首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pale-blue to pale-green tourmalines from the contact zone of Permian pegmatites to mica schists and marbles from different localities of the Austroalpine basement units (Rappold Complex) in Styria, Austria, are characterized. All these Mg-rich tourmalines have small but significant Li contents, up to 0.29 wt% Li2O, and can be characterized as dravite, with FeO contents of ?~?0.9–2.7 wt%. Their chemical composition varies from X (Na0.67Ca0.19?K0.02?0.12) Y (Mg1.26Al0.97Fe2+ 0.36Li0.19Ti4+ 0.06Zn0.01?0.15) Z (Al5.31?Mg0.69) (BO3)3 Si6O18 V (OH)3? W [F0.66(OH)0.34], with a?=?15.9220(3), c?=?7.1732(2) Å to X (Na0.67Ca0.24?K0.02?0.07) Y (Mg1.83Al0.88Fe2+ 0.20Li0.08Zn0.01Ti4+ 0.01?0.09) Z (Al5.25?Mg0.75) (BO3)3 Si6O18 V (OH)3? W [F0.87(OH)0.13], with a?=?15.9354(4), c?=?7.1934(4) Å, and they show a significant Al-Mg disorder between the Y and the Z sites (R1?=?0.013–0.015). There is a positive correlation between the Ca content and?<?Y-O?>?distance for all investigated tourmalines (r?≈?1.00), which may reflect short-range order configurations including Ca and Fe2+, Mg, and Li. The tourmalines have XMg (XMg?=?Mg/Mg?+?Fetotal) values in the range 0.84–0.95. The REE patterns show more or less pronounced negative Eu and positive Yb anomalies. In comparison to tourmalines from highly-evolved pegmatites, the tourmaline samples from the border zone of the pegmatites of the Rappold Complex contain relatively low amounts of total REE (~8–36 ppm) and Th (0.1–1.8 ppm) and have low LaN/YbN ratios. There is a positive correlation (r?≈?0.91) between MgO of the tourmalines and the MgO contents of the surrounding mica schists. We conclude that the pegmatites formed by anatectic melting of mica schists and paragneisses in Permian time. The tourmalines crystallized from the pegmatitic melt, influenced by the metacarbonate and metapelitic host rocks.  相似文献   

2.
The production of metallic iron in silicate melts by the chemical reactions, 2Ti3+(melt) + Fe2+(melt) → 2Ti4+(melt) + Fe0(crystal)2Cr2+(melt) + Fe2+(melt) → 2Cr3+(melt) + Fe0(crystal)2Eu2+(melt)+ Fe2+(melt) → 2Eu3+(melt) + Fe0(crystal) has been demonstrated under experimental conditions in a simplified basaltic liquid, Such reactions may occur in lunar basalts and other reduced systems, and, thus, may aid in the understanding of the reduced nature of lunar basalts. The reactions were studied in a glass-forming Na-Ca-Mg-Al-silicate composition at a melt temperature of 1250°C and an imposed oxygen fugacity at the C/CO buffer (1 atm total pressure). Microtitrations of individually-doped samples were used in the quantitative assessment of their redox ratios and for the calibration of visible and near-infrared spectral absorptions. These spectral absorptions were then applied to the evaluation of the mutual redox interactions in dual-doped samples.  相似文献   

3.
Thermal expansion data, determined by powder X-ray diffraction methods are presented for 11 members of the (Li,Na,K,Rb)8(Al6Si6O24)Cl2 solid solution series, 3 members of the (Na,K)8(Al6Si6O24)Br2 solid solution series and Na8(Al6Si6O24)I2. Only the latter showed a discontinuity in its expansion curve at 810° C wigh a mean linear expansion coefficient of 22.0×10?6 °C?1 below and 7.7×10?6 °C?1 above the discontinuity. The mean expansion coefficients from 0° to 500° C decrease gradually over the range of room temperature cell edges from 8.4 to 8.89 Å, then increase up to a cell edge of 9.01 Å above which they decrease sharply and extrapolate to a zero coefficient at 9.4 Å. These variations may be related to the expansion characteristics of the bonds between the cavity cations and cavity anions in different sodalites. The aluminosilicate-sodalites which show a discontinuity in their thermal expansion curves are those with large cavity anions, I? or SO 4 2? ; the discontinuity is believed to occur at the point when the x-coordinate of the cavity cation becomes 0.25.  相似文献   

