
16.
针对目前机载LiDAR点云数据存在的数据组织效率低下以及不利于查询等问题,本文提出了一种基于体元的建筑物提取算法。首先,构建体元模型实现机载LiDAR数据的真三维描述;然后,计算局部邻域曲面拟合残差,将残差最小的体元视作种子体元;最后,根据局部邻域法向量夹角准则来实现种子体元的区域增长,从而获得建筑物点。本文选取ISPRS公开的点云滤波测试数据中的8种复杂场景进行实验,实验结果表明:本文算法不仅原理简单、容易实现,而且具有较好的鲁棒性,不会受地形以及建筑物类型和尺寸的限制,Kappa系数达到80%以上,实现了复杂场景下建筑物的提取。 相似文献
17.
以机载LiDAR点云数据为研究对象,提出一种新的基于点云数据的多层建筑物三维轮廓模型高精度自动重建方法。在已完成建筑物结构提取及轮廓规则化处理的基础上,利用多层屋顶轮廓在水平投影面内的相邻关系,将各层屋顶中同等级屋顶的相邻关系概括为平行边、不平行且不相交、相交3种相邻形式,结合多层屋顶的层级结构信息对相邻轮廓边界进行一致性处理。实验证明本文方法可以进一步消除多层建筑物各屋顶轮廓的规则化处理误差,使相邻轮廓边界在水平投影面内严格重合,同时重建后建筑物三维轮廓模型的正确性与完整性较高,拐点的定位精度优于激光点平均间距。 相似文献