首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Sindong Group was deposited in the north–south trending half‐graben Nakdong Trough, southern Korean peninsula. The occurrence of detrital chromian spinels from the Jinju Formation of the Sindong Group in the Gyeongsang Basin means that the mafic to ultramafic rocks were exposed in its provenance. The chromian spinels from the Jinju Formation are characterized by extremely low TiO2 and Fe3+. Moreover, their range of Cr# is from 0.45 to 0.80 and makes a single trend with Mg#. The chemistry of chromian spinels implies that the source rocks for chromian spinels were peridotites or serpentinites, which originated in the mantle wedge. To more narrowly constrain their source rocks, the Ulsan and Andong serpentinites exposed in the Gyeongsang Basin were examined petrographically. Chromian spinels in the Andong serpentinite differ from those of the Jinju Formation and those in the Ulsan serpentinite partly resemble them. Furthermore, the Jinju chromian spinel suite is similar to the detrital chromian spinels from the Mesozoic sediments in the Circum‐Hida Tectonic zone, which includes the Nagato Tectonic zone in Southwest Japan and the Joetsu Belt in Northeast Japan. This suggests that the basement rocks, which were located along the main fault bounding the eastern edge of the Nakdong Trough, had exposures of peridotite or serpentinite. It is possible that the Nakdong Trough was directly adjacent to the Circum‐Hida Tectonic zone before the opening of the Sea of Japan (East Sea).  相似文献   

2.
Abstract In Japan and Korea, some Lower Cretaceous terrigenous clastic rocks yield detrital chromian spinels. These chromian spinels are divided into two groups: low-Ti and high-Ti. The Sanchu Group and the Yuno Formation in Japan have both groups, whereas the Nagashiba Formation in Japan and the Jinju Formation in Korea have only the low-Ti spinels. High-Ti spinels are thought to have originated in intraplate-type basalt. Low-Ti spinels (higher than 0.6 Cr#) were probably derived from peridotites, which are highly correlated with an arc setting derivation and possibly with a forearc setting derivation. Low-Ti spinels are seen in the Sanchu Group, the Nagashiba Formation and the Jinju Formation. Low-Ti spinels from the Yuno Formation are characterized by low Cr# (less than 0.6) and these chromian spinels appear to have been derived from oceanic mantle-type peridotite, including backarc. According to maps reconstructing the pre-Sea of Japan configuration of the Japanese Islands and the Korean Peninsula, the Korean Cretaceous basin was comparatively close to the Southwest Japan depositional basins. It is possible that these Lower Cretaceous systems were sediments mainly in the forearc and partly in the backarc regions. The peridotite might have infiltrated along major tectonic zones such as the Kurosegawa Tectonic Zone (= serpentinite melange zone) in which left lateral movement prevailed during the Early Cretaceous.  相似文献   

3.
Along the east coast of the Andaman Islands, abundant detrital chromian spinels frequently occur in black sands at the confluence of streams meeting the Andaman Sea. The mineral chemistry of these detrital chromian spinels has been used in reconstructing the evolutionary history of the Andaman ophiolite. The chromian spinels show wide variation in compositional parameters such as Cr# [= Cr/(Cr + A1) atomic ratio] (0.13–0.91), Mg# [= Mg/(Mg + Fe2+) atomic ratio] (0.23–0.76), and TiO2 (<0.05–3.9 wt%). The YFe3+[= 100Fe3+/(Cr + A1 + Fe3+) atomic ratio] is remarkably low (usually <10 except for south Andaman). The ranges of chemical composition of chromian spinels are different in each locality. The spinel compositions show very depleted signatures over the entire island, which suggests that all massifs in the Andaman ophiolite were affected under island‐arc conditions. Although the degree of depletion varies in different parts of the island, a directional change in composition of the detrital chromian spinels from south to north is evident. Towards the north the detrital chromian spinels point to less‐depleted source rocks in contrast to relatively more depleted towards the south. The possibilities to explain this directional change are critically discussed in the context of the evolution of Andaman ophiolite.  相似文献   