4.
The scaling relationships for stress drop and corner frequency with respect to magnitude have been worked out using 159 accelerograms from 34 small earthquakes (M w 3.3–4.9) in the Kachchh region of Gujarat. The 318 spectra of P and S waves have been analyzed for this purpose. The average ratio of P- to S-wave corner frequency is found to be 1.19 suggestive of higher corner frequency for P wave as compared to that for S wave. The seismic moments estimated from P waves, M 0(P), range from 1.98 × 1014 N m to 1.60 × 1016 N m and those from S waves, M 0(S), range from 1.02 × 1014 N m to 3.4 × 1016 N m with an average ratio, M 0(P)/M 0(S), of 1.11. The total seismic energy varies from 1.83 × 1010 J to 2.84 × 1013 J. The estimated stress drop values do not depend on earthquake size significantly and lie in the range 30–120 bars for most of the events. A linear regression analysis between the estimated seismic moment (M 0) and corner frequency (f c) gives the scaling relation M 0 f c 3  = 7.6 × 1016 N m/s3. The proposed scaling laws are found to be consistent with similar scaling relations obtained in other seismically active regions of the world. Such an investigation should prove useful in seismic hazard and risk-related studies of the region. The relations developed in this study may be useful for the seismic hazard studies in the region.  相似文献   

5.
An isotopic study was systemically carried out on the granitic complex, diorite-porphyrite, ores and ore minerals of the 103 Ma Xiaoxinancha gold-rich copper deposit in Jilin province to determine the geodynamic model of diagenesis and metallogenesis. Results show that the initial Nd and Sr isotopic compositions of the granitic complex are in the range of 0.70425–0.70505 for (87Sr/86Sr)i , 0.51243–0.51264 for INd, and –1.31 to +2.64 for εNd(t); those of the diorite-porphyrite are in the range from 0.70438–0.70448 for (87Sr/86Sr)i, 0.51259–0.51261 for INd, and +1.56 to +2.09 for εNd(t). For ores and sulfides, the (87Sr/86Sr)i , INd, and εNd(t) values are in the range from 0.70440–0.70805, 0.51259–0.51279 and +1.72 to +5.56, respectively. The Pb isotopic ratios of the granitic complex range from 18.2992–18.6636 for 206Pb/204Pb, from 15.5343–15.5660 for 207Pb/204Pb, and from 38.1640–38.5657 for 208Pb/204Pb. For diorite-porphyrite, the isotopic ratios of 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb are 18.3919, 15.5794 and 38.3566, respectively, whereas those of the ores and ore sulfides vary from 18.2275–18.3770 for 206Pb/204Pb, from 15.5555–15.5934 for 207Pb/204Pb and from 38.1318–38.3131 for 208Pb/204Pb. The results indicate that the mineralization was correlated to the formation and evolution of the granitic complex and the diorite-porphyrite. Combining with the reported data in petrologic characteristics, elemental geochemistry and chronology, conclusions can be drawn that the geodynamic settings of diagenesis and metallogenesis of this deposit were consistent with the subduction of the Izanagi oceanic plate during the Early Cretaceous. The diorite-porphyrite was formed by the emplacement of the adakitic magma triggered by partial melting of the enriched mantle, which originated from the derivative continental lithospheric mantle metasomatized by dehydration fluids from the subducting oceanic crust. The granitic complex was produced by fractional crystallization of the mixture between the adakitic magma and the high-K calc-alkaline acidic magma, which were generated by the remelting of the lower crust in the course of intraplate upwelling of the adakitic magma. The ore-bearing fluid reservoir convened in a late stage of the evolution of the mixed magma chamber.  相似文献   

