首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 178 毫秒
1.
The Upper Tertiary to Quaternary volcanic complex of Kouh-e-Shahsavaran in southeastern Iran is composed of calc-alkaline rocks of island are type (high-alumina basalts, basic andesites, andesites and dacites) even though it was emplaced on the continental basement. The volcanic rocks of the complex are genetically related and were probably derived by low-pressure fractional crystallization of high-Al basalts. The anomalously high content of Sr in some rocks probably reflects an accumulation of plagioclase. The trace element data are consistent with the origin of the parental magma by partial melting of an “enriched” upper mantle peridotite.  相似文献   

2.
The Taupo Volcanic Zone forms part of the Taupo-Hikurangi subduction system, and comprises five volcanic centres: Tongariro, Taupo, Maroa, Okataina and Rotorua. Tongariro Volcanic Centre is formed almost entirely of andesite while the other four centres contain predominantly rhyolitic volcanics and later fissure eruptions of high-Al basalt. Estimated total volume of each lava type are as follows: 2 km3 of high-Al basalt (< 0.1%); 260 km3 of andesite (< 2.5%); 5 km3 of dacite (< 0.1%); > 10,000 km3 of rhyolite and ignimbrite (> 97.4%).The location of the andesites and vent alignments suggest a source from a subduction zone underlying the area. However, the lavas differ chemically from island-arc andesites such as those of Tonga; in particular by having higher contents of the alkali elements, light REE and Sr and Pb isotopes. This suggests some crustal contamination, and it is considered that this may occur beneath the wide accretionary prism of the subduction system. Amphibolite of the subduction zone will break down between 80 and 100 km and a partial melt will rise. A multi-stage process of magma genesis is then likely to occur. High-Al basalts are thought to be derived from partial melting of a garnet-free peridotite near the top of the mantle wedge overlying the subduction zone, locations of the vents controlled largely by faults within the crust. Rhyolites and ignimbrites were probably derived from partial melting of Mesozoic greywacke and argillite under the Taupo Volcanic Zone. Initial partial melting may have been due to hydration of the base of the crust; the “water” having come from dehydration of the downgoing slab. The partial melts would rise to form granodiorite plutons and final release of the magma to form rhyolites and ignimbrites was allowed because of extension within the Taupo graben.Dacites of the Bay of Plenty probably resulted from mixing of andesitic magma with small amounts of rhyolitic magma, but those on the eastern side of the Rotorua-Taupo area were more likely formed by a higher degree of partial melting of the Mesozoic greywacke-argillite basement. This may be due to intrusion of andesite magma on this side of the Taupo volcanic zone.  相似文献   

3.
The Iliniza Volcanic Complex (IVC) is a poorly known volcanic complex located 60 km SSW of Quito in the Western Cordillera of Ecuador. It comprises twin peaks, North Iliniza and South Iliniza, and two satellite domes, Pilongo and Tishigcuchi. The study of the IVC was undertaken in order to better constrain the role of adakitic magmas in the Ecuadorian arc evolution. The presence of volcanic rocks with an adakitic imprint or even pristine adakites in the Ecuadorian volcanic arc is known since the late 1990s. Adakitic magmas are produced by the partial melting of a basaltic source leaving a garnet rich residue. This process can be related to the melting of an overthickened crust or a subducting oceanic crust. For the last case a special geodynamic context is required, like the subduction of a young lithosphere or when the subduction angle is not very steep; both cases are possible in Ecuador. The products of the IVC, made up of medium-K basaltic andesites, andesites and dacites, have been divided in different geochemical series whose origin requires various interactions between the different magma sources involved in this subduction zone. North Iliniza is a classic calc-alkaline series that we interpret as resulting from the partial melting of the mantle wedge. For South Iliniza, a simple evolution with fractional crystallization of amphibole, plagioclase, clinopyroxene, magnetite, apatite and zircon from a parental magma, being itself the product of the mixing of 36% adakitic and 64% calc-alkaline magma, has been quantified. For the Santa Rosa rhyolites, a slab melting origin with little mantle interactions during the ascent of magmas has been established. The Pilongo series magma is the product of a moderate to high degree (26%) of partial melting of the subducting oceanic crust, which reached the surface without interaction with the mantle wedge. The Tishigcuchi series shows two stages of evolution: (1) metasomatism of the mantle wedge peridotite by slab melts, and (2) partial melting (10%) of this metasomatized source. Therefore, the relative ages of the edifices show a geochemical evolution from calc-alkaline to adakitic magmas, as is observed for several volcanoes of the Ecuadorian arc.  相似文献   