4.
We summarize chemical characteristics of chromian spinels from ultramafic to mafic plutonic rocks (lherzolites, harzburgites, dunites, wehrlites, troctolites, olivine gabbros) with regard to three tectonic settings (mid‐ocean ridge, arc, oceanic hotspot). The chemical range of spinels is distinguishable between the three settings in terms of Cr# (= Cr/(Cr + Al) atomic ratio) and Ti content. The relationships are almost parallel with those of chromian spinels in volcanic rocks, but the Ti content is slightly lower in plutonics than in volcanics at a given tectonic environment. The Cr# of spinels in plutonic rocks is highly diverse; its ranges overlap between the three settings, but extend to higher values (up to 0.8) in arc and oceanic hotspot environments. The Ti content of spinels in plutonics increases, for a given lithology, from the arc to oceanic hotspot settings by mid‐ocean ridge on average. This chemical diversity is consistent with that of erupted magmas from the three settings. If we systematically know the chemistry of chromian spinels from a series of plutonic rocks, we can estimate their tectonic environments of formation. The spinel chemistry is especially useful in dunitic rocks, in which chromian spinel is the only discriminating mineral. Applying this, discordant dunites cutting mantle peridotites were possibly precipitated from arc‐related magmas in the Oman ophiolite, and from an intraplate tholeiite in the Lizard ophiolite, Cornwall.  相似文献   

5.
The Khoy ophiolitic complex in Northwestern Iran is a part of the Tethyan ophiolite belt, and is divided into two sections: the Eastern ophiolite in Qeshlaq and Kalavanes (Jurassic–Cretaceous) and the Western ophiolite in Barajouk, Chuchak and Hessar (Late Cretaceous). Our chromitites can be clearly classified into two groups: high‐Al chromitites (Cr# = 0.38–0.44) from the Eastern ophiolite, and high‐Cr chromitites (Cr# = 0.54–0.72) from the Western ophiolite. The chromian spinels in high‐Al chromitite include primary mineral inclusions mainly as Na‐bearing diopside and pargasite with subordinate rutile and their formation was probably related to reaction between a MORB (mid‐ocean‐ridge basalt)‐like melt with depleted harzburgite, possibly in a back‐arc setting. Their host harzburgites contain clinopyroxene with higher contents of Al2O3, Na2O, Cr2O3, and TiO2 relative to Western harzburgites and are possibly residue after moderate partial melting (~15 %) whereas the Western harzburgite is residue after high partial melting (~25 %). The chromian spinel in the Western Khoy chromitites contains inclusions such as clinopyroxene, olivine and platinum group mineral‐bearing sulfides. These Western chromitites were possibly formed at two stages during arc growth and are divided into the moderately high‐Cr# chromitites (Barajouk and Hessar) and the high‐Cr# chromitites (Chuchak A and C). The former crystallized from island‐arc‐tholeiite (IAT) melts during reaction with the host depleted harzburgites, whereas the latter crystallized from boninitic melts (second stage melt) during reaction with highly depleted harzburgite in a supra‐subduction‐zone environment. Based on the mineral chemistry of chromian spinels, pyroxenes, and mineral inclusions, the chromitites and the host peridotites from the Eastern and Western Khoy ophiolites were formed in a back‐arc basin and arc‐related setting, respectively. The Khoy ophiolitic complex is a tectonic aggregate of the two different ophiolites formed in two different tectonic settings at different ages.  相似文献   

6.
Abstract The Wakino Subgroup is a lower stratigraphic unit of the Lower Cretaceous Kanmon Group. Previous studies on provenance of Wakino sediments have mainly concentrated on either petrography of major framework grains or bulk rock geochemistry of shales. This study addresses the provenance of the Wakino sandstones by integrating the petrographic, bulk rock geochemistry, and mineral chemistry approaches. The proportions of framework grains of the Wakino sandstones suggest derivation from either a single geologically heterogeneous source terrane or multiple source areas. Major source lithologies are granitic rocks and high‐grade metamorphic rocks but notable amounts of detritus were also derived from felsic, intermediate and mafic volcanic rocks, older sedimentary rocks, and ophiolitic rocks. The heavy mineral assemblage include, in order of decreasing abundance: opaque minerals (ilmenite and magnetite with minor rutile), zircon, garnet, chromian spinel, aluminum silicate mineral (probably andalusite), rutile, epidote, tourmaline and pyroxene. Zircon morphology suggests its derivation from granitic rocks. Chemistry of chromian spinel indicates that the chromian spinel grains were derived from the ultramafic cumulate member of an ophiolite suite. Garnet and ilmenite chemistry suggests their derivation from metamorphic rocks of the epidote‐amphibolite to upper amphibolite facies though other source rocks cannot be discounted entirely. Major and trace element data for the Wakino sediments suggest their derivation from igneous and/or metamorphic rocks of felsic composition. The major element compositions suggest that the type of tectonic environment was of an active continental margin. The trace element data indicate that the sediments were derived from crustal rocks with a minor contribution from mantle‐derived rocks. The trace element data further suggest that recycled sedimentary rocks are not major contributors of detritus. It appears that the granitic and metamorphic rocks of the Precambrian Ryongnam Massif in South Korea were the major contributors of detritus to the Wakino basin. A minor but significant amount of detritus was derived from the basement rocks of the Akiyoshi and Sangun Terrane. The chromian spinel appears to have been derived from a missing terrane though the ultramafic rocks in the Ogcheon Belt cannot be discounted.  相似文献   