6.
A mica whose structural formula: (K1.76Na0.31)(Fe2.22Mn1.29Mg0.99Ti0.28Al0.240.98) ·(Si7.33Al0.67)O20.26(F2.16OH1.58) closely approximates that of tetrasilicic potassium mica K2(M 5 2+ )Si8O20(OH,F)4 where M2+ represents Mg2+, Fe2+, Mn2+, ..., has been discovered in the matrix of a peralkaline rhyolite (comendite) of the Mont-Dore massif (France). These micas had been obtained previously by synthesis only. In the groundmass of the rock, the micaceous phase is accompanied by a manganoan arfvedsonite, pyrophanite, magnetite, apatite, sphene, zircon and fluorite. The crystallographic properties of the mica are typically that of a tetrasilicic mica, with d 060 = 1.533Å and space group C2/m. There is a regular decrease of d 060 (parameter b) with the ionic radius of the octahedral cation in synthetic micas containing Fe2+, Co2+, Mg2+, Ni2+. The purely Mn2+ end-member could not be synthesised; its instability is discussed on the basis of structural considerations. The conditions of crystallization of the micaceous phase are estimated to be 760 ° C, 800 bars with a f o 2=10–14.7 bar. This mica has crystallized from a residual liquid, with high activity of silica and low activity of alumina, whose origin is discussed. The name MONT-DORITE is proposed for this natural tetrasilicic mica having Fe/Fe+Mg >1/2 and Fe/Fe+Mn >1/2. This name is from the stratovolcano Mont-Dore.  相似文献   

7.
Olivine-related (Ni, Mg)3(PO4)2 solid solutions were prepared and equilibrated at 1070 K. Accurate monoclinic unit cell dimensions were determined from Guinier-Hägg photographic data. Structural refinements based on the X-ray profile-fitting technique after Rietveld were carried out for pure nickel (II) orthophosphate and for three Ni/Mg solid solutions. (Ni1-x Mg x )3(PO4)2 phases with 0.40≦x≦0.60 are probably isostructural with Ni3(PO4)2 (P21/a) while phases with low magnesium contents (<27 atom % Mg) deviate structurally from Ni3(PO4)2. The results also show that Ni2+ is partially ordered at the octahedralM(1) sites, withK D (Ni, Mg)=4.0±0.2  相似文献   

8.
Summary Recently several natural and artificial ferric iron sulphate crystal structures have been solved. Sideronatrite, Na2Fe3+(SO4)2(OH)·3H2O, does not provide good crystals for structural purposes. However if we examine crystallographic, chemical and physical data some useful information about the ...Fe–O–S... structural topology can be inferred. In fact this analysis strengthens the hypothesis that there is a {Fe 2 3+ (SO4)4(OH)2} chain in sideronatrite like that found in guildite, Cu2+Fe3+(SO4)2(OH)·4H2O.
Sideronatrit: Ein Mineral mit einer {Fe2(SO4)4(OH)2}-Kette vom Typ Guildit?
Zusammenfassung Kürzlich wurden die Kristallstrukturen mehrerer natürlicher und künstlicher Ferrisulfate gelöst. Sideronatrit, Na2Fe3+(SO4)2(OH)·3H2O, liefert keine für die Strukturuntersuchung gut geeigneten Kristalle. Dennoch erhält man aus der Untersuchung der kristallographischen, chemischen und physikalischen Daten nützliche Information über die ...Fe–O–S...-Topologie der Struktur. Eine solche Analyse spricht für die Hypothese, daß der Sideronatrit eine {Fe 2 3+ (SO4)4(OH2)}-Kette enthält, wie sie im Guildit, Cu2+Fe3+(SO4)2(OH)·4H2O, gefunden wurde.


With 1 Figure

Paper presented at the Sixth European Crystallographic Meeting. Barcelona, Spain 1980.  相似文献   

9.
Quantifying mercury (Hg) emissions from active volcanoes is of particular interest for better constraining the global cycle and environmental impact of this highly toxic element. Here we report on the abundance of total gaseous (TGM = Hg0(g) + HgII(g)) and particulate (Hg(p)) mercury in the summit gas emissions of La Soufrière andesitic volcano (Guadeloupe island, Lesser Antilles), where enhanced degassing of mixed hydrothermal-magmatic volatiles has been occurring since 1992 from the Southern summit crater. We demonstrate that Hg in volcanic plume occurs predominantly as gaseous mercury, with a mean TGM/Hg(p) mass ratio of ~ 63. Combining the mean TGM/H2S mass ratio of the volcanic plume (~ 3.2 × 10− 6), measured close to the source vent, with the H2S plume flux (~ 0.7 t d− 1), determined simultaneously, allows us to estimate a gaseous mercury emission rate of 0.8 kg yr− 1 from La Soufrière summit dome. Somewhat lower TGM/Stot mass ratio in fumarolic gases from the source vent (4.4 × 10− 7) suggests that plume chemical composition is not well represented by the emission source (fumaroles) due to chemical processes prior to (or upon) discharge. Current mercury emission from La Soufrìere volcano represents a very small contribution to the estimated global volcanic budget for this element.  相似文献   