4.
The Cenozoic volcanic rocks of the southern Andes are characterized by low 87Sr/86Sr ratios (0.7040–0.7045), which are consistent with an origin in the downgoing slab of oceanic lithosphere or the overlying mantle. These values are distinctly lower than those from corresponding rocks of the central Andes.The calc-alkaline rocks of the central Andes exhibit higher Sr isotopic values (0.705–0.713) and variable Rb/Sr ratios. Different explanations are possible for this behaviour as well as for the positive correlation between 87Sr/86Sr and Rb/Sr expressed in an apparent isochron of 380 ± 50 m.y. It is postulated that these magmas result from a mixing process between a primary magma with basaltic affinities and crustal material of relatively young age.A model is proposed for the generation of the “andesitic” magmas of the central Andes by which crustal rocks of the upper part of the crust are added to the base of the crust by an accretionary process at the margin of the continent. Melts from these upper crustal rocks act as contaminants in “andesitic” magmas.The role of crustal material is still more significant in the generation of the ignimbritic magmas; they are considered to result from a two-stage melting process by which igneous rocks, belonging to a former stage of development of the Andes, are engulfed in the subduction zone, where they melt.  相似文献   

5.
The Salal Creek area, at the north end of the main group of vents for the Quaternary Garibaldi (Cascade) Volcanic Belt, southwestern British Columbia, was the site of several small eruptions of mafic lava during the past 1 Ma. In contrast to the calc-alkaline character of all other parts of the Garibaldi Belt and the geographically nearly coincident Miocene and older Pemberton Volcanic Belt, the Salal Creek area Quaternary lavas are predominantly alkaline basalt and hawaiite with typical alkaline volcanic petrography, chemistry, and fractionation trends. Trace elements Ti-Zr-Y show within-plate character for the suite. As for other Garibaldi Belt volcanic rocks, Rb is low, Rb/Sr very low, and 87Sr/86Sr ratio is low, averaging 0.7032. The oxygen isotopic composition average, 18O = 5.9, is normal for mantle-derived volcanic rocks.This distinct change in magma type at the end of a volcanic are may be the consequence of a smaller degree of melting, melting at a slightly greater depth than calc-alkaline magma production, or a descending-plate edge effect.Ponded flows and pillow-palagonite accumulations indicate that several Salal Creek area eruptions occurred in proximity to ice which filled major valleys during pre-Wisconsin glacial periods.  相似文献   

6.
The volcanic rocks along the south-eastern and eastern Tyrrhenian border of Italy have been classified as converging plate margin magma types by using discriminant functions based on major element patterns. These rocks belong to calc-alkaline and shoshonitic associations (shoshonites, and predominant leucitic rocks) ranging in age from Upper Miocene to, mostly, Quaternary. According to the same method of classification, the remaining Italian volcanic rocks — alkali-sodic and subordinate tholeiitic basalts — around the Tyrrhenian border are found to be rocks of the tensional type of Mesozoic to prevailingly Quaternary age. The volcanic materials of the 650 km long SE and E Tyrrhenian border can be related to the convergence of the African-Adriatic and Tyrrhenian plates.  相似文献   

