首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sedimentary rocks of the Solomon Islands-Bougainville Arc are described in terms of nine widespread facies. Four facies associations are recognised by grouping facies which developed in broadly similar sedimentary environments.A marine pelagic association of Early Cretaceous to Miocene rocks comprises three facies. Facies Al: Early Cretaceous siliceous mudstone, found only on Malaita, is interpreted as deep marine siliceous ooze. Facies A2: Early Cretaceous to Eocene limestone with chert, overlies the siliceous mudstone facies, and is widespread in the central and eastern Solomons. It represents lithified calcareous ooze. Facies A3: Oligocene to Miocene calcisiltite with thin tuffaceous beds, overlies Facies A2 in most areas, and also occurs in the western Solomons. This represents similar, but less lithified calcareous ooze, and the deposits of periodic andesitic volcanism.An open marine detrital association of Oligocene to Recent age occurs throughout the Solomons. This comprises two facies. Facies B1 is variably calcareous siltstone, of hemipelagic origin; and Facies B2 consists of volcanogenic clastic deposits, laid down from submarine mass flows.A third association, of shallow marine carbonates, ranges in age from Late Oligocene to Recent. Facies C1 is biohermal limestone, and Facies C2 is biostromal calcarenite.The fourth association comprises areally restricted Pliocene to Recent paralic detrital deposits. Facies D1 includes nearshore clastic sediments, and Facies D2 comprises alluvial sands and gravels.Pre-Oligocene pelagic sediments were deposited contemporaneously with, and subsequent to, the extrusion of oceanic tholeiite. Island arc volcanism commenced along the length of the Solomons during the Oligocene, and greatly influenced sedimentation. Thick volcaniclastic sequences were deposited from submarine mass flows, and shallow marine carbonates accumulated locally. Fine grained graded tuffaceous beds within the marine pelagic association are interpreted as products of this volcanism, suggesting that the Santa Isabel-Malaita-Ulawa area, where these beds are prevalent, was relatively close to the main Solomons chain at this time. A subduction zone may have dipped towards the northeast beneath this volcanic chain. Pliocene to Pleistocene calcalkaline volcanism and tectonism resulted in the emergence of all large islands and led to deposition of clastic and carbonate facies in paralic, shallow and deep marine environments.  相似文献   

2.
A large diameter borehole core from an epiclastic kimberlite remnant on the farm Stompoor in the Prieska district, Cape Province, contains a continuous 76 m section of fossiliferous sediments interpreted as having accumulated within a crater-lake during the Late Cretaceous. Three distinct facies associations reflect depositional processes that prevailed in offshore areas of the original lake. Facies Association A: matrix-supported pebble conglomerates comprising a chaotic assemblage of pyroclastic, basement and country rocks set in a fine-grained matrix. Flat, non-erosional basal surfaces with ‘frozen’ rip-up clasts, the protrusion of matrix-supported clasts above the upper surfaces and a direct relationship between maximum clast size and bed thickness suggest deposition from debris flows that originated subaerially on pyroclastic talus cones surrounding the crater. Facies Association B: alternating thin beds of matrix-supported granule conglomerate, structureless fine-grained sandstone and parallel laminated mudrock. Small fining-upward sequences within these beds are comparable to turbidite Bouma Tade, Tde. Numerous partings display petrified fish and frog skeletons, as well as bivalve, gastropod and ostracode shells, leaf impressions, insect wings and a possible bird bone. These beds were deposited by thin debris-flows and turbidity underflows interspersed with periods of ‘pelagic’ sedimentation. Facies Association C: microlaminated mudstone beds containing scattered ‘dropstone lapilli’. The lamination is imparted by alternating Ca-rich/Ca-poor layers which may reflect climatic seasonality. They are interpreted as the result of seasonally influenced suspension settling through a thermally stratified water column. Short-term periodicities in conglomerate bed thicknesses are interpreted as the result of successive block caving of a slump scar giving rise to several debris flows from the same source area. Seismic shock from nearby volcanism may have simultaneously triggered slumps on both subaerial and subaqueous slopes. Dropstone lapilli in Type C beds and the preponderance of load casting in Type B beds support this interpretation. An estimate of the time span involved in accumulating 76 m of crater lake sediments based on the possible seasonal imprint of Type C beds gives a figure of some 220,000 yr.  相似文献   