10.
The late Paleozoic adakitic rocks are closely associated with the shoshonitic volcanic rocks in the western Tianshan Mountains, China, both spatially and temporally. The magmatic rocks were formed during the period from the middle to the late Permian with isotopic ages of 248-268 Ma. The 87Sr/86Sr initial ratios of the rocks are low in a narrow variation range (-0.7050). The 143Nd/144Nd initial ratios are high (-0.51240) with positive εND(t) values (+1.28-+4.92). In the εNd(t)-(87Sr/86Sr)i diagram they fall in the first quadrant. The association of the shoshonitic and adakitic rocks can be interpreted by a two-stage model: the shoshonitic volcanic rocks were formed through long-term fractional crystallization of underplated basaltic magma, while the following partial melting of the residual phases formed the adakitic rocks.  相似文献   

11.
Summary The crystal structure of Ca5(PO4)2SiO4 (silico-carnotite) has been determined from 3358 x-ray diffraction data collected by a counter method and has been refined toR w =0.038,R=0.045, in space group Pnma. The unit cell parameters area=6.737 (1) Å,b=15.508 (2) Å andc=10.132 (1) Å at 24°C;Z=4. The observed density is 3.06 and the calculated density is 3.03 g · cm–3. The crystal contains about 2.5% V2O5 as an impurity. The bond lengths within the tetrahedral anions suggest that substitution or disorder of PO4 3–, SiO4 4– and possibly VO4 3– occurs among the anion sites. The structure has some relationship to that of Ca5(PO4)3OH, the predominant inorganic phase in the human body, but suggests that the Ca5(PO4)3OH type structure may not be stable without some of the OH positions being filled. Ca5(PO4)2SiO4 is more closely related to K3Na(SO4)2 (glaserite) if it is considered that there are systematic cation vacancies in Ca5(PO4)2SiO4.This type of structure is consistent with the view that cation vacancies in the glaserite-type structure account for solid solutions between Ca2SiO4 and Ca3(PO4)2 and between Ca3(PO4)2 and CaNaPO4.
Die Kristallstruktur vonCa 5(PO 4)2 SiO 4 (Silicocarnotit)
Zusammenfassung Die Kristallstruktur von Ca5(PO4)2SiO4 (Silicocarnotit) wurde aus 3358 Röntgendiffraktometer-Daten bestimmt und in Raumgruppe Pnma aufR w =0,038,R=0,045 verfeinert. Die Gitterkonstanten (bei 24° C) sind:a=6,737 (1) Å,b=15,508 (2) Å undc=10,132 (1) Å,Z=4; Dobs.=3,06 g · cm–3, Dexp.=3,03 g · cm–3. Der Kristall enthält etwa 2,5% V2O5 als Verunreinigung. Die Bindungslängen in den tetraedrischen Anionen legen nahe, daß unter den Anionenplätzen gegenseitige Vertretung oder Unordnung von PO4 3–, SiO4 4– und möglicherweise VO4 3– auftritt. Die Struktur zeigt einige Verwandtschaft zu der von Ca5(PO4)3OH, der wichtigsten anorganischen Substanz im menschlichen Körper, weist aber darauf hin, daß eine Struktur vom Ca5(PO4)3OH-Typ ohne Besetzung eines Teiles der OH-Position nicht stabil ist. Ca5(PO4)2SiO4 zeigt engere Beziehungen zu K3Na(SO4)2 (Glaserit), wenn man berücksichtigt, daß in Ca5(PO4)3SiO4 systematische Kationen-Leerstellen sind. Dieser Strukturtyp ist mit derAuffassung in Übereinstimmung, daß Kationenleerstellen für die festen Lösungen zwischen Ca2SiO4 und Ca3(PO4)2 und zwischen Ca3(PO4)2 und CaNaPO4 verantwortlich sind.