7.
Osamu  Ujike  Alan M.  Goodwin  Tomoyuki  Shibata 《Island Arc》2007,16(1):191-208
Abstract   Volcanic rocks from the Upper Keewatin assemblage ( ca 2720 Ma) were geochemically classified into five groups; komatiites, tholeiitic rocks having near-flat primitive mantle-normalized abundance patterns, Nb-enriched basalts and andesites (NEBA) plus normal calc-alkaline (NCA) rocks, adakites and shoshonites. The adakites having [La/Yb]N >30 and <30 were probably derived from felsic magmas formed by partial melting of a subducted slab at relatively greater and smaller depths, respectively. Ascending adakite magmas, by interaction with the overlying mantle wedge, decreased in Al2O3 / Y ratio and selectively lost high-field strength elements, thereby forming mantle sources for both NEBA + NCA and shoshonite magmas. Under the influence of a mantle plume, the source of komatiites, the NEBA + NCA magmas were generated from that part of the mantle wedge metasomatized by adakite magmas having [La / Yb]N <30, and tholeiitic magmas from unmetasomatized part of the same mantle wedge. Magmas of both adakites having [La / Yb]N >30 and shoshonites were generated in a normal Archean Arc system setting.  相似文献   

8.
Abstract   The silicic volcanic rocks in Central Luzon show a temporal and spatial relationship with its geochemistry. Volcanic centers dated to approximately 5 Ma are silicic in geochemical composition whereas those between <5–1 Ma expose basaltic to andesitic rocks. Volcanic centers dated <1 Ma are characterized by a wide range of geochemistry encompassing basaltic through andesitic to dacitic signatures. Aside from changes in geochemistry through time, the areas (i.e. fore-arc to back-arc region) where the volcanic centers are formed also vary. The shift in the location of the volcanic centers in Central Luzon is attributed to changes in the dip of subduction of the South China Sea crust along the Manila Trench. Flat subduction resulted from the subduction of the Scarborough Seamount Chain, an oceanic bathymetric high along the Manila Trench west of northern Luzon. However, collision of Luzon with Taiwan in the north and Palawan in the south resulted in steepening of the subduction angle. The silicic volcanic centers in the forearc (Ce/Yb = 20–140) and back-arc (Ce/Yb = 20–60) regions are generally characterized by higher Ce/Yb compared to the basaltic-andesitic volcanic rocks in the main volcanic arc (Ce/Yb = 20) and back-arc (Ce/Yb = 20–30) regions. This across-arc geochemical variation highlights the contributions from the slab, mantle and crust coupled with the effects of geochemical processes that include partial melting, fractionation, magma mixing and mantle–melt interaction.  相似文献   

9.
Talat  Ahmad  Kabita C.  Longjam  Baishali  Fouzdar  Mike J.  Bickle  Hazel J.  Chapman 《Island Arc》2009,18(1):155-174
The Sakoli Mobile Belt comprises bimodal volcanic rocks that include metabasalt, rhyolite, tuffs, and epiclastic rocks with metapelites, quartzite, arkose, conglomerate, and banded iron formation (BIF). Mafic volcanic rocks are tholeiitic to quartz‐tholeiitic with normative quartz and hypersthene. SiO2 shows a large compositional gap between the basic and acidic volcanics, depicting their bimodal nature. Both the volcanics have distinct geochemical trends but display some similarity in terms of enriched light rare earth element–large ion lithophile element characteristics with positive anomalies for U, Pb, and Th and distinct negative anomalies for Nb, P, and Ti. These characteristics are typical of continental rift volcanism. Both the volcanic rocks show strong negative Sr and Eu anomalies indicating fractionation of plagioclases and K‐feldspars, respectively. The high Fe/Mg ratios for the basic rocks indicate their evolved nature. Whole rock Sm–Nd isochrons for the acidic volcanic rocks indicate an age of crystallization for these volcanic rocks at about 1675 ± 180 Ma (initial 143Nd/144Nd = 0.51017 ± 0.00017, mean square weighted deviate [MSWD] = 1.6). The εNdt (t = 2000 Ma) varies between ?0.19 and +2.22 for the basic volcanic rock and between ?2.85 and ?4.29 for the acidic volcanic rocks. Depleted mantle model ages vary from 2000 to 2275 Ma for the basic and from 2426 to 2777 Ma for the acidic volcanic rocks, respectively. These model ages indicate that protoliths for the acidic volcanic rocks probably had a much longer crustal residence time. Predominantly basaltic magma erupted during the deposition of the Dhabetekri Formation and part of it pooled at crustal or shallower subcrustal levels that probably triggered partial melting to generate the acidic magma. The influence of basic magma on the genesis of acidic magma is indicated by the higher Ni and Cr abundance at the observed silica levels of the acidic magma. A subsequent pulse of basic magma, which became crustally contaminated, erupted as minor component along with the dominantly acidic volcanics during the deposition of the Bhiwapur Formation.  相似文献   

