首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The meteorite which fell near Messina, Italy, on 16 July 1955 is a typical olivine-hypersthene (L-group) chondrite. Its mineralogical composition is: olivine (Fa24), orthopyroxene (Fs20) with some polysynthetically twinned clynopyroxene, plagioclase (An10) and merrillite. Opaque phases present are: copper, kamacite, taenite, plessite, chalcopyrrhotite, mackinawite, troilite and chromite. The stone contains abundant chondrules. The matrix consists chiefly of broken chondrules with tiny fragments of crystals and rare amorphous material. Chondrules form more than 42% of the meteorite by volume. Some unusual features of the fabric of this meteorite include silicate grains showing deformation; silicates with fusion spots of dark glass containing blebs of metallic iron; iron and troilite with marginal fusion yielding globules and droplets sometimes showing flow structures. The classification of this chondrite is confirmed by bulk chemical analysis.  相似文献   

2.
Abstract— We have investigated the kinematics of the separation of iron globules from chondrules during chondrule formation. A simple model, which assumes that the system has no angular momentum, was used to calculate the energy of a system with an iron globule and a chondrule. The energies of three different states were calculated: 1) a melted iron globule fully embedded in a melted chondrule, 2) a melted iron globule on the surface of a melted chondrule, and 3) a melted iron globule being separated from a melted chondrule. We also calculated the lowest energy shape for a melted iron globule on the surface of a melted chondrule, and compared our result with the shapes of four natural samples of chondrules and iron globules in thin sections. The shapes were calculated using an assumed value for the interface energy between the four couples of melted chondrules and the iron globules, and agree well with the natural shapes of chondrules and iron globules. The results of our calculations show that the iron globules of these four samples would be strongly bound to the surface of the melted chondrule during chondrule formation, and separation would be difficult, if the iron globules had been on the surface of precursors of these chondrules. Our results also show that if these iron globules were initially inside and transported to the surface of the melted chondrule, most of them would be ejected from the inside to outside because of surface tension forces, as long as the energy losses due to viscous dissipation when the globules pass through the surface of melted chondrules were sufficiently small. Although further improvement of the model is required, our results demonstrate that this ejection process may be responsible for the depletion of siderophile elements in natural chondrules.  相似文献   

3.
Abstract— We report a comprehensive imaging study including confocal microRaman spectroscopy, scanning electron microscopy (SEM), and 3‐D extended focal imaging light microscopy of carbonate globules throughout a depth profile of the Martian meteorite Allan Hills (ALH) 84001 and similar objects in mantle peridotite xenoliths from the Bockfjorden volcanic complex (BVC), Svalbard. Carbonate and iron oxide zoning in ALH 84001 is similar to that seen in BVC globules. Hematite appears to be present in all ALH 84001 carbonate‐bearing assemblages except within a magnesite outer rim found in some globules. Macromolecular carbon (MMC) was found in intimate association with magnetite in both ALH 84001 and BVC carbonates. The MMC synthesis mechanism appears similar to established reactions within the Fe‐C‐O system. By inference to a terrestrial analogue of mantle origin (BVC), these results appear to represent the first measurements of the products of an abiotic MMC synthesis mechanism in Martian samples. Furthermore, the ubiquitous but heterogeneous distribution of hematite throughout carbonate globules in ALH 84001 may be partly responsible for some of the wide range in measured oxygen isotopes reported in previous studies. Using BVC carbonates as a suitable analogue, we postulate that a low temperature hydrothermal model of ALH 84001 globule formation is most likely, although alteration (decarbonation) of a subset of globules possibly occurred during a later impact event.  相似文献   

4.
A scanning and transmission electron microscope study of aluminosilicate glasses within melt inclusions from the Martian meteorite Nakhla shows that they have been replaced by berthierine, an aluminum‐iron serpentine mineral. This alteration reaction was mediated by liquid water that gained access to the glasses along fractures within enclosing augite and olivine grains. Water/rock ratios were low, and the aqueous solutions were circumneutral and reducing. They introduced magnesium and iron that were sourced from the dissolution of olivine, and exported alkalis. Berthierine was identified using X‐ray microanalysis and electron diffraction. It is restricted in its occurrence to parts of the melt inclusions that were formerly glass, thus showing that under the ambient physico‐chemical conditions, the mobility of aluminum and silicon were low. This discovery of serpentine adds to the suite of postmagmatic hydrous silicates in Nakhla that include saponite and opal‐A. Such a variety of secondary silicates indicates that during aqueous alteration compositionally distinct microenvironments developed on sub‐millimeter length scales. The scarcity of berthierine in Nakhla is consistent with results from orbital remote sensing of the Martian crust showing very low abundances of aluminum‐rich phyllosilicates.  相似文献   