3.
A 1600-m-thick succession of the Miocene Horse Camp Formation (Member 2) exposed in east-central Nevada records predominantly terrigenous clastic deposition in subaerial and subaqueous fan-delta environments and nearshore and offshore lacustrine environments. These four depositional environments are distinguished by particular associations of individual facies (14 defined facies). Subaerial and subaqueous fan-delta facies associations include: ungraded, matrix-and clast-supported conglomerate; normally graded, matrix- and clast-supported conglomerate; ungraded and normally graded sandstone; and massive to poorly laminated mudstone. Subaqueous fan-delta deposits typically have dewatering structures, distorted bedding and interbedded mudstone. The subaerial fan-delta environment was characterized by debris flows, hyperconcentrated flows and minor sheetfloods; the subaqueous fan-delta environment by debris flows, high- and low-density turbidity currents, and suspension fallout. The nearshore lacustrine facies association provides examples of deposits and processes rarely documented in lacustrine environments. High-energy oscillatory wave currents, probably related to a large fetch, reworked grains as large as 2 cm into horizontally stratified sand and gravel. Offshore-directed currents produced uncommonly large (typically 1–2 m thick) trough cross-stratified sandstone. In addition, stromatolitic carbonate interbedded with stratified coarse sandstone and conglomerate suggests a dynamic environment characterized by episodic terrigenous clastic deposition under high-energy conditions alternating with periods of carbonate precipitation under reduced energy conditions. Massive and normally graded sandstone and massive to poorly laminated mudstone characterize the offshore lacustrine facies association and record deposition by turbidity currents and suspension fallout. A depositional model constructed for the Horse Camp Formation (Member 2) precludes the existence of all four depositional environments at any particular time. Rather, phases characterized by deposition in subaerial fan, nearshore lacustrine and offshore lacustrine environments alternated with phases of subaerial fan-delta, subaqueous fan-delta and offshore lacustrine deposition. This model suggests that high-energy nearshore currents due to deep water along the lake margin reworked sediment of the fan edge, thus preventing development of a subaqueous fan-delta environment and promoting development of a well-defined nearshore lacustrine environment. Low-energy nearshore currents induced by shallow water along the  相似文献   

4.
The Upper Cretaceous part of the Great Valley Sequence provides a unique opportunity to study deep-marine sedimentation within an arc-trench gap. Facies analysis delineates submarine fan facies similar to those described from other ancient basins. Fan models and facies of Mutti and Ricci-Lucchi allow reconstruction of the following depositional environments: basin plain, outer fan, midfan, inner fan, and slope. Basin plain deposits are characterized by hemipelagic mudstone with randomly interbedded thin sandstone beds exhibiting distal turbidite characteristics. Outer fan deposits are characterized by regularly interbedded sandstone and mudstone, and commonly exhibit thickening-upward (negative) cycles that constitute depositional lobes. The sandstone occurs as proximal to distal turbidites without channeling. Midfan deposits are characterized by the predominance of coarse-grained, thick, channelized sandstone beds that commonly are amalgamated. Thinning-upward (positive) cycles and braided channelization also are common. Inner fan deposits are characterized by major channel-fill complexes (conglomerate, pebbly sandstone, and pebbly mudstone) enclosed in mudstone and siltstone. Positive cycles occur within these channel-fill complexes. Much of the fine-grained material consists of levee (overbank) deposits that are characterized by rhythmically interbedded thin mudstone and irregular sandstone beds with climbing and starved ripples. Slope deposits are characterized by mudstone with little interbedded sandstone; slumping and contortion of bedding is common. Progressions of fan facies associations can be described as retrogradational and progradational suites that correspond, respectively, to onlapping and offlapping relations in the basin. The paleoenvironments, fan facies associations, and tectonic setting of the Late Cretaceous fore-arc basin are similar to those of modern arc—trench systems.  相似文献   