10.
Accompanying with the shortening,thickening and uplifting of the lithosphere,a series of Cenozoic potassic volcanic rock zones are developed in the northern Qinghai-Tibet Plateau.From south to north,the volcanic rocks can be divided into three volcanicrock belts:Qiangtang-Nangqian volcanic belt,Middle Kunlun-Hoh Xil volcanic belt and Western Kunlun-Eastern Kunlun volcanic belt[1].Spatiotemporal evolu-tion of the volcanism and the origins of magmas con-strains on the pulsing uplifting and …  相似文献   

11.
Magmatic differentiation in Pavagarh adopted the courses corresponding to the olivine-basalt trend including olivine-basalt, mugearite, latite and pitch-stone and the normal basalt trend comprising tholeiitic basalts, andesite, dellenite, and rhyolite. The dellenite-rhyolite assemblage is not consanguineous. Their average composition corresponds with the petrochemical field of the basalt-andesite-dacite-rhyolite association or the calc-alkaline series of Nockolds. It lies in between plateau and tholeiitic basalts of different provinces and shows alkali enrichment in the initial phases of differentiation. The main factors governing the nature and course of differentiation are the changing concentration of the volatiles during different phases of magmatic activity, the different composition of the liquid during the successive phases of its eruption and the partial assimilation of the siliceous rocks forming the platform over which the present volcanics were laid down. Other factors are crystal settling (ankaramites), reaction of the early-formed crystals with the remaining magma (olivine-basalt) and mixing of the magmatic liquids belonging to different phases (mugearites). The chronological history of the magmatic activity in relation to the geological setting of the area shows that the rocks belong to a single parent magma closely akin to olivine-basalt or plateu basalt magma type which through differentiation into two lines of descent, has given rise to the present volcanic assemblage.  相似文献   

12.
The Clarno Formation (mostly Eocene) of central Oregon, U.S.A., was formed as North America moved westward over subducting Pacific Ocean crust. The Clarno is a volcanic and volcanogenic assemblage whose flow rocks show: a calc-alkaline pattern on a Harker diagram, K2O-SiO2 diagram, alkali-SiO2 diagram, and AFM diagram; and a pattern transitional between calc-alkaline and tholeiitic on a SiO2-FeO*/MgO diagram. Its basalts are chemically similar to those of intra-oceanic island arcs (e.g., K2O of 0.30%), but subaerial deposition of the entire formation plus differentiation to rocks of high SiO2 and alkali contents indicate that the Clarno was formed on a continental margin. Comparison of the Clarno with other Pacific-margin volcanic suites indicates that the Clarno was formed on thin (20–30 km) continental crust overlying a subduction zone of about 120 km depth.  相似文献   

13.
Island arc volcanism has contributed and is still contributing to continental growth, but the composition of island arcs differs from that of the upper continental crust in its lower abundance of Si, K, Rb, Ba, Sr and light rare earth elements. In their advanced stage of evolution, island arcs contain more than 80% of tholeiitic and 15% of ‘island arc’ calc-alkaline rocks with varied SiO2 contents. The larger proportion of tholeiitic rocks is in the lower crustal levels. The high stratigraphical levels of the island arcs are composed of tholeiitic plus calc-alkaline and/or high potash (shoshonitic) associations with higher abundances of K, Rb, Sr, and Ba. Stratification of the island arc crust is accentuated by another type of calc-alkaline volcanism (Andean type) originating at a late stage of arc evolution, probably by partial melting at the base of the crust. This causes enrichment of the upper crust in K, Rb, Ba and REE and accounts for upper crustal abundances of these elements as well as of SiO2.  相似文献   