With 9 Figures  相似文献   

12.
A new mineral, jichengite ideally 3CuIr2S4·(Ni,Fe)9S8, was found as a constituent of placer concentrates at a branch of the Luanhe River, about 220 km NNE of Beijing. Its associated minerals are chromite, magnetite, ilmenite, zircon, native gold, iridium, ferrian platinum and osmium. The placer is distributed at places around ultrabasic rock, which hosts chromite orebodies, from which PGM originated. Jichengite occurs commonly as massive or granular aggregates. No perfect morphology of jichengite was observed. It is steel gray and opaque with metallic luster and black streak. It has a Mohs hardness of 5, VHN (d) μm 21.65, Hm 4.465, Hv = 268.1 N/um2. It is brittle and weakly magnetic. Cleavage {010} is rarely observed. No fracture was observed. Density could not be measured because of its too small grain size. Density (calc.) is 7.003 g/cm3. Reflect light is reddish-brown, without internal reflections. Anisotropism is distinct with grayish or yellowish white in crossed nicols and bluish violet-copper red in uncrossed nicols. Jichengite shows weak pleochroism and strong bireflectance. The reflectance values in air at the Standard Commission on Ore Mineralogy wavelengths are: 38.9, 34.3 at 470 nm, 38.9, 34.5 at 546 nm, 39.1, 35.3 at 590 nm, 39.2, 36.8 at 650 nm, parallel-axial extinction. The six strongest lines in the X-ray powder-diffraction pattern [d in ?, (I), (hkl)] are: 3.00 (100) (116), 2.80 (50) (205), 2.48. (50) (208), 1.916 (40) (2, 1, 10), 1.765 (60) (220), 1.753 (50) (2, 0, 16). Five chemical analyses carried out, yielding the following results: S 25.76 (25.49-5.97), Fe 10.03 (9.78-10.31), Co 0.78 (0.75-0.81), Ni 12.48 (12.32-12.85), Cu 4.77 (4.69-4.83), Ir 46.98(46.14-47.89), sum 100.80wt%, which produced a formula (Cu1.556Fe0.976)2.532(Ir5.063S10.126)·(Fe2.7451Ni4.404Co0.273)7.422S6.517. The ideal formula is X10Ir5S17.5, which was calculated by single crystal structure analyses, where X = Cu(II) + Fe(II) + Ni(II) + Co(II). The single crystal data were collected using a diffractometer with Mo Ka radiation and a graphite monochromate. The crystal system is trigonal with space group R3m and unit cell parameters a=7.0745(14) ?, c=34.267(10) ? (The superstructure not found), and the final R Indices [with 564 observed reflections, I>2sigma (I)] are R1=0.0495, wR2=0.1349. The specimens are deposited in the Geological Museum of China.  相似文献   

13.
Remediation of uranium in the deep unsaturated zone is a challenging task, especially in the presence of oxygenated, high-carbonate alkalinity soil and pore water composition typical for arid and semi-arid environments of the western regions of the U.S. This study evaluates the effect of various pore water constituencies on changes of uranium concentrations in alkaline conditions, created in the presence of reactive gases such as NH3 to effectively mitigate uranium contamination in the vadose zone sediments. This contaminant is a potential source for groundwater pollution through slow infiltration of soluble and highly mobile uranium species towards the water table. The objective of this research was to evaluate uranium sequestration efficiencies in the alkaline synthetic pore water solutions prepared in a broad range of Si, Al, and bicarbonate concentrations typically present in field systems of the western U.S. regions and identify solid uranium-bearing phases that result from ammonia gas treatment. In previous studies (Szecsody et al. 2012; Zhong et al. 2015), although uranium mobility was greatly decreased, solid phases could not be identified at the low uranium concentrations in field-contaminated sediments. The chemical composition of the synthetic pore water used in the experiments varied for silica (5–250 mM), Al3+ (2.8 or 5 mM), HCO3 (0–100 mM) and U(VI) (0.0021–0.0084 mM) in the solution mixture. Experiment results suggested that solutions with Si concentrations higher than 50 mM exhibited greater removal efficiencies of U(VI). Solutions with higher concentrations of bicarbonate also exhibited greater removal efficiencies for Si, Al, and U(VI). Overall, the silica polymerization reaction leading to the formation of Si gel correlated with the removal of U(VI), Si, and Al from the solution. If no Si polymerization was observed, there was no U removal from the supernatant solution. Speciation modeling indicated that the dominant uranium species in the presence of bicarbonate were anionic uranyl carbonate complexes (UO2(CO3)2−2 and UO2(CO3)3−4) and in the absence of bicarbonate in the solution, U(VI) major species appeared as uranyl-hydroxide (UO2(OH)3 and UO2(OH)4−2) species. The model also predicted the formation of uranium solid phases. Uranyl carbonates as rutherfordine [UO2CO3], cejkaite [Na4(UO2)(CO3)3] and hydrated uranyl silicate phases as Na-boltwoodite [Na(UO2)(SiO4)·1.5H2O] were anticipated for most of the synthetic pore water compositions amended from medium (2.9 mM) to high (100 mM) bicarbonate concentrations.  相似文献   