7.
In order to provide references of the subduction process of the Paleo‐Pacific Plate beneath the Jiamusi Block, this paper studied the clastic rocks of the Nanshuangyashan Formation using modal analysis of sandstones, mudstone elements geochemistry, and detrital zircon U–Pb dating. These results suggest the maximum depositional age of the Nanshuangyashan Formation was between the Norian and Rhaetian (206.8 ±4.6 Ma, mean standard weighted deviation (MSWD) = 0.17). Whole‐rock geochemistry of mudstone indicates that source rocks of the Nanshuangyashan Formation were primarily felsic igneous rocks and quartzose sedimentary rocks, which were mainly derived from the stable continental block and a magmatic arc. Detrital zircon analysis showed the Nanshuangyashan Formation samples recorded four main age groups: 229–204 Ma, 284–254 Ma, 524–489 Ma and 930–885 Ma, and the provenances were attributed to the Jiamusi Block and a Late Triassic magmatic arc near the study area. Furthermore, the eastern Jiamusi Block was a backarc basin, affected by the subduction of the Paleo‐Pacific Plate in the Late Triassic, but the magmatic arc related to the subduction near the study area finally died out due to tectonic changes and stratigraphic erosion.  相似文献   

8.
Emilio  Saccani  Adonis  Photiades 《Island Arc》2005,14(4):494-516
Abstract Ophiolitic mélanges associated with ophiolitic sequences are wide spread in the Mirdita–Subpelagonian zone (Albanide–Hellenide Orogenic Belt) and consist of tectonosedimentary ‘block‐in‐matrix‐type’ mélanges. Volcanic and subvolcanic basaltic rocks included in the main mélange units are studied in this paper with the aim of assessing their chemistry and petrogenesis, as well as their original tectonic setting of formation. Basaltic rocks incorporated in these mélanges include (i) Triassic transitional to alkaline within‐plate basalts (WPB); (ii) Triassic normal (N‐MORB) and enriched (E‐MORB) mid‐oceanic ridge basalts; (iii) Jurassic N‐MORB; (iv) Jurassic basalts with geochemical characteristics intermediate between MORB and island arc tholeiites (MORB/IAT); and (v) Jurassic boninitic rocks. These rocks record different igneous activities, which are related to the geodynamic and mantle evolution through time in the Mirdita–Subpelagonian sector of the Tethys. Mélange units formed mainly through sedimentary processes are characterized by the prevalence of materials derived from the supra‐subduction zone (SSZ) environments, whereas in mélange units where tectonic processes prevail, oceanic materials predominate. In contrast, no compositional distinction between structurally similar mélange units is observed, suggesting that they may be regarded as a unique mélange belt extending from the Hellenides to the Albanides, whose formation was largely dominated by the mechanisms of incorporation of the different materials. Most of the basaltic rocks surfacing in the MOR and SSZ Albanide–Hellenide ophiolites are incorporated in mélanges. However, basalts with island arc tholeiitic affinity, although they are volumetrically the most abundant ophiolitic rock types, have not been found in mélanges so far. This implies that the rocks forming the main part of the intraoceanic arc do not seem to have contributed to the mélange formation, whereas rocks presumably formed in the forearc region are largely represented in sedimentary‐dominated mélanges. In addition, Triassic E‐MORB, N‐MORB and WPB included in many mélanges are not presently found in the ophiolitic sequences. Nonetheless, they testify to the existence throughout the Albanide–Hellenide Belt of an oceanic basin since the Middle Triassic.  相似文献   