14.
The study of the geochemical compositions and K-Ar or Ar-Ar ages of ca. 350 Neogene and Quaternary lavas from Baja California, the Gulf of California and Sonora allows us to discuss the nature of their mantle or crustal sources, the conditions of their melting and the tectonic regime prevailing during their genesis and emplacement. Nine petrographic/geochemical groups are distinguished: ??regular?? calc-alkaline lavas; adakites; magnesian andesites and related basalts and basaltic andesites; niobium-enriched basalts; alkali basalts and trachybasalts; oceanic (MORB-type) basalts; tholeiitic/transitional basalts and basaltic andesites; peralkaline rhyolites (comendites); and icelandites. We show that the spatial and temporal distribution of these lava types provides constraints on their sources and the geodynamic setting controlling their partial melting. Three successive stages are distinguished. Between 23 and 13 Ma, calc-alkaline lavas linked to the subduction of the Pacific-Farallon plate formed the Comondú and central coast of the Sonora volcanic arc. In the extensional domain of western Sonora, lithospheric mantle-derived tholeiitic to transitional basalts and basaltic andesites were emplaced within the southern extension of the Basin and Range province. The end of the Farallon subduction was marked by the emplacement of much more complex Middle to Late Miocene volcanic associations, between 13 and 7 Ma. Calc-alkaline activity became sporadic and was replaced by unusual post-subduction magma types including adakites, niobium-enriched basalts, magnesian andesites, comendites and icelandites. The spatial and temporal distribution of these lavas is consistent with the development of a slab tear, evolving into a 200-km-wide slab window sub-parallel to the trench, and extending from the Pacific coast of Baja California to coastal Sonora. Tholeiitic, transitional and alkali basalts of subslab origin ascended through this window, and adakites derived from the partial melting of its upper lip, relatively close to the trench. Calc-alkaline lavas, magnesian andesites and niobium-enriched basalts formed from hydrous melting of the supraslab mantle triggered by the uprise of hot Pacific asthenosphere through the window. During the Plio-Quaternary, the ??no-slab?? regime following the sinking of the old part of the Farallon plate within the deep mantle allowed the emplacement of alkali and tholeiitic/transitional basalts of deep asthenospheric origin in Baja California and Sonora. The lithospheric rupture connected with the opening of the Gulf of California generated a high thermal regime associated to asthenospheric uprise and emplaced Quaternary depleted MORB-type tholeiites. This thermal regime also induced partial melting of the thinned lithospheric mantle of the Gulf area, generating calc-alkaline lavas as well as adakites derived from slivers of oceanic crust incorporated within this mantle.  相似文献   

15.
A broad zone of dominantly subaerial silicic volcanism associated with regional extensional faulting developed in southern South America during the Middle Jurassic, contemporaneously with the initiation of plutonism along the present Pacific continental margin. Stratigraphic variations observed in cross sections through the silicic Jurassic volcanics along the Pacific margin of southernmost South America indicate that this region of the rift zone developed as volcanism continued during faulting, subsidence and marine innundation. A deep, fault-bounded submarine trough formed near the Pacific margin of the southern part of the volcano-tectonic rift zone during the Late Jurassic. Tholeiitic magma intruded within the trough formed the mafic portion of the floor of this down-faulted basin. During the Early Cretaceous this basin separated an active calc-alkaline volcanic arc, founded on a sliver of continental crust, from the then volcanically quiescent South American continent. Geochemical data suggest that the Jurassic silicic volcanics along the Pacific margin of the volcano-tectonic rift zone were derived by crustal anatexis. Mafic lavas and sills which occur within the silicic volcanics have geochemical affinities with both the tholeiitic basalts forming the ophiolitic lenses which are the remnants of the mafic part of the back-arc basin floor, and also the calc-alkaline rocks of the adjacent Patagonian batholith and their flanking lavas which represent the eroded late Mesozoic calc-alkaline volcanic arc. The source of these tholeiitic and calc-alkaline igneous rocks was partially melted upper mantle material. The igneous and tectonic processes responsible for the development of the volcano-tectonic rift zone and the subsequent back-arc basin are attributed to diapirism in the upper mantle beneath southern South America. The tectonic setting and sequence of igneous and tectonic events suggest that diapirism may have been initiated in response to subduction.  相似文献   