14.
 The presence of zeolitic water, with a reversible hydration behaviour, was determined by structural and kinetic studies on synthetic mixite BiCu6(OH)6(AsO4)3·nH2O (n≤3). X-ray diffraction and infrared-spectroscopic investigations were performed on single crystals. Isothermal thermogravimetric experiments were carried out to determine the reaction kinetics of the de- and rehydration processes. The single-crystal structure refinement of a fully hydrated crystal yielded five partially occupied Ow positions (Ow=oxygen atom of a H2O molecule) within the tube-like channels of the hexagonal [BiCu6(OH)6(AsO4)3] framework. For the partially dehydrated form, with n≈1, at least two of these sites were found to be occupied significantly. In addition, the structural investigations allowed two different intra-framework hydrogen bonds to be distinguished that are independent of the extra-framework water distribution and are responsible for the stability of the self-supporting framework. The kinetic analysis of the rate data in the 298–343K temperature range shows that the dehydration behaviour obeys a diffusion-controlled reaction mechanism with an empirical activation energy of E a dehyd=54±4 kJ mol–1. A two-stage process controls rehydration of which the individual steps were attributed to an initial surface-controlled (E a hyd-I=6±1 kJ mol–1) and subsequent diffusion-controlled reaction mechanism (E a hyd-II=12±1 kJ mol–1). The estimated hydration enthalpy of 42±5 kJ mol–1 supports the distribution model of molecular water within the channels based on a purely hydrogen-bonded network. Received June 26, 1996 / Revised, accepted November 11, 1996  相似文献   

15.
We report rates of oxygen exchange with bulk solution for an aqueous complex, IVGeO4Al12(OH)24(OH2)128+(aq) (GeAl12), that is similar in structure to both the IVAlO4Al12(OH)24(OH2)127+(aq) (Al13) and IVGaO4Al12(OH)24(OH2)127+(aq) (GaAl12) molecules studied previously. All of these molecules have ε-Keggin-like structures, but in the GeAl12 molecule, occupancy of the central tetrahedral metal site by Ge(IV) results in a molecular charge of +8, rather than +7, as in the Al13 and GaAl12. Rates of exchange between oxygen sites in this molecule and bulk solution were measured over a temperature range of 274.5 to 289.5 K and 2.95 < pH < 4.58 using 17O-NMR.Apparent rate parameters for exchange of the bound water molecules (η-OH2) are kex298 = 200 (±100) s−1, ΔH = 46 (±8) kJ · mol−1, and ΔS = −46 (±24) J · mol−1 K−1 and are similar to those we measured previously for the GaAl12 and Al13 complexes. In contrast to the Al13 and GaAl12 molecules, we observe a small but significant pH dependence on rates of solvolysis that is not yet fully constrained and that indicates a contribution from the partly deprotonated GeAl12 species.The two topologically distinct μ2-OH sites in the GeAl12 molecule exchange at greatly differing rates. The more labile set of μ2-OH sites in the GeAl12 molecule exchange at a rate that is faster than can be measured by the 17O-NMR isotopic-equilibration technique. The second set of μ2-OH sites have rate parameters of kex298 = 6.6 (±0.2) · 10−4 s−1, ΔH = 82 (±2) kJ · mol−1, and ΔS = −29 (±7) J · mol−1 · K−1, corresponding to exchanges ≈40 and ≈1550 times, respectively, more rapid than the less labile μ2-OH sites in the Al13 and GaAl12 molecules. We find evidence of nearly first-order pH dependence on the rate of exchange of this μ2-OH site with bulk solution for the GeAl12 molecule, which contrasts with Al13 and GaAl12 molecules.  相似文献   