5.
A detailed survey of the upper and middle Nova Scotian continental slope at 42°50′N and 63°30′W indicates a complex morphology dominated by mass movements on various scales and an immature turbidity current channel. The range of sediment facies is diverse including hemipelagic and turbidite muds, turbidite sands and gravelly sandy muds of debris flow origin. Deformed units, interpreted as slump deposits are also observed. Several facies associations, related to discrete morphological environments, are recognized. Thick turbidite sand units with minor intervening mud beds are characteristic of the high-relief uppermost slope and channel margin. Thinner turbidite sands, deformed slump beds and various mud facies are associated with small-scale, hummocky mid-slope topography. Sand beds are more abundant in the depressions than on intervening hummocks indicating the preferred transport paths of small turbidity currents. At the lower end of the main turbidity current channel, frequent turbidite sand beds with relatively minor mud beds are deposited on a depositional lobe. In areas unaffected by mass movements, alternating bioturbated mud and sandy muds make up the core sequences. A local model of sedimentation is proposed for this area and illustrates that simple models of continental slope sedimentation only apply to a limited range of settings.  相似文献   

6.
7.
The Marnoso‐arenacea Formation in the Italian Apennines is the only ancient rock sequence where individual submarine sediment density flow deposits have been mapped out in detail for over 100 km. Bed correlations provide new insight into how submarine flows deposit sand, because bed architecture and sandstone shape provide an independent test of depositional process models. This test is important because it can be difficult or impossible to infer depositional process unambiguously from characteristics seen at just one outcrop, especially for massive clean‐sandstone intervals whose origin has been controversial. Beds have three different types of geometries (facies tracts) in downflow oriented transects. Facies tracts 1 and 2 contain clean graded and ungraded massive sandstone deposited incrementally by turbidity currents, and these intervals taper relatively gradually downflow. Mud‐rich sand deposited by cohesive debris flow occurs in the distal part of Facies tract 2. Facies tract 3 contains clean sandstone with a distinctive swirly fabric formed by patches of coarser and better‐sorted grains that most likely records pervasive liquefaction. This type of clean sandstone can extend for up to 30 km before pinching out relatively abruptly. This abrupt pinch out suggests that this clean sand was deposited by debris flow. In some beds there are downflow transitions from turbidite sandstone into clean debrite sandstone, suggesting that debris flows formed by transformation from high‐density turbidity currents. However, outsize clasts in one particular debrite are too large and dense to have been carried by an initial turbidity current, suggesting that this debris flow ran out for at least 15 km. Field data indicate that liquefied debris flows can sometimes deposit clean sand over large (10 to 30 km) expanses of sea floor, and that these clean debrite sand layers can terminate abruptly.  相似文献   

8.
The Lower to ?Middle Devonian Kowmung Volcaniclastics form the upper part of a succession of Upper Siluran to mid‐Devonian flyschoid rocks in the Yerranderie area of N.S.W., and contain two major facies associations. (1) A mudstone facies association represents the ambient, background sedimentation, comprising predominantly buff mudstone that is host to an assemblage of coarser‐grained sediments, including graded‐bedded to massive siltstone, sandstone, conglomerate, allodapic limestone, and large allochthonous limestone blocks and associated limestone breccia. Bouma sequences are common, sole structures occur and maximum bed thickness is about 3 m. (2) A volcaniclastic facies association intrudes and interrupts the accumulation of the ambient mudstone facies association, and contains massive to partly graded, quartzofeldspathic siltstone, sandstone, breccia and conglomerate. Sedimentation units in the volcaniclastic facies association are up to 120 m thick. The two facies associations interfinger. Stratigraphically, the base of the Kowmung Volcaniclastics is taken as the first sedimentation unit of the volcaniclastic facies association. The mudstone facies association below this level is part of the Siluro‐Devonian Taralga Group.

Both facies associations were deposited in relatively deep‐water. The dominant transport process in both associations was mass‐flow, involving granular mass‐flows (turbidity currents, grain flows), debris flows and avalanches. Massive mudstone is hemipelagic in origin. The volcaniclastic facies association probably represents a submarine volcanic apron around the emergent, volcanic Bindook Complex. Grossly, the succession coarsens upwards, and there is evidence of several sources of sediment, rather than a single point at the head of a submarine fan.