9.
Two types of chert are defined in Thailand based on lithology, faunal content, and stratigraphy. 'Pelagic chert' consists of densely packed radiolarian tests in a microcrystalline quartz matrix with no terrigenous material and is found as blocks embedded within sheared matrix. 'Hemipelagic chert' also has a microcrystalline quartz matrix, and contains not only scattered radiolarian tests, but also calcareous organisms such as foraminifers. The pelagic cherts range in age from Devonian to Middle Triassic, whereas hemipelagic chert is only from the Early to the Late Triassic. Lithological and stratigraphic characteristics indicate that the pelagic chert originated in the Paleo-Tethys, whereas the hemipelagic chert accumulated on the eastern margin of the Sibumasu Block. The hemipelagic and pelagic chert are exposed in two north-trending belt-like zones. The western zone includes the hemipelagic chert, as well as glaciomarine and other Paleozoic to Mesozoic successions, overlying a Precambrian basement that consists exclusively of Sibumasu elements. The eastern zone contains pelagic chert and limestone and should be correlated to the Inthanon Zone. The Inthanon Zone is characterized by the presence not only of Paleo-Tethyan sedimentary rocks, but also of Sibumasu Block elements that structurally underlie the Paleo-Tethyan rocks. The boundary between the Sibumasu and Paleo-Tethys zones is a north-trending, low-angle thrust that resulted from the collision of the Sibumasu and Indochina blocks.  相似文献   

10.
Chien-Yuan  Tseng  Guo-Chao  Zuo  Huai-Jen  Yang  Houng-Yi  Yang  Kuo-An  Tung  Dun-Yi  Liu  Han-Quan  Wu 《Island Arc》2009,18(3):526-549
Field relationships, mineralogy and petrology, whole‐rock chemistry, and age of the Zhamashi mafic–ultramafic intrusion in the North Qilian Mountains, northwest China, have been studied in the present work. The Zhamashi intrusive body consists of ultramafic, gabbroic, and dioritic rocks in a crudely concentrically zoned structure. The ultramafic rocks are layered cumulates with rock types varying continuously from dunite through wehrlite and olivine clinopyroxenite to clinopyroxenite. The gabbroic and dioritic rocks are also layered or massive cumulates with rock types varying continuously from noritic gabbro through hornblende gabbro to diorite. The ultramafic and adjoining gabbroic rocks are discontinuous in lithology and discordant in structure across the interface. The interface is steep, sharp, and fractured. Contact metamorphic zones are well developed between the Zhamashi intrusive body and the country rock. The concentrically zoned structure of the intrusive body and the intrusion into the continental crust are the two main pieces of evidence for considering that the Zhamashi intrusion is Alaskan‐type. The mineral chemistry of the chromian spinels (Cr‐spinels) and clinopyroxenes, and the variation trend of the whole‐rock compositional plot in the (Na2O + K2O)–FeO–MgO (AFM) diagram are also supportive of this consideration. The age of the Zhamashi intrusive body, determined with sensitive high mass‐resolution ion microprobe on the zircon grains, is 513.0 ± 4.5 Ma. Parental magma of the Zhamashi intrusion is compositionally close to the primitive magma produced by partial melting of the mantle peridotite. It was differentiated by fractional crystallization at low total pressure and under H2O‐rich conditions in an arc environment to form all the major rock types. The concentrically zoned structure of the Zhamashi intrusive body was constructed in two stages: formation of a stratiform‐type layered sequence, followed by diapiric re‐emplacement. The occurrence of the Alaskan‐type intrusion suggests an active continental margin and Cambrian arc magmatism for the northern margin of the Qilian Block.  相似文献   