5.
Two processes have been proposed to explain observations of crystalline silicate minerals in comets and in protostellar sources, both of which rely on the thermal annealing of amorphous grains. First, high temperatures generated by nebular shock processes can rapidly produce crystalline magnesium silicate grains and will simultaneously produce a population of crystalline iron silicates whose average grain size is ∼10-15% that of the magnesium silicate minerals. Second, exposure of amorphous silicate grains to hot nebular environments can produce crystalline magnesium silicates that might then be transported outward to regions of comet formation. At the higher temperatures required for annealing amorphous iron silicates to crystallinity the evaporative lifetime of the grains is much shorter than a single orbital period where such temperatures are found in the nebula. Thermal annealing is therefore unable to produce crystalline iron silicate grains for inclusion into comets unless such grains are very quickly transported away from the hot inner nebula. It follows that observation of pure crystalline magnesium silicate minerals in comets or protostars is a direct measure of the importance of simple thermal annealing of grains in the innermost regions of protostellar nebulae followed by dust and gas transport to the outer nebula. The presence of crystalline iron silicates would signal the action of transient processes such as shock heating that can produce crystalline iron, magnesium and mixed iron-magnesium silicate minerals. These different scenarios result in very different predictions for the organic content of protostellar systems.  相似文献   

6.
The Bocaiuva iron contains 10 to 15% by volume of silicate inclusions which are surrounded by kamacite (6.5 wt % Ni). The metal shows a Widmanstätten pattern in metal areas devoid of silicates; taenite evolved in plessite fields. The silicate inclusions occur as nodules, and as irregular or chain-like aggregates in which olivine may be rounded or faceted. The magnesian silicates (forsterite, enstatite, diopside) are similar in composition to those of the group IAB irons, whereas the interstitial plagioclase is much more calcic (An 50) than that usually found. Iron sulfide occurs as pyrrhotite and contains 1–2 wt% Cu. Chromite and euhedral magnetite are accessory phases always associated with pyrrhotite. Some patches of pyrrhotite enclose rounded chromite and small plagioclase crystals displaying compositions different from those of the ground mass of the inclusions. Schreibersite shows a compositional variability. This preliminary study underlines the unusual nature of Ms iron and raises several questions concerning the genetic relations between silicates, sulfide and metal, and the thermal history of the whole material.  相似文献   

7.
Abstract— Six large millimeter‐ to centimeter‐size regions of one specimen of the Krymka LL3.1 ordinary chondrite show evidence of having been completely or nearly completely shock‐melted in situ, a phenomenon rarely observed in primitive chondrites. The shock pressure, nominally in the range of 75–90 GPa, could only have been 30–35 GPa in a porous material like fine‐grained matrix. The melted regions have an igneous texture and their silicates are zoned and unequilibrated. Large metal‐troilite intergrowths formed in these regions. The metal has a nickel content corresponding to martensite and the troilite contains up to 4.2 wt% nickel. Melting must have been very short and cooling very fast (>100 °C/h at high temperature). The metal contains up to 0.7 wt% phosphorus. Abundant chromite crystals and sodium‐iron phosphate glass globules are found in troilite. The differences in composition between the opaque phases found in the melted regions and those generally observed in unmetamorphosed chondrules are assigned to melting under closed system conditions. Surprisingly high Co concentrations (up to 13 wt%) were found in some metal grains in or at the periphery of melted regions. They likely resulted from sulfurization of metal by sulfur vapor produced during the shock. After solidification, at least one other shock led to mechanical effects in the melted regions.  相似文献   