16.
Whole rock boron and other mobile and immobile element concentrations are reported for the alkaline maar volcanic rocks from the Bakony–Balaton Highland Volcanic Field (BBHVF/Hungary) and for three other geographically distinct maar volcanic fields from diverse tectonic settings (Spain/Canary Islands, Tenerife; New Zealand/Waipiata, Otago; and Mexico/Pinacate, Sonora and Ceboruco Cone Field). Boron concentrations, along with other fluid immobile and incompatible element concentrations are used to study the fluid enrichment of the above mentioned intraplate volcanic materials. The fluid addition was the highest in the Trans Mexican Volcanic Belt (Ceboruco Cone Field), which is associated with recent subduction. The BBHVF also shows high fluid enrichment. The average B content of the Tenerife (Canary Islands) samples (6.4 μg/g) is similar to that of the BBHVF (6.9 μg/g). The fluid enrichment is higher in the BBHVF than in the Waipiata Volcanic Field (WVF). The magmatic source regions for all the investigated volcanic rocks were affected by fluid components to different degrees, and, despite the distant relationship to subduction zones, all show evidence of a subduction-derived fluid component.  相似文献   

17.
Gases, condensates and silica tube precipitates were collected from 400°C (Z2) and 800°C (Z3) fumaroles at Colima volcano, Mexico, in 1996–1998. Volcanic gases at Colima were very oxidized and contain up to 98% air due to mixing with air inside the dome interior, close to the hot magmatic body. An alkaline trap method was used to collect gas samples, therefore only acidic species were analysed. Colima volcanic gases are water-rich (95–98 mol%) and have typical S/C/Cl/F ratios for a subduction type volcano. δD-values for the high-temperature Z3 fumarolic vapour vary from −26 to −57‰. A negative δD–Cl correlation for the Z3 high-temperature fumarole may result from magma degassing: enrichment in D and decrease in the Cl concentration in condensates are likely a consequence of input of “fresh” batches of magma and an increasing of volcanic activity, respectively.The trace element composition of Colima condensates generally does not differ from that of other volcanoes (e.g. Merapi, Kudryavy) except for some enrichment in V, Cu and Zn. Variations in chemical composition of precipitates along the silica tube from the high-temperature fumarole (Colima 1, fumarole Z3), in contrast to other volcanoes, are characterized by high concentrations of Ca and V, low concentration of Mo and a lack of Cd. Mineralogy of precipitates differs significantly from that described for silica tube experiments at other volcanoes with reduced volcanic gas. Thermochemical modelling was used to explain why very oxidized gas at Colima does not precipitate halite, sylvite, and Mo- and Cd-minerals, but does precipitate V-minerals and native gold, which have not been observed before in mineral precipitates from reduced volcanic gases.  相似文献   