11.
MAKOTO TAKEUCHI 《Island Arc》2011,20(2):221-247
Detrital chloritoids were extracted from the Lower Jurassic sandstones in the Joetsu area of central Japan. The discovery of detrital chloritoids in the Joetsu area, in addition to two previous reports, confirms their limited occurrence in the Jurassic strata of the Japanese islands. This finding emphasizes the importance of the denudation of chloritoid‐yielding metamorphic belts in Jurassic provenance evolution, in addition to a change from an active volcanic arc to a dissected arc that has already been described. Possible sources for the detrital chloritoids from the Jurassic sandstones are the Permo–Triassic chloritoid‐yielding metamorphic rocks distributed in dispersed tectonic zones (Hida, Unazuki, Ryuhozan and Hitachi Metamorphic Rocks), which are in fault contact with Permian to Jurassic accretionary complexes in the Japanese islands. This is because all of these pre‐Jurassic chloritoid‐yielding metamorphic rocks have a Carboniferous–Permian depositional age and a Permo–Triassic metamorphic age, whereas a Permian–Triassic metamorphic age on the Hitachi Metamorphic Rocks remains unreported. In addition, most metamorphic chloritoids imply a former stable land surface that has evolved into an unstable orogenic area. Therefore, the chloritoid‐yielding metamorphic rocks might form a continuous metamorphic belt originating from a passive continental margin in East Asia. Evidence from paleontological and petrological studies indicates that the Permo–Triassic metamorphic belt relates to a collision between the Central Asian Orogenic Belt and the North China Craton. The evolution of the Permian–Jurassic provenance of Japanese detrital rocks indicates that the temporal changes in detritus should result from sequences of collision‐related uplifting processes.  相似文献   

12.
The stratigraphy and radiolarian age of the Mizuyagadani Formation in the Fukuji area of the Hida‐gaien terrane, central Japan, represent those of Lower Permian clastic‐rock sequences of the Paleozoic non‐accretionary‐wedge terranes of Southwest Japan that formed in island arc–forearc/back‐arc basin settings. The Mizuyagadani Formation consists of calcareous clastic rocks, felsic tuff, tuffaceous sandstone, tuffaceous mudstone, sandstone, mudstone, conglomerate, and lenticular limestone. Two distinctive radiolarian faunas that are newly reported from the Lower Member correspond to the zonal faunas of the Pseudoalbaillella u‐forma morphotype I assemblage zone to the Pseudoalbaillella lomentaria range zone (Asselian to Sakmarian) and the Albaillella sinuata range zone (Kungurian). In spite of a previous interpretation that the Mizuyagadani Formation is of late Middle Permian age, it consists of Asselian to Kungurian tuffaceous clastic strata in its lower part and is conformably overlain by the Middle Permian Sorayama Formation. An inter‐terrane correlation of the Mizuyagadani Formation with Lower Permian tuffaceous clastic strata in the Kurosegawa terrane and the Nagato tectonic zone of Southwest Japan indicates the presence of an extensive Early Permian magmatic arc(s) that involved almost all of the Paleozoic non‐accretionary‐wedge terranes in Japan. These new biostratigraphic data provide the key to understanding the original relationships among highly disrupted Paleozoic terranes in Japan and northeast Asia.  相似文献   

13.
The Shan-Thai Block, regarded traditionally as awhole geotectonic unit by the geologists engaged inthe study of geotectonic evolution of Southeast Asia, issituated to the west of the Ailaoshan and Nan-UttaraditSutures and to the east of the Shan Boundary Faults,and covers southwestern Yunnan, eastern Myanmar,most of Thailand, northwestern Laos, western Malay-sia, and Sumatra[1,2] (fig. 1). However, recent researchshows that it consists of two continental terranes fromGondwana and Cathay…  相似文献   