8.
Abstract– Tucson is an enigmatic ataxitic iron meteorite, an assemblage of reduced silicates embedded in Fe‐Ni metal with dissolved Si and Cr. Both, silicates and metal, contain a record of formation at high temperature (~1800 K) and fast cooling. The latter resulted in the preservation of abundant glasses, Al‐rich pyroxenes, brezinaite, and fine‐grained metal. Our chemical and petrographic studies of all phases (minerals and glasses) indicate that they have a nebular rather than an igneous origin and give support to a chondritic connection as suggested by Prinz et al. (1987) . All silicate phases in Tucson apparently grew from a liquid that had refractory trace elements at approximately 6–20 × CI abundances with nonfractionated (solar) pattern, except for Sc, which was depleted (~1 × CI). Metal seems to have precipitated before and throughout silicate aggregate formation, allowing preservation of all evolutionary steps of the silicates by separating them from the environment. In contrast to most chondrites, Tucson documents coprecipitation of metal and silicates from the solar nebula gas and precipitation of metal before silicates—in accordance with theoretical condensation calculations for high‐pressure solar nebula gas. We suggest that Tucson is the most metal‐rich and volatile‐element‐poor member of the CR chondrite clan.  相似文献   

9.
This thermal annealing experiment at 1000 K for up to 167 h used a physical mixture of vapor phase‐condensed magnesiosilica grains and metallic iron nanograins to test the hypothesis that a mixture of magnesiosilica grains and an Fe‐source would lead to the formation of ferromagnesiosilica grains. This exploratory study found that coagulation and thermal annealing of amorphous magnesiosilica and metallic grains yielded ferromagnesiosilica grains with the Fe/(Fe + Mg) ratios in interplanetary dust particles. Furthermore, decomposition of brucite present in the condensed magnesiosilica grains was the source for water and the cause of different iron oxidation states, and the formation of amorphous Fe3+‐ferrosilica, amorphous Fe3+‐Mg, Fe‐silicates, and magnesioferrite during thermal annealing. Fayalite and ferrosilite that formed from silica/FeO melts reacted with forsterite and enstatite to form Mg, Fe‐silicates. The presence of iron in different oxidation states in extraterrestrial materials almost certainly requires active asteroid‐like parent bodies. If so, the possible presence of trivalent Fe compounds in comet P/Halley suggests that Halley‐type comets are a mixture of preserved presolar and processed solar nebula dust. The results from this thermal annealing experiment further suggest that the Fe‐silicates detected in the impact‐induced ejecta from comet 9P/Temple 1 might be of secondary origin and related to the impact experiment or to processing in a regolith.  相似文献   

10.
Abstract— Watson, which was found in 1972 in South Australia, contains the largest single silicate rock mass seen in any known iron meteorite. A comprehensive study has been completed on this unusual meteorite: petrography, metallography, analyses of the silicate inclusion (whole rock chemical analysis, INAA, RNAA, noble gases, and oxygen isotope analysis) and mineral compositions (by electron microprobe and ion microprobe). The whole rock has a composition of an H-chondrite minus the normal H-group metal and troilite content. The oxygen isotope composition is that of the silicates in the HE iron meteorites and lies along an oxygen isotope fractionation line with the H-group chondrites. Trace elements in the metal confirm Watson is a new HE iron. Whole rock Watson silicate shows an enrichment in K and P (each ~2X H-chondrites). The silicate inclusion has a highly equilibrated igneous (peridotite-like) texture with olivine largely poikilitic within low-Ca pyroxene: olivine (Fa20), opx (Fs17Wo3), capx (Fs9Wo41) (with very fine exsolution lamellae), antiperthite feldspar (An1–Or5) with <1 μm exsolution lamellae (An1–3Or>40), shocked feldspar with altered stoichiometry, minor whitlockite (also a poorly characterized interstitial phosphate-rich phase) and chromite, and only traces of metal and troilite. The individual silicate minerals have normal chondritic REE patterns, but whitlockite has a remarkable REE pattern. It is very enriched in light REE (La is 720X C1, and Lu is 90X C1, as opposed to usual chonditic values of ~300X and 100–150X, respectively) with a negative Eu anomaly. The enrichment of whole rock K is expressed both in an unusually high mean modal Or content of the feldspar, Or13, and in the presence of antiperthite. Whole rock trace element data for the silicate mass support the petrography. Watson silicate was an H-chondrite engulfed by metal and melted at > 1550 °C. A flat refractory lithophile and flat REE pattern (at ~1x average H-chondrites) indicate that melting took place in a relatively closed system. Immiscible metal and sulfide were occluded into the surrounding metal host. Below 1100 °C, the average cooling rate is estimated to have been ~1000 °C/Ma; Widmanstätten structure formed, any igneous zoning in the silicates was equilibrated, and feldspar and pyroxene exsolution took place. Cooling to below 300 °C was completed by 3.5 Ga B. P. At 8 Ma, a shock event took place causing some severe metal deformation and forming local melt pockets of schreibersite/metal. This event likely caused the release of Watson into interplanetary space. The time of this event, 8Ma, corresponds to the peak frequency of exposure ages of the H-chondrites. This further confirms the link between HE irons and the H-chondrites, a relationship already indicated by their common oxygen isotope source. Watson metal structures are very similar to those in Kodaikanal. Watson, Kodaikanal and Netschaëvo form the young group of HE meteorites (ages 3.7 ± 0.2 Ga). They appear to represent steps in a chain of events that must have taken place repeatedly on the HE parent body or bodies from which they came: chondrite engulfed in metal (Netschaëvo); chondrite melted within metal (Watson); and finally melted silicate undergoing strong fractionation with the fractionated material emplaced as globules within metal (Kodaikanal). Watson fills an important gap in understanding the sequence of events that took place in the evolution of the IIE-H parent body(ies). This association of H-chondrite with HE metal suggests a surface, or near surface process-a suggestion made by several other researchers.  相似文献   