16.
Stable oxygen and carbon isotopefractionation during the experimental formation ofordered norsethite (BaMg[CO3]2) from thereaction of anhydrous BaCO3 (witherite) withrelatively low concentrated sodium-magnesiumbicarbonate solutions has been studied between20° and 135 °C. In the investigatedtemperature range, 18O and 13C are enrichedin norsethite with respect to water and gaseous carbondioxide, respectively. Whereas 18O/16Opartitioning is intermediate between those of theBaCO3–H2O and MgCO3–H2O systems,13C/12C partitioning is more similar to thatfor BaCO3–CO2. Between 20° and90°C, the temperature dependences of the18O/16O and 13C/12C fractionationfactors are represented by the equations (T in °K):103 ln BaMg[CO3]2-H2O = 2.83 106T--2.85, and 103lnBaMg[CO3]2-CO2(gas) = 1.78 106T--10.16. The later equation considers carbon isotope fractionationbetween the dissolved carbonate ion and carbon dioxide measured by Halaset al. (1997). Under standard state conditions (25 °C) the fractionation factors in the system BaMg[CO3]2-CO2-H2O are: Oxygen isotopes: BaMg(CO3)2-H2O = 1.02941, BaMg(CO3)2-OH-(aq) = 1.07059,BaMg(CO3)2-CO2(gas) = 0.98868, andBaMg(CO3)2-H2CO3 * = 0.98843; carbon isotopes:BaMg(CO3)2-CO2(gas) = 1.00992,BaMg(CO3)2-H2CO3 * = 1.01099,BaMg(CO3)2-HCO3 - = 1.00194,BaMg(CO3)2-CO3 2- = 1.00491 or 1.00150.The spontaneous precipitation of aBaMg[CO3]2 gel at 20 °C,followed by the alteration of the products at20° or 60°C for 31 days,demonstrated isotope exchange reactions betweensolids and mother solutions dueto recrystallization. Isotope equilibrium, wasnot reached within run time.  相似文献   

17.
A luminol chemiluminescence (CL) detection/flow injection analysis technique coupled with ion chromatography (IC) has been employed for the determination of low levels of Cu(II) and Co(II) in drinking water samples. The detection system was the CL of luminol/perborate or luminol/percarbonate in alkaline medium catalyzed by these transition metals. Oxalic acid in a solution of KOH and N(CH3)4OH was used as an eluent in the IC to improve the column selectivity (Dionex CS5A). Concentration and pH of the eluent affected simultaneously the CL intensity and the retention times (t R). Under the elution conditions used here, the retention times of both metal ions were much greater when the concentration of oxalic acid was decreased. Thus, R t(Cu) = 2.15 min and t R(Co) = 4.50 min were measured at 80 mM oxalic acid concentration, while t R raised to 4.12 and 18 min for Cu(II) and Co(II), respectively, using a 10-mM concentration, but on the other hand, the CL signals showed substantially higher values when the concentration of oxalic acid was lesser in the eluent. An optimum oxalic acid concentration of 20 mM and an eluent pH = 4.7 were selected in order to have reproducible signals with a total analysis time of 10 min. The optimum flow rate for the mobile phase was 1.5 mL min?1. The concentration and pH of the postcolumn reagents also affected the CL signal, obtaining optimum concentrations of 5 mM for both oxidants (perborate or percarbonate) and luminol, this last dissolved in a 0.1-M borate buffer at pH 12. The optimum flow rate for the postcolumn reagents was 1 mL min?1. Linear calibrations for both transition metal ions were established, with calculated detection limits of 0.15 ng mL?1 for Co(II) and 0.20 μg mL?1 for Cu(II). Others ions commonly present in natural waters showed little or no interference. The method was successfully applied to water samples spiked with Cu(II) and Co(II), obtaining recoveries in the range of 85–128%, depending on the metal concentrations.  相似文献   

18.
The widespread mid-Cretaceous igneous rocks in the northern margin of the Lhasa Block play an important role in understanding deep geologic processes, matter exchange at depth, and tectonic evolution of the Tibetan Plateau. In this paper, we report new zircon U-Pb ages, whole-rock major and trace element data, and Sr-Nd-Pb-Hf isotope data from the Talabuco andesites and basalts, which were dated at ~111 Ma. These rocks belong to the high-K calc-alkaline and shoshonite series, and show enrichment in terms of large-ion-lithophile elements (LILEs, e.g. Rb, U, and Th) and light rare earth elements (LREEs), but depletion of high-field-strength elements (HFSEs, e.g. Nb and Ti). The (87Sr/86Sr)i ratios of the Talabuco andesites range from 0.7043 to 0.7048, and the εNd(t) contents range from 0.68 to 4.33. The ratios of 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb are 18.6064–18.8993, 15.6233–15.6707, and 38.8634–39.1720, respectively. The 176Lu/177Hf and 176Hf/177Hf ratios of one sample range from 0.00081 to 0.00206 and 0.28280 to 0.28296, respectively. The εHf(t) values for this sample range from 3.4 to 9.1, and the two-stage model Hf age (TDM2) is 0.59–0.95 Ga. Combined with previous studies, the geochemical and isotopic data reveal that the parental magma of the Talabuco andesites was probably derived by partial melting of EM II-type sub-continental lithospheric mantle (SCLM). The Talabuco andesites are most likely generated by fractionation of mafic magma contaminated by subducted oceanic sediment and represent product of arc magmatism due to northward subduction of the Yarlung Zangbo Neo-Tethyan slab or southward subduction of the Bangong Meso-Tethyan slab.  相似文献   