Provenance is diverse. In the mudstone facies association, framework grains in sandstone are microlitic volcanic‐rock fragments with a mafic to intermediate volcanic source. Clasts in conglomerate and breccia are consistent with derivation from the regionally extensive, quartzose Ordovician flyschoid successions. Clasts of ?penecontemporaneous limestone also occur. The volcaniclastic facies association was probably derived largely from the nearby, coeval Bindook Complex, which consists of silicic ash‐flow and ash‐fall tuff, lava, associated sediment and granitoids. Detritus was either derived directly from volcanic eruptions or was worked in fringing littoral and fluvial environments prior to redeposition by mass‐flow. Quartzite boulders mixed with volcanic clasts in the conglomerate suggest that Ordovician quartzarenite was also exposed around the volcanic complex. Tentative provenance correlations have been made between the different rock units in the Kowmung Volcaniclastics and their possible sources in the northern part of the Bindook Complex.  相似文献   

9.
The Udo tuff cone of Cheju Island, South Korea, is a middle Pleistocene basalt tuff cone that has formed by early Surtseyan-type eruptions and later drier hydroclastic eruptions. The tuff cone comprises steep (20–30°) and planar beds of lapillistone, lapilli tuff and tuff that can be grouped into seven sedimentary facies (A-G). Facies A and B comprise continuous to lenticular layers of grain-supported and openwork lapillistone that are inversely graded and coarsen downslope. They suggest emplacement by grain flows that are maintained by gravity-induced stress and grain collisions. Facies C includes poorly sorted, crudely bedded and locally inversely graded lapilli tuff, also suggestive of rapid deposition from highly concentrated grain flows. Facies D includes thinly stratified and mantle-bedded tuff that was probably deposited by fallout of wind-borne ash. Other facies include massive lapilli tuff (Facies E), chaotic lapilli tuff (Facies F) and cross-bedded tuffaceous sandstone (Facies G) that were deposited by resedimentation processes such as debris flow, slide/slump and stream flow, respectively. The grain flows that produced Facies A, B and C are interpreted to have originated from falling pyroclasts, which initially generated highly dispersed, saltating avalanches, in which momentum was transferred by the particles themselves. This transport mechanism is similar to that of debris fall. As the slope gradient was too low to maintain a highly dispersed flow, the debris fall decelerated and contracted due to a decrease in dispersive pressure. The mode of momentum transfer changed to one of collision because contraction of the debris fall resulted in an increase in particle concentration. This transport mechanism is similar to that of common grain flows. Grain segregation occurred in several ways. Initial segregation of ash from lapilli occurred due to their differing terminal fall velocities, and their contrasting degrees of sliding friction with the bed. Percolation of ash into interstices of lapilli during flow (kinematic sieving) augmented further segregation of ash from lapilli. The latter process, along with a dispersive pressure effect, gave rise to vertical inverse size grading. Downdip inverse grading was produced by particle overpassing.  相似文献   

10.
The Cretaceous Uhangri Formation, SW Korea: lacustrine margin facies   总被引:1,自引:0,他引:1  
The Uhangri Formation forms part of the Cretaceous sedimentary sequence deposited in a series of inland basins in the south-western Korean Peninsula. It comprises an approximately 400-m-thick epiclastic sequence of conglomerate, (gravelly) sandstone, cherty mudstone and black shale. The entire sequence can be represented by 16 distinctive sedimentary facies organized into four facies associations. Facies association I is characterized by thick homogeneous brownish siltstone, wedge-shaped disorganized conglomerate and thinly interlayered gravelly sandstone units. The siltstone units were formed by large floods submerging the alluvial fan fringe (floodplain), whereas the conglomerate and gravelly sandstone units were deposited by sheetfloods and debris flows. Facies association II consists of stratified conglomerate — gravelly sandstone, laminated sandstone and sandstone/siltstone couplets which form fining-upward cycles. Some facies units are low-angle trough cross-bedded and show broad channel geometries. This association represents subaqueous delta lobes fed by high- and low-concentration turbidity currents in the distal delta realm. Facies association III is characterized, by wedged conglomerate and gravelly sandstone facies with interfingered massive sandstone bounded by scoured bases. It represents a delta front where distributary channels and mouth bars are dominant. Facies association IV consists of laterally continuous sequence of laminated black shale, crudely stratified sandstone and convoluted sandstone/cherty mudstone. This facies association is suggestive of depositional processes controlled by chemical equilibrium resulting from an interaction between density inflows and lake water. The cherty mudstone resulted from inorganic precipitation from siliceous solution provided by acidic volcanism. The Uhangri sequence generally shows a fining-upward trend with a transition from alluvial fan fringe, coarse-grained subaqueous delta, to shallow lake. The retrogradation was probably due to continuous subsidence related to continental rifting in the oblique-slip mobile zone.  相似文献   