11.
Abstract— Scanning electron microscopy and secondary ion mass spectrometry of the unequilibrated CH chondrite Pecora Escarpment (PCA) 91467 revealed four carriers of isotopically heavy N: (1) aggregates of carbonaceous material and silicates, (2) iron‐nickel metal grains with fine Fe‐Cr sulfide inclusions, (3) Si‐rich Fe‐Ni metal associated with Fe‐sulfide and (4) hydrated areas in the matrix. N in carbon‐silicate aggregates is isotopically heavy (δ15N is as high as 2500%0), whereas the other elements are isotopically normal, suggesting interstellar origin of carbonaceous material in the aggregates. Based on isotopic and textural evidence, we suggest that the carriers (2) and (3) were formed by brief heating in the solar nebula, whereas the carrier (4) was formed in a parent‐body asteroid. The carbon‐silicate aggregates are likely to be related to interstellar graphite found in Murchison and may also be the source of heavy N in bencubbinites.  相似文献   

12.
Abstract— We present the results of irradiation experiments aimed at understanding the structural and chemical evolution of silicate grains in the interstellar medium. A series of He+ irradiation experiments have been performed on ultra‐thin olivine, (Mg,Fe)2SiO4, samples having a high surface/volume (S/V) ratio, comparable to the expected S/V ratio of interstellar dust. The energies and fluences of the helium ions used in this study have been chosen to simulate the irradiation of interstellar dust grains in supernovae shock waves. The samples were mainly studied using analytical transmission electron microscopy. Our results show that olivine is amorphized by low‐energy ion irradiation. Changes in composition are also observed. In particular, irradiation leads to a decrease of the atomic ratios O/Si and Mg/Si as determined by x‐ray photoelectron spectroscopy and by x‐ray energy dispersive spectroscopy. This chemical evolution is due to the differential sputtering of atoms near the surfaces. We also observe a reduction process resulting in the formation of metallic iron. The use of very thin samples emphasizes the role of surface/volume ratio and thus the importance of the particle size in the irradiation‐induced effects. These results allow us to account qualitatively for the observed properties of interstellar grains in different environments, that is, at different stages of their evolution: chemical and structural evolution in the interstellar medium, from olivine to pyroxene‐type and from crystalline to amorphous silicates, porosity of cometary grains as well as the formation of metallic inclusions in silicates.  相似文献   

13.
Renazzo‐type (CR) carbonaceous chondrites belong to one of the most pristine meteorite groups containing various early solar system components such as matrix and fine‐grained rims (FGRs), whose formation mechanisms are still debated. Here, we have investigated FGRs of three Antarctic CR chondrites (GRA 95229, MIL 07525, and EET 92161) by electron microscopy techniques. We specifically focused on the abundances and chemical compositions of the amorphous silicates within the rims and matrix by analytical transmission electron microscopy. Comparison of the amorphous silicate composition to a matrix area of GRA 95229 clearly shows a compositional relationship between the matrix and the fine‐grained rim, such as similar Mg/Si and Fe/Si ratios. This relationship and the abundance of the amorphous silicates in the rims strengthen a solar nebular origin and rule out a primary formation mechanism by parent body processes such as chondrule erosion. Moreover, our chemical analyses of the amorphous silicates and their abundance indicate that the CR rims experienced progressive alteration stages. According to our analyses, the GRA 95229 sample is the least altered one based on its high modal abundance of amorphous silicates (31%) and close‐to‐chondritic Fe/Si ratios, followed by MIL 07525 and finally EET 92161 with lesser amounts of amorphous silicates (12% and 5%, respectively) and higher Fe/Si ratios. Abundances and chemical compositions of amorphous silicates within matrix and rims are therefore suitable recorders to track different alteration stages on a submicron scale within variably altered CR chondrites.  相似文献   