14.
The Ryoke Metamorphic complex has undergone low‐P/T metamorphism and was intruded by granitic magmas around 100 Ma. Subsequently, the belt was uplifted and exposed by the time deposition of the Izumi Group began. The tectonic history of uplift, such as the timing and processes, are poorly known despite being important for understanding the spatiotemporal evolution of the Ryoke Metamorphic Belt. U–Pb zircon ages from sedimentary rocks in the forearc and backarc basins are useful for constraining uplift and magmatism in the provenance. U–Pb dating of detrital zircons from 12 samples (four sandstones and eight granitic clasts) in the Yuasa–Aridagawa basin, a Cretaceous forearc basin in the Chichibu Belt of Southwest Japan, gave mostly ages of 60–110 Ma. Granitic clasts contained in conglomerate suggest that granitic intrusions predate the formation of Coniacian and Maastrichtian conglomerate. Emplacement ages of granitic bodies originated from granitic clasts in Coniacian conglomerate are (110.2 ±1.3) Ma, (106.1 ±1.8) Ma, (101.8+5.8–3.8) Ma, and (95.3 ±1.4) Ma; for granitic clasts in Maastrichtian conglomerate, (89.6 ±1.8) Ma, (87.3+2.4–1.8) Ma, (85.7 ±1.2) Ma, and (82.7 ±1.2) Ma. The results suggest that detrital zircons in the sandstones were mainly derived from volcanic eruptions contemporaneous with depositional age, and plutonic rocks of the Ryoke Metamorphic Belt. Zircon ages of the granitic clast samples also indicate that uplift in the provenance began after Albian and occurred at least during the Coniacian to Maastrichtian. Our results, together with the difference of provenance between backarc and forearc basins suggest that the southern marginal zone of the Ryoke Metamorphic Belt was uplifted and supplied a large amount of clastic materials to the forearc basins during the Late Cretaceous.  相似文献   

15.
Francesca  Liberi  Lauro  Morten  Eugenio  Piluso 《Island Arc》2006,15(1):26-43
Abstract Slices of oceanic lithosphere belonging to the neo‐Tethys realm crop out discontinuously in the northern Calabrian Arc, Southern Apennines. They consist of high‐pressure–low‐temperature metamorphic ophiolitic sequences formed from metaultramafics, metabasites and alternating metapelites, metarenites, marbles and calcschist. Ophiolites occupy an intermediate position in the northern Calabrian Arc nappe pile, situated between overlying Hercynian continental crust and the underlying Apenninic limestone units. In the literature, these ophiolitic sequences are subdivided into several tectonometamorphic units. Geochemical characteristics indicate that metabasites were derived from subalkaline basalts with tholeiitic affinity (transitional mid‐oceanic ridge basalt type), and a harzburgitic‐lherzolitic protolith is suggested for the serpentinites. The pressure–temperature‐deformation paths of the metabasites from different outcrops display similar features: (i) the prograde segment follows a typical Alpine geothermal gradient up to a metamorphic climax at 350°C and 0.9 GPa and crystallization of the high‐pressure mineral assemblage occurs along a pervasive foliation developed during a compressive tectonic event; and (ii) the retrogression path can be subdivided in two segments, the first is characterized by nearly isothermal decompression to approximately 400°C and 0.3 GPa and the second follows a cooling trajectory. During low‐pressure conditions, a second deformation event produces millimetric to decametric scale asymmetric folds that describe west‐verging major structures. The third deformation event is characterized by brittle extensional structures. The tectonometamorphic evolution of the ophiolitic sequences from the different outcrops is similar. Both thermobarometric modeling and tectonic history indicate that the studied rocks underwent Alpine subduction and exhumation processes as tectonic slices inside a west‐verging accretionary wedge. The subduction of oceanic lithosphere was towards the present east; therefore, the Hercynian continental crust, overthrusted on the ophiolitic accretionary wedge after the neo‐Tethys closure, was part of the African paleomargin or a continental microplate between Africa and Europe.  相似文献   

16.
The geological relationship between the Okcheon and Taebaeksan basins of the Okcheon belt on the Korean peninsula is a key issue in reconstructing the tectonic evolution of the peninsula. The boundary between the two basin sequences has been variously interpreted as a conformable, unconformable, or thrust contact, without clear evidence being provided for any of these hypotheses. Detailed examination of structures and microfabrics of deformed rocks adjacent to the contact in the Bonghwajae area suggests that the boundary between the two basin sequences is a thrust. Based on the U–Pb ages of detrital zircons from metasedimentary rocks and pre‐existing geologic data from the Okcheon belt, the thrust is a relay structure between two segments of a continental transform fault along which the Okcheon Basin was juxtaposed against the Taebaeksan Basin during the Permian–Triassic suturing of the North and South China Cratons.  相似文献   

17.
For the Triassic continental collision, subduction and orogenesis in the Dabie-Sulu belt, a lot of data on petrology, geochemistry and chronology have been published[1]. However, so far no depositional records on the Triassic syn-collisional orogenesis of…  相似文献   

