首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 228 毫秒
1.
Synthetic clinopyroxenes of compositions between CaFe3+AlSiO6 and CaFe 0.85 3+ Ti0.15Al1.15Si0.85O6 have been studied by 57Fe Mössbauer spectroscopy. The spectra consist of two doublets assigned to Fe3+ in M1 and T sites. From the area ratios of the doublets the site occupancies of Fe3+ and Al were determined. Si decreases from 1.00 to 0.85 and Al+Fe3+ increases from 1.00 to 1.15 per formula unit with increasing CaTiAl2O6 component of the clinopyroxene. The atomic ratio of Fe3+(T)/Fe3+(total) is 0.11–0.16; 4.5–7.5 percent of the T sites are occupied by Fe3+. Thus the presence of Si-O-Fe3+, Al-O-Fe3+, and Fe3+-O-Fe3+ bonds is expected in addition to Si-O-Si, Si-O-Al and Al-O-Al bonds. However, the possibility of the former bonds being present would be small, because the amount of Fe3+(T) is far less than that of Si and Al. The isomer shift of Fe3+(T) is one of the largest in the values found previously for Fe3+(T) in silicates. It increases with increasing CaTiAl2O6 component and seems to be correlated to the ionic character of the cation — anion bonds calculated from electronegativity. The quadrupole splittings of Fe3+(M1) and Fe3+(T) decrease with the substitution of Fe3+?Ti4+ in the M1 and of Si?Al in the T sites.  相似文献   

2.
Electron paramagnetic resonance (EPR) measurements on dolomites from 9 different localities revealed contents of Mn2+ on two axial sites in all of them. The center with largerzero-field splitting (ZFS) was always present in much higher concentrations, except for a sample from Oberdorf it amounted to 95 percent or more of the total. This dolomite was the only one with a considerable content of Fe3+ on one axial site, almost certainly substituting for Mg2+. With X-ray irradiation the concentration of Fe3+ increased by about 30 percent showing that at least some of the divalent iron also substitutes for Mg. The ZFSs for Fe3+ and Mn2+ with larger ZFS increase with decreasing temperature in the same manner. The previous assignment of this Mn2+ to Mg sites is thus confirmed. An almost regular increase of the trigonal distortions at the divalent ions in different carbonates with increasing ionic radius is indicated by their crystal structure data. The very small ZFS for Mn2+ on Ca sites in dolomite must thus result from a strong local relaxation in the direction of a more regular octahedral arrangement. It is difficult to explain the different distribution ratios of Mn2+ on Ca and Mg sites with differences in growth and/or annealing temperatures alone. Thus different supply of Mg2+ and Ca2+ in the growth solutions may also contribute.  相似文献   

3.
Synthetic Fe3+-melilites containing NaCaFe3+-Si2O7-, Ca2Fe3+AlSiO7- or Sr2Fe3+AlSiO7-components have been studied by 57Fe Mössbauer spectroscopy. The spectrum of åkermanite containing an NaCaFe3+Si2O7-component consists of one doublet identified to belong to Fe3+ in T1 sites. The spectra of åkermanite and gehlenite containing Ca2Fe3+ AlSiO7- or Sr2Fe3+ AlSiO7-component consist of two doublets. The inner and outer doublets are identified to belong to Fe3+ in the less distorted T1 and that in the more distorted T2 sites, respectively. The area ratios of the spectra show that the site occupancy of Fe3+ (T1) in gehlenite is less than that in åkermanite in which the distribution of Fe3+ in T1 and T2 sites is apparently random. The different distributions can be explained in terms of competition between minimizing the deficiency in the electrostatic valence and the preference of Al for T1 sites which the isomer shift measurements show to be more ionic.  相似文献   

4.
The electron paramagnetic resonance (EPR) spectrum of Cr3+ in synthetic crystals of forsterite consists primarily of lines of Cr3+ “isolated” at the M1 and M2 positions in a “perfect” crystal environment without local charge compensation. In addition it shows two nonequivalent superhyperfine-split sextets with different intensities which are due to strong interaction of the Cr3+ electron spin S (S=3/2) with an adjacent nuclear spin I(I=5/2). Electron nuclear double resonance (ENDOR) experiments revealed that the sextets result from Cr3+ (M1) - Al3+ and Cr3+ (M2) - Al3+ pairs, Al being located at adjacent tetrahedral Si sites. The g, D, A, and A′ tensor components of the Cr3+ - Al3+ pairs have been determined at room temperature. The values of the pairs are distinct although they are not very different from the corresponding data of “isolated” Cr3+. From the intensities of the EPR spectra the relative concentration of the Cr3+ - Al3+ pairs with respect to “isolated” Cr3+ has been estimated.  相似文献   