18.
The Eastern Anatolia Region exhibits one of the world's best exposed and most complete transects across a volcanic province related to a continental collision zone. Within this region, the Erzurum–Kars Plateau is of special importance since it contains the full record of collision-related volcanism from Middle Miocene to Pliocene. This paper presents a detailed study of the volcanic stratigraphy of the plateau, together with new K–Ar ages and several hundred new major- and trace-element analyses in order to evaluate the magmatic evolution of the plateau and its links to collision-related tectonic processes. The data show that the volcanic units of the Erzurum–Kars Plateau cover a broad compositional range from basalts to rhyolites. Correlations between six logged, volcano-stratigraphic sections suggest that the volcanic activity may be divided into three consecutive Stages, and that activity begins slightly earlier in the west of the plateau than in the east. The Early Stage (mostly from 11 to 6 Ma) is characterised by bimodal volcanism, made up of mafic-intermediate lavas and acid pyroclastic rocks. Their petrography and high-Y fractionation trend suggest that they result from crystallization of anhydrous assemblages at relatively shallow crustal levels. Their stratigraphy and geochemistry suggest that the basic rocks erupted from small transient chambers while the acid rocks erupted from large, zoned magma chambers. The Middle Stage (mostly from 6–5 Ma) is characterised by unimodal volcanism made up predominantly of andesitic–dacitic lavas. Their petrography and low-Y fractionation trend indicate that they resulted from crystallization of hydrous (amphibole-bearing) assemblages in deeper magma chambers. The Late Stage (mostly 5–2.7 Ma) is again characterised by bimodal volcanism, made up mainly of plateau basalts and basaltic andesite lavas and felsic domes. Their petrography and high-Y fractionation trend indicate that they resulted from crystallization of anhydrous assemblages at relatively shallow crustal levels. AFC modelling shows that crustal assimilation was most important in the deeper magma chambers of the Middle Stage. The geochemical data indicate that the parental magma changed little throughout the evolution of the plateau. This parental magma exhibits a distinctive subduction signature represented by selective enrichment in LILE and LREE thought to have been inherited from a lithosphere modified by pre-collision subduction events. The relationships between magmatism and tectonics support models in which delamination of thickened subcontinental lithosphere cause uplift accompanied by melting of this enriched lithosphere. Magma ascent, and possibly magma generation, is then strongly controlled by strike-slip faulting and associated pull-apart extensional tectonics.  相似文献   

19.
Olivier  Monod  Michel  Faure  Juan-Carlos  Salinas 《Island Arc》1994,3(1):25-34
Abstract The pre-Oligocene structure of southwest Mexico, south of the trans-Mexico volcanic axis, is investigated from Taxco (Guerrero state, abbreviation: Gro) to the Pacific coast. Three volcano-sedimentary units are recognized; from east to west the calc-alkaline Teloloapan, tholeiitic Arcelia and calc-alkaline Zihuatanejo suites. Structural and stratigraphic data show that the Teloloapan volcanic arc, active during ?Late Jurassic and early Cretaceous, was built upon continental basement. The Teloloapan lavas are overlain by the Albian–Cenomanian Morelos platform carbonates and followed by the Upper Cretaceous Mexcala flysch. In contrast, the Arcelia pillow lavas are associated with sandstones and cherts of Albian-?Cenomanian age. The Zihuatanejo arc was also installed upon continental basement and its magmatic activity was in part coeval with Arcelia magmatism. Unlike the almost undeformed Zihuatanejo volcanic rocks, all the other volcanic units are involved in east-vergent thrusting and recumbent folding associated with ductile tectonics, as well as the Late Cretaceous Mexcala flysch overlying the Morelos platform carbonates. Contrasting with previous views, the present results do not support a major mid-Cretaceous thrusting event in the study area. The new geodynamic interpretation proposed here considers that the Arcelia rocks were formed in a marginal basin situated east of the Zihuatanejo arc. Closure of this basin in Paleocene times is responsible for the east vergent thrust tectonics in SW Mexico.  相似文献   

20.
长白山火山的历史与演化   总被引:3,自引:0,他引:3  
长白山火山跨越中朝两国,在我国境内包括天池火山、望天鹅火山、图们江火山和龙岗火山,火山活动从上新世持续到近代,是我国最大的第四纪火山分布区。长白山火山的母岩浆是钾质粗面玄武岩,将长白山火山岩区称钾质粗面玄武岩省,岩浆结晶分异作用和混合作用主导了岩浆演化过程。天池火山之下地壳岩浆房和地幔岩浆房具双动式喷发特点,一方面来自地幔的钾质粗厨玄武岩浆直接喷出地表;另一方面钾质粗面玄武岩浆持续补给地壳岩浆房,发生岩浆分离结晶作用和混合作用,导致双峰式火山岩分布特征和触发千年大喷发。西太平洋板块俯冲-东北亚大陆弧后引张是长白山火山活动的动力学机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号