18.
Fawzy F.  Abu El Ela  Esam S.  Farahat 《Island Arc》2010,19(1):151-164
Podiform chromitites hosted in serpentinites (after harzburgite and dunite) and talc‐carbonate rocks from the Abu Meriewa–Hagar Dungash district (MHD), Eastern Desert of Egypt, together with metagabbros, pillow metavolcanics, and metasediments, form an ophiolitic mélange formed during the Neoproterozoic Pan‐African Orogeny. The chromitites show massive, disseminated, and nodular textures. Chromite cores in chromitites have high and restricted ranges of Cr# (0.65–0.75) and Mg# (0.64–0.83), implying primary compositions not affected by metamorphism. Therefore, they are used as reliable indicators of parent magma composition and tectonic affinities of these highly metamorphosed rocks. On the contrary, the altered rims are high‐Cr, low‐Fe3+ spinel (rather than ferritchromit) enriched in Cr, Fe, and Mn, and depleted in Al and Mg (Cr# = 0.75–0.97, Mg# = 0.29–0.79), due to equilibration with interstitial silicates during regional metamorphism up to transitional greenschist–amphibolite facies at about 500–550°C. The primary chromite compositions suggest derivation from a high‐Mg tholeiitic, to possibly boninitic, parental magma in a supra‐subduction zone (arc–marginal basin) environment, similar to the spatially associated metavolcanic rocks. The MHD chromitites are most probably formed by melt–rock interaction mechanisms. The high Cr# of the investigated chromites suggests high degrees of partial melting of a depleted harzburgite source by interaction with primitive basaltic melt of deeper origin followed by mixing. Such Cr‐rich chromites are common in chromitites from the Eastern Desert of Egypt, implying broad thermal anomalies, possibly linked to an important geodynamic feature of the Arabian–Nubian Shield (ANS) evolution. This could revive interest in models that involve asthenospheric uprise, related to plume interaction or most probably due to oblique convergence of arc terranes during early evolution of the ANS.  相似文献   

19.
Abstract K–Ar age determinations were carried out on phengite separates from pelitic schists collected systematically from the Sanbagawa southern marginal belt and the associated area. The petrography and phengite chemistry by electron probe micro-analyzer (EPMA) revealed the existence of detrital white micas in the schist that have an extremely older age (108 Ma) in comparison with the neighboring schists (88 Ma) without any detrital mica. The ages become gradually older from the north ( ca 78 Ma) to the south ( ca 90 Ma) except for some samples that contain detrital micas and/or have been reactivated thermally by intrusives. The age is interpreted as an exhumation-cooling age that has been controlled by the ductile deformation of the host rocks that have never experienced a culmination temperature higher than 350°C which corresponds to the closure temperature of the K–Ar phengite system. The southward aging of the recorded ages in the extensive chlorite zone of the central Shikoku, from the Dozan river area of the north ( ca 65 Ma) to the study area of the south ( ca 85 Ma) through the Asemi river area ( ca 75 Ma), is explained in terms of increasing exhumation/cooling rates of the host rocks from north to south. The phengite K–Ar ages in the pelitic schists from the Kyomizu tectonic zone, which is classically considered as a remarkable thrusting shear zone, have no significant difference in comparison with that of the neighboring schists. This fact suggests that the latest stage of brittle deformation during exhumation/uplift has not significantly affected the ages of phengite in the schists.  相似文献   

20.
Ophiolites with different magmatic characteristics are closely associated in space with one another in northern Pindos. Some have affinities with ocean-floor magmas (Group I), and others represent melts which are frequently strongly depleted in «incompatible» elements (Group II). Group I is composed of cumulates, dolerites and lavas, whereas Group II occurs mainly as pillows and dykes, and postdates Group I. The two groups have different geochemical, mineralogical and petrographic features. They exhibit different Ti, Cr, Ni, Y, Zr, P, Si and Mg contents, and clinopyroxenes and spinels of Group I have higher Ti/Al and Ti/Mn ratios, and lower Cr/(Cr + Al) values respectively than those of Group II. Many rocks of Group II are chemically similar to boninites and associated rocks as well as to low-Ti basalts from other areas and ophiolitic complexes. It is concluded that geochemical and mineralogical data alone do not allow a definitive answer about the original tectonic setting of the investigated rocks, although a genesis above a subduction zone seems to be plausible hypothesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号