5.
 We have investigated a well-ordered sample of natural Cr-bearing dickite from Nowa Ruda (Lower Silesia, Poland) using electron paramagnetic resonance (EPR) at X- and Q-band frequencies (9.42 and 33.97 GHz, respectively) and optical diffuse reflectance spectroscopy. The observation of the spin-forbidden transitions at 15500 and 14690 cm−1 allows us to unambiguously identify the major contribution of octahedrally coordinated Cr3+ ions in the optical spectrum. The X- and Q-band EPR spectra show two superposed Cr3+ signals. The corresponding fine-structure parameters were determined at room temperature and 145 K. These results suggest the substitution of Cr3+ for Al3+ in equal proportions in the two unequivalent octahedral sites of the dickite structure. In kaolin group minerals, the distortion around Cr3+ ions (λ≈ 0.2–0.4) in Al sites is significantly less rhombic than that observed around Fe3+ ions (λ≈ 0.6–0.8). Received: 29 June 2001 / Accepted: 22 October 2001  相似文献   

6.
Optical absorption spectra (OAS) of synthetic single crystals of the solid solution spinel sensu stricto (s.s.)–magnesioferrite, Mg(Fe3+Al1???y)2O4 (0?y?≤ 0.3), have been measured between 12 500 and 28 500?cm?1. Chemical composition and Fe3+ site distribution have been measured by electron microprobe and Mössbauer spectroscopy, respectively. Ferric iron is ordered to the tetrahedral site for samples with small magnesioferrite component, and this ordering is shown to increase with magnesioferrite component. The optical absorption spectra show a strong increase in band intensities with Fe3+→Al substitution. Prominent and relatively sharp absorption bands are observed at 25 300 and 21 300?cm?1, while less intense bands occur at 22 350, 18 900, 17 900 and 15 100?cm?1. On the basis of band energies, band intensities and the compositional effect on band intensity, as well as structural considerations, we assign the observed bands to electronic transitions in IVFe3+VIFe3+clusters. A linear relationship (R 2= 0.99) between the αnet value of the absorption band at 21 300?cm?1 and [IVFe3+]?·?[VIFe3+] concentration product has been defined: αnet=2.2?+?15.8 [IVFe3+]?·?[VIFe3+]. Some of the samples have been heat-treated between 700 and 1000?°C to investigate the relation between Fe3+ ordering and absorption spectra. Increase of cation disorder with temperature is observed, which corresponds to a 4% reduction in the number of active clusters. Due to the high spatial resolution (??~?10?μm), the OAS technique may be used as a microprobe for determination of Fe3+ concentration or site partitioning. Potential applications of the technique include analysis of small crystals and of samples showing zonation with respect to total Fe3+ and/or ordering.  相似文献   

7.
Orange, ochre-coloured, light green and dark blue varieties of kyanite, ideally Al2SiO5, from Loliondo, Tanzania, have been characterised by electron microprobe analysis and polarised infrared and optical absorption spectroscopy. All colour varieties show elevated Fe contents of 0.39 to 1.31 wt.% FeO, but Ti contents only in the range of the EMP detection limit. Orange and ochre-coloured crystals have Mn contents of 0.23 and 0.06 wt.% MnO, respectively, the dark blue kyanite contains 0.28 wt.% Cr2O3, while the light green sample is nearly free from transition metal cations other than Fe. Polarised infrared spectra reveal OH defect concentrations of 3 to 17 wt.ppm H2O with structural OH defects partially replacing the OB (O2) oxygen atoms. Polarised optical absorption spectra show that the colour of all four varieties is governed by crystal field d-d transitions of trivalent cations, i.e. Fe3+ (all samples), Mn3+ (orange and ochre) and Cr3+ (blue kyanite), replacing Al in sixfold coordinated triclinic sites of the kyanite structure. Intervalence charge transfer, the prevalent colour-inducing mechanism in ‘usual’ (Cr-poor) blue kyanites, seems to play a very minor, if any, role in the present samples. Crystal field calculations in both a ‘classic’ tetragonal and in the semiempirical Superposition Model approach, accompanied by distance- and angle-least-squares refinements, indicate that Fe3+ preferably occupies the Al4 site, Cr3+ prefers the Al1 and Al2 sites, and Mn3+ predominantly enters the Al1 site. In each case specific local relaxation effects were observed according to the crystal chemical preferences of these transition metal cations. Furthermore, the high values obtained in the calculations for the interelectronic repulsion parameter Racah B correspond to a high ionic contribution to Me3+–O bonding in the kyanite structure. In the particular case of the blue sample, band positions specifically related to the high Racah B value enable this ‘unusual’ type of blue colouration of kyanite solely due to Cr3+ cations.  相似文献   