11.
12.
The Upper Cretaceous Juniper Ridge Conglomerate (JRC) near Coalinga, California, provides a rare, high-quality exposure of a submarine channel to overbank transition. The facies architecture of the JRC comprises a thick, predominantly mudstone sequence overlain by a channellized conglomerate package. Conglomeratic bounding surfaces truncate successions of interbedded turbiditic sandstones and mudstones both vertically and laterally. Thick-bedded, massive sandstones are interbedded with conglomerates. Facies architecture, palaeocurrent indicators, slump features, sandstone percentages and sandstone bed thickness trends lead to the interpretation that these elements comprise channel and overbank facies. A vertical sequence with conglomerate at the base, followed by thick-bedded sandstone, and capped by interbedded turbiditic sandstone and mudstone form a fining-upward lithofacies association that is interpreted as a single channel-fill/overbank system. Three similar lithofacies associations can be related to autocyclic processes of thalweg migration and submarine fan aggradation or to allocyclically driven changes in sediment calibre.  相似文献   

13.
The Late Proterozoic Conception Group, exposed on the Avalon Peninsula in Newfoundland, Canada, is a 4 km thick turbidite succession containing a conformable 300 m thick sequence of diamictites (the Gaskiers Formation) near the base. Massive and crudely-stratified diamictites form beds up to 25 m thick which have a tabular geometry with slightly erosive basal contacts and are interbedded with mudstones and fine-grained, thin-bedded turbidites. These diamictites are interpreted as submarine debris flow deposits. Disrupted diamictites form strongly deformed units that contain large, complexly folded rafts of mudstone and turbidite facies. These diamictite units are interpreted as submarine slumps. Diamictites contain glacially-striated and faceted clasts; clasts and matrix are predominantly of volcanic provenance. One outcrop shows interbedded volcanic agglomerate and diamictite, and volcanic bombs can also be identified. The interbedding of diamictites with turbidites and the stratigraphic context provided by the thick sequences of turbidites below (Mall Bay Formation) and above (Drook Formation) indicate a deep marine slope setting of diamictite deposition. Diamictite facies record remobilization and downslope transfer of large volumes of unstable volcanic and glacial debris initially deposited in a shallower water marginal marine zone. The regional tectonic framework suggests the Conception Group accumulated in a deep, southward-opening ensialic rift basin with active but waning volcanic centres to the north. The Gaskiers Formation may be representative of other Late Precambrian glacially-influenced diamictite sequences that were deposited around the North Atlantic region and in Europe. These deep marine diamictite sequences characterized by debris flows, turbidites, and slump deposits, can be contrasted with more extensive shallow marine shelf diamictite sequences found in association with dolomites and tidally influenced shallow water facies in other basinal settings.  相似文献   

14.
叶城晚新生代山前盆地的岩性主要由中新世的细粒泥岩和砂岩(乌恰群),上新世的砂岩夹薄层砾岩(阿图什组)及上新世-更新世的粗粒砾岩(西域组)构成。中新世的沉积以细颗粒泥砂岩为主,表明物源区较远,古流域坡度较小,搬运距离较长。古流向分析显示物源区位于南和偏南方,此时昆仑山的地势起伏尚不大。到上新世的阿图什组沉积时,开始出现砾石沉积,反映西昆仑山已经开始有规模地隆升。西域砾岩的沉积标志着作为物源区的西昆仑山民有相当的高度,随着山系的隆升,基底岩石被暴露和剥蚀。  相似文献   

15.
青藏高原南部乌郁盆地渐新世—上新世地层沉积相分析   总被引:3,自引:0,他引:3  
青藏高原南部乌郁盆地是欧亚与印度板块碰撞以来冈底斯山隆升最具代表性的盆地之一,也是青藏高原南部较大的新生代残留盆地之一。沉积盆地中保存着完整的渐新世—早更新世连续沉积记录,自下而上由古新世—始新世林子宗群(典中组、年波组和帕那组)、渐新世—中新世日贡拉组、中新世芒乡组、来庆组、上新世—早更新世乌郁群(乌郁组、达孜组),总厚度大于4180m。林子宗群为一套中—酸性钙碱性火山岩系,夹紫红色砂岩、砾岩及粉砂岩。日贡拉组主要为紫红色砂岩、砾岩,夹少量火山熔岩及酸性火山凝灰岩,为一套山间盆地沉积。芒乡组为灰色、深灰色泥岩、砂岩,夹煤和油页岩,为湖泊相—前三角洲相—沼泽相。来庆组为一套褐色安山岩、火山碎屑岩。乌郁组是一套碎屑岩,颜色呈灰色、灰褐色,夹煤及油页岩,为山间盆地辫状河—湖泊—沼泽沉积。达孜组是一套黄褐色砾岩、砂砾岩、砂岩,夹少量泥岩,发育铁质结核,为辫状河沉积。沉积相分析表明具有明显的古新世—始新世林子宗群(典中组、年波组和帕那组)、渐新世—中新世日贡拉组—芒乡组、中新世来庆组—上新世乌郁组、上新世—早更新世达孜组四个阶段式隆升—剥蚀过程。从芒乡组的潮湿炎热的气候转变为乌郁组的干燥凉爽,显然与青藏高原隆升密切相关。乌郁盆地渐新世—早更新世沉积相分析对于研究青藏高原隆升和油气等能源均具有重要意义。   相似文献   