14.
Fossil iron meteorites are extremely rare in the geological sedimentary record. The paleometeorite described here is the first such finding at the Cretaceous‐Paleogene (K‐Pg) boundary. In the boundary clay from the outcrop at the Lechówka quarry (Poland), fragments of the paleometeorite were found in the bottom part of the host layer. The fragments of meteorite (2–6 mm in size) and meteoritic dust are metallic‐gray in color and have a total weight of 1.8181 g. Geochemical and petrographic analyses of the meteorite from Lechówka reveal the presence of Ni‐rich minerals with a total Ni amount of 2–3 wt%. The identified minerals are taenite, kamacite, schreibersite, Ni‐rich magnetite, and Ni‐rich goethite. No relicts of silicates or chromites were found. The investigated paleometeorite apparently represents an independent fall and does not seem to be derived from the K‐Pg impactor. The high degree of weathering did not permit the chemical classification of the meteorite fragments. However, the recognized mineral inventory, lack of silicates, and their pseudomorphs and texture may indicate that the meteorite remains were an iron meteorite.  相似文献   

15.
Abstract— We review the results of our recent experimental studies of astrophysical dust analogs. We discuss the condensation of amorphous silicates from mixed metal vapors, including evidence that such condensates form with metastable eutectic compositions. We consider the spectral evolution of amorphous magnesium silicate condensates as a function of time and temperature. Magnesium silicate smokes anneal readily at temperatures of about 1000–1100 K. In contrast we find that iron silicates require much higher temperatures (?1300 K) to bring about similar changes on the same timescale (days to months). We first apply these results to infrared space observatory observations of crystalline magnesium silicate grains around high‐mass‐outflow asymptotic giant branch stars in order to demonstrate their general utility in a rather simple environment. Finally, we apply these experimental results to infrared observations of comets and protostars in order to derive some interesting conclusions regarding large‐scale nebular dynamics, the natural production of organic molecules in protostellar nebulae, and the use of crystalline magnesium silicates as a relative indicator of a comet's formation age.  相似文献   

16.
Abstract— Carbonaceous nanoglobules are ubiquitous in carbonaceous chondrite (CC) meteorites. The Tagish Lake (C2) meteorite is particularly intriguing in containing an abundance of nanoglobules, with a wider range of forms and sizes than encountered in other CC meteorites. Previous studies by transmission electron microscopy (TEM) have provided a wealth of information on chemistry and structure. In this study low voltage scanning electron microscopy (SEM) was used to characterize the globule forms and external structures. The internal structure of the globules was investigated after sectioning by focused ion beam (FIB) milling. The FIB‐SEM analysis shows that the globules range from solid to hollow. Some hollow globules show a central open core, with adjoining smaller cores. The FIB with an SEM is a valuable tool for the analysis of extraterrestrial materials, even of sub‐micron‐sized “soft” carbonaceous particles. The rapid site‐specific cross‐sectioning capabilities of the FIB allow the preservation of the internal morphology of the nanoglobules, with minimal damage or alteration of the unsectioned areas.  相似文献   

17.
Abstract— Our studies of the silicate-bearing inclusions in the IIICD iron meteorites Maltahöhe, Carlton and Dayton suggest that their mineralogy and mineral compositions are related to the composition of the metal in the host meteorites. An inclusion in the low-Ni Maltahöhe is similar in mineralogy to those in IAB irons, which contain olivine, pyroxene, plagioclase, graphite and troilite. With increasing Ni concentration of the metal, silicate inclusions become poorer in graphite, richer in phosphates, and the phosphate and silicate assemblages become more complex. Dayton contains pyroxene, plagioclase, SiO2, brianite, panethite and whitlockite, without graphite. In addition, mafic silicates become more FeO-rich with increasing Ni concentration of the hosts. In contrast, silicates in IAB irons show no such correlation with host Ni concentration, nor do they have the complex mineral assemblages of Dayton. These trends in inclusion composition and mineralogy in IIICD iron meteorites have been established by reactions between the S-rich metallic magma and the silicates, but the physical setting is uncertain. Of the two processes invoked by other authors to account for groups IAB and IIICD, fractional crystallization of S-rich cores and impact generation of melt pools, we prefer core crystallization. However, the absence of relationships between silicate inclusion mineralogy and metal compositions among IAB irons analogous to those that we have discovered in IIICD irons suggests that the IAB and IIICD cores/metallic magmas evolved in rather different ways. We suggest that the solidification of the IIICD core may have been very complex, involving fractional crystallization, nucleation effects and, possibly, liquid immiscibility.  相似文献   