19.
Orogenic gold mineralization at the Damang deposit, Ghana, is associated with hydrothermal alteration haloes around gold‐bearing quartz veins, produced by the infiltration of a H2O–CO2–K2O–H2S fluid following regional metamorphism. Alteration assemblages are controlled by the protoliths with sedimentary rocks developing a typical assemblage of muscovite, ankerite and pyrite, while intrusive dolerite bodies contain biotite, ankerite and pyrrhotite, accompanied by the destruction of hornblende. Mineral equilibria modelling was undertaken with the computer program thermocalc , in subsets of the model system MnO–Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–CO2–H2O–TiO2–Fe2O3, to constrain conditions of regional metamorphism and the subsequent gold mineralization event. Metapelites with well‐developed amphibolite facies assemblages reliably constrain peak regional metamorphism at ~595 °C and 5.5 kbar. Observed hydrothermal alteration assemblages associated with gold mineralization in a wide compositional range of lithologies are typically calculated to be stable within P–T–X(CO2) arrays that trend towards lower temperatures and pressures with increasing equilibrium fluid X(CO2). These independent P–T–X(CO2) arrays converge and the region of overlap at ~375–425 °C and 1–2 kbar is taken to represent the conditions of alteration approaching equilibrium with a common infiltrating fluid with an X(CO2) of ~0.7. Fluid‐rock interaction calculations with M–X(CO2) diagrams indicate that the observed alteration assemblages are consistent with the addition of a single fluid phase requiring minimum fluid/rock ratios on the order of 1.  相似文献   

20.
The western Kunlun orogen occupies a key position along the tectonic junction between the Pan-Asian and Tethyan domains, reflecting Proto- and Palaeo-Tethys subduction and terrane collision during early Palaeozoic to early Mesozoic time. We present the first detailed zircon U–Pb chronology, major and trace element, and Sr–Nd–O–Hf isotope geochemistry of the Qiukesu pluton and its microgranular enclaves from this multiple orogenic belt. SHRIMP zircon U–Pb dating shows that the Qiukesu pluton was emplaced in the early Silurian (ca. 435 Ma). It consists of weakly peraluminous high-K calc-alkaline monzogranite and syenogranite, with initial 87Sr/86Sr ratios of 0.7131–0.7229, ?Nd(T) of –4.1 to –5.7, δ18O of 8.0–10.8‰, and ?Hf(T) (in situ zircon) of –4.9. Elemental and isotopic data suggest that the granites formed by partial melting of lower-crustal granulitized metasedimentary-igneous Precambrian basement triggered by underplating of coeval mantle-derived enclave-forming intermediate magmas. Fractional crystallization of these purely crustal melts may explain the more felsic end-member granitic rocks, whereas such crustal melts plus additional input from coeval enclave-forming intermediate magma could account for the less felsic granites. The enclaves are intermediate (SiO2 57.6–62.2 wt.%) with high K2O (1.8–3.6 wt.%). They have initial 87Sr/86Sr ratios of 0.7132–0.7226, ?Nd(T) of –5.0 to –6.0, δ18O of 6.9–9.9‰, and ?Hf(T) (in situ zircon) of –8.1. We interpret the enclave magmas as having been derived by partial melting of subduction-modified mantle in the P–T transition zone between the spinel and spinel-garnet stability fields. Our new data suggest that subduction of the Proto-Tethyan oceanic crust was continuous to the early Silurian (ca. 435 Ma); the final closure of the Proto-Tethys occurred in the middle Silurian.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号