16.
通过大量岩心观察、钻测井资料分析及野外露头观察,对鄂尔多斯盆地南部延长组长6—长7深水重力流沉积特征、触发机制、沉积过程、沉积模式及石油地质意义进行了系统分析。研究结果表明:研究区共存在滑动岩体、滑塌沉积、砂质碎屑流沉积、浊流沉积及泥质碎屑流沉积5种类型的重力流沉积物,各类型的沉积物特征明显。不同类型重力流沉积物垂向组合可分为5类,研究区重力流的形成过程可分为5个阶段:三角洲前缘沉积阶段、滑动阶段、滑塌变形阶段、砂质碎屑流及泥质碎屑流形成阶段以及浊流形成阶段。滑动、滑塌砂体多呈孤立透镜体状,砂质碎屑流砂体多以扇沟道的形式展现出来,浊流砂体多分布在扇沟道的前端或侧翼,呈席状砂展布。深水重力流砂体垂向叠置厚度大,可形成规模大的油藏,大大扩展了深湖的勘探范围。研究区长6、长7油层组砂质碎屑流砂体储集层物性较好,含油性好,是重点勘探层位。  相似文献   

17.
Co‐genetic debrite–turbidite beds occur in a variety of modern and ancient turbidite systems. Their basic character is distinctive. An ungraded muddy sandstone interval is encased within mud‐poor graded sandstone, siltstone and mudstone. The muddy sandstone interval preserves evidence of en masse deposition and is thus termed a debrite. The mud‐poor sandstone, siltstone and mudstone show features indicating progressive layer‐by‐layer deposition and are thus called a turbidite. Palaeocurrent indicators, ubiquitous stratigraphic association and the position of hemipelagic intervals demonstrate that debrite and enclosing turbidite originate in the same event. Detailed field observations are presented for co‐genetic debrite–turbidite beds in three widespread sequences of variable age: the Miocene Marnoso Arenacea Formation in the Italian Apennines; the Silurian Aberystwyth Grits in Wales; and Quaternary deposits of the Agadir Basin, offshore Morocco. Deposition of these sequences occurred in similar unchannellized basin‐plain settings. Co‐genetic debrite–turbidite beds were deposited from longitudinally segregated flow events, comprising both debris flow and forerunning turbidity current. It is most likely that the debris flow was generated by relatively shallow (few tens of centimetres) erosion of mud‐rich sea‐floor sediment. Changes in the settling behaviour of sand grains from a muddy fluid as flows decelerated may also have contributed to debrite deposition. The association with distal settings results from the ubiquitous presence of muddy deposits in such locations, which may be eroded and disaggregated to form a cohesive debris flow. Debrite intervals may be extensive (> 26 × 10 km in the Marnoso Arenacea Formation) and are not restricted to basin margins. Such long debris flow run‐out on low‐gradient sea floor (< 0·1°) may simply be due to low yield strength (? 50 Pa) of the debris–water mixture. This study emphasizes that multiple flow types, and transformations between flow types, can occur within the distal parts of submarine flow events.  相似文献   