18.
A significant opaque component in Mercury’s crust is inferred based on albedo and spectral observations. Previous workers have favored iron-titanium bearing oxide minerals as the spectrally neutral opaque. A consequence of this hypothesis is that Mercury’s surface would have a high FeO content. An array of remote sensing techniques have not provided definitive constraints on the FeO content of Mercury’s surface. However, spectral observations have not detected a diagnostic 1 μm absorption band and have thus limited the FeO in coexisting silicates to <2 wt.% FeO. In this paper, we assess equilibrium among oxide and silicate minerals to constrain the distribution of iron between opaque oxides and silicates under a variety of environmental conditions. Equilibrium modeling is favored here because the geologic process that produced Mercury’s low-albedo intermediate terrain must have occurred globally, which favors a common widespread igneous process. Based on our modeling, we find that iron-rich ilmenite cannot occur with silicates that do not display a 1 μm absorption feature unless plagioclase abundances are high. However, such high plagioclase abundances are precluded by Mercury’s low albedo. Incorporating equilibrium crystallization modeling with spectral and albedo constraints we find the iron abundance of Mercury’s intermediate terrain is ?10 wt.% FeO. This intermediate iron composition matches constraints provided by visible albedo and total neutron absorption observed by MESSENGER. In fact, the total neutron absorption of mixtures of oxide, plagioclase, olivine and pyroxene for the oxide abundances estimated for Mercury, favor Mg-rich members of the ilmenite-geikielite solid-solution series. This work offers compositional constraints for Fe, Ti, and Mg that will be testable by various MESSENGER instrument data sets after it begins its orbital mission.  相似文献   

19.
Bocaiuva is a unique meteorite consisting of major metal having a high Ge/Ga ratio and minor (~ 50 mg/g) silicates. The silicates are generally chondritic and consist of major olivine (Fa.7.7) and orthopyroxene (Fs7.6) and minor plagioclase (Ab49, An49) and clinopyroxene (Fs4.5, Wo42). The low alkali content of the silicates is the only property inconsistent with a chondritic composition. Based on metal composition Bocaiuva seems distantly related to certain iron meteorites having similar Ge contents and similar Ge/Ga ratios, but detailed comparison with six such irons shows none to be closely related to Bocaiuva. Perhaps most closely related is Cold Bay, a member of the Eagle-Station trio of pallasites, but its composition is too different to suggest formation on the same parent body. Oxygen-isotope data show that Bocaiuva silicates are closely related to those in the Eagle-Station pallasites and to the CO and CV chondrites. The composition and texture of the Bocaiuva metal-silicate assembly indicate mixing in an impact event. We suggest that the Eagle-Station pallasites were also formed by impact heating rather than by a long-lived internal heat source.  相似文献   

20.
Abstract— Four particles extracted from track 80 at different penetration depths have been studied by analytical transmission electron microscopy (ATEM). Regardless of their positions within the track, the samples present a comparable microstructure made of a silica rich glassy matrix embedding a large number of small Fe‐Ni‐S inclusions and vesicles. This microstructure is typical of strongly thermally modified particles that were heated and melted during the hypervelocity impact into the aerogel. X‐ray intensity maps show that the particles were made of Mg‐rich silicates (typically 200 nm in diameter) cemented by a fine‐grained matrix enriched in iron sulfide. Bulk compositions of the four particles suggest that the captured dust particle was an aggregate of grains with various iron sulfide fraction and that no extending chemical mixing in the bulb occurred during the deceleration. The bulk S/Fe ratios of the four samples are close to CI and far from the chondritic meteorites from the asteroidal belt, suggesting that the studied particles are compatible with chondritic‐porous interplanetary dust particles or with material coming from a large heliocentric distance for escaping the S depletion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号