18.
酒西盆地下白垩统下沟组重力流水下扇沉积   总被引:6,自引:1,他引:6  
重力流水下扇由四种岩相组成:1.砾岩相,属水下碎屑流沉积;2.砾质泥岩相,是多成因的;3.砂岩相,系高密度浊流沉积;4.粉砂岩泥岩相,为低密度浊流和正常湖泊沉积。细分为十五种亚相。岩相的空间配置关系表明水下扇是由突变性洪水事件(和水下滑坡)-水下碎屑流-高密度浊流-低密度浊流的重力流系列形成。本文对重力流沉积从层序结构、沉积体形态、岩相变化和构造控制诸方面进行了探讨。  相似文献   

19.
从新疆叶城剖面砂岩和砾岩组分看西昆仑山的剥蚀历史   总被引:7,自引:0,他引:7  
叶城晚新生代山前盆地沉积序列由中新统乌恰群,上新统阿图什组和上新统-更新统西域组构成。乌恰群岩性为细粒泥岩夹砂岩,阿图什组为砂岩夹薄层砾岩,西域组为粗粒砾岩。中新世的沉积以细颗粒泥岩和砂岩为主,表明物源区较远,古流域坡度较小,搬运距离较长。叶城剖面碎屑岩粒度总体上是沿剖面向上逐渐变粗,到上新统的阿图什组时,开始出现砾石沉积,砂岩的岩屑成分增加,成熟度降低,反映西昆仑山已经开始有规模地隆升。西域组的沉积标志着作为物源区的西昆仑山已有相当的高度。西域组砾石成分在剖面下部以沉积岩为主,向上过渡为沉积岩和深变质岩为主,反映了源区的沉积盖层首先被剥蚀,随着山系的隆升,基底岩石(深变质岩和侵入岩)也被暴露和剥蚀。   相似文献   

20.
Carbonate flat‐pebble conglomerate is an important component of Precambrian to lower Palaeozoic strata, but its origins remain enigmatic. The Upper Cambrian to Lower Ordovician strata of the Snowy Range Formation in northern Wyoming and southern Montana contain abundant flat‐pebble conglomerate beds in shallow‐water cyclic and non‐cyclic strata. Several origins of flat‐pebble conglomerate are inferred for these strata. In one case, all stages of development of flat‐pebble conglomerate are captured within storm‐dominated shoreface deposits of hummocky cross‐stratified (HCS) fine carbonate grainstone. A variety of synsedimentary deformation structures records the transition from mildly deformed in situ stratification to buckled beds of partially disarticulated bedding to fully developed flat‐pebble conglomerate. These features resulted from failure of a shoreface and subsequent brittle and ductile deformation of compacted to early cemented deposits. Failure was induced by either storm or seismic waves, and many beds failed along discrete slide scar surfaces. Centimetre‐scale laminae within thick amalgamated HCS beds were planes of weakness that led to the development of platy clasts within partly disarticulated and rotated bedding of the buckled beds. In some cases, buckled masses accelerated downslope until they exceeded their internal friction, completely disarticulated into clasts and transformed into a mass flow of individual cm‐ to dm‐scale clasts. This transition was accompanied by the addition of sand‐sized echinoderm‐rich debris from local sources, which slightly lowered friction by reducing clast–clast interactions. The resulting dominantly horizontal clast orientations suggest transport by dense, viscous flow dominated by laminar shear. These flows generally came to rest on the lower shoreface, although in some cases they continued a limited distance beyond fairweather wave base and were interbedded with shale and grainstone beds. The clasts in these beds show no evidence of extensive reworking (i.e. not well rounded) or condensation (i.e. no rinds or coatings). A second type of flat‐pebble conglomerate bed occurs at the top of upward‐coarsening, metre‐scale cycles. The flat‐pebble conglomerate beds cap these shoaling cycles and represent either lowstand deposits or, in some cases, may represent transgressive lags. The clasts are well rounded, display borings and have iron‐rich coatings. The matrix to these beds locally includes glauconite. These beds were considerably reworked and represent condensed deposits. Thrombolites occur above the flat‐pebble beds and record microbial growth before initial transgression at the cycle boundaries. A third type of flat‐pebble conglomerate bed occurs within unusual metre‐scale, shale‐dominated, asymmetric, subaqueous cycles in Shoshone Canyon, Wyoming. Flat‐pebble beds in these cycles consist solely of clasts of carbonate nodules identical to those that are in situ within underlying shale beds. These deeper water cycles can be interpreted as either upward‐shoaling or ‐deepening cycles. The flat‐pebble conglomerate beds record winnowing and reworking of shale and carbonate nodules to lags, during either lowstand or the first stages of transgression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号