8.
The distribution of Fe3+ and Ga3+ between the two tetrahedral sites in three synthetic melilites has been studied by using 57Fe Mössbauer spectroscopy. In the melilite, (Ca2Ga2SiO7)50 (Ca2Fe3+GaSiO7)50 (mol %), the distribution of Fe3+ and Ga3+ in T1 and T2 sites is apparently random, which can be explained in terms of the electrostatic valence rule. However in the melilites, (Ca2MgSi2O7)52 (Ca2Fe3+GaSiO7)42 (Ca2Ga2SiO7)6 and (Ca2MgSi2O7)62 (Ca2Fe3+GaSiO7)36 (Ca2Ga2SiO7)2 (mol %), Fe3+ shows preference for the more ionic T1 site and Ga3+ for the more covalent T2 site. If the electronegativity of Ga3+ is assumed to be larger than that of Fe3+, the mode of distribution of Fe3+ and Ga3+ can be explained in terms of our previous hypothesis that a large electronegativity induces a stronger preference for the more covalent T2 site.  相似文献   

9.
Lithian ferrian enstatite with Li2O = 1.39 wt% and Fe2O3 7.54 wt% was synthesised in the (MgO–Li2O–FeO–SiO2–H2O) system at P = 0.3 GPa, T = 1,000°C, fO2 = +2 Pbca, and a = 18.2113(7), b = 8.8172(3), c = 5.2050(2) Å, V = 835.79(9) Å3. The composition of the orthopyroxene was determined combining EMP, LA-ICP-MS and single-crystal XRD analysis, yielding the unit formula M2(Mg0.59Fe 0.21 2+ Li0.20) M1(Mg0.74Fe 0.20 3+ Fe 0.06 2+ ) Si2O6. Structure refinements done on crystals obtained from synthesis runs with variable Mg-content show that the orthopyroxene is virtually constant in composition and hence in structure, whereas coexisting clinopyroxenes occurring both as individual grains or thin rims around the orthopyroxene crystals have variable amounts of Li, Fe3+ and Mg contents. Structure refinement shows that Li is ordered at the M2 site and Fe3+ is ordered at the M1 site of the orthopyroxene, whereas Mg (and Fe2+) distributes over both octahedral sites. The main geometrical variations observed for Li-rich samples are actually due to the presence of Fe3+, which affects significantly the geometry of the M1 site; changes in the geometry of the M2 site due to the lower coordination of Li are likely to affect both the degree and the kinetics of the non-convergent Fe2+-Mg ordering process in octahedral sites.  相似文献   

10.
This paper is an extension of the earlier one dealing with kyanite in which the best fitting value of the oxygen ligand distance for Cr3+ is adopted to study the spectroscopic properties of Cr3+ ions doped at the two possible Al sites in the other two polymorphs of the aluminosilicate group (Al2O3 · SiO2), namely, andalusite and sillimanite. The superposition model and the crystal field analysis package recently developed for 3d ions doped at arbitrary low symmetry sites in crystals are used to predict energy levels and statevectors within the whole 3d 3 configuration. Then the values of the ground state zerofield splitting for Cr3+ ions at each Al sites in the two crystals are obtained. The splittings of the lower excited states 2 E and 4 T 2 as well as the admixture of 4 T 2 into 2 E have also been predicted. Comparison of our results with the available experimental data enable us to correlate the optical and EPR Spectroscopic properties with the substitutional Cr3+ sites. The conclusion is that in andalusite and sillimanite only the Al sites with nearly-octahedral six-fold coordination seem to be occupied by Cr3+ ions.  相似文献   

11.
Data on the structural and valence distribution of Cr and Fe in chrysoberyl and in alexandrite, its gem variety, are given. It is shown that the Cr3+ line in the natural Ural and Tanzania samples is the strongest in the M1 site and for the synthetic stones, in the M2 site. During the annealing of the alexandrite crystals, Cr3+ passes from the smaller M1 site into the larger M2 site. The M?ssbauer spectroscopy quantitatively determined the distribution of different valence Fe ions. The various proportions of both Fe2+ and Fe3+ ions isomorphically entering the octahedral sites in the BeAl2O4 crystal structure were established.  相似文献   

12.
Using the superposition model in conjunction with our crystal field analysis package recently developed for 3d ions doped at arbitrary low symmetry sites in crystals, the energy levels and statevectors have been predicted within the whole 3d 3 configuration of Cr3+ at the four possible triclinic sites in kyanite (Al2O3∶SiO2). The values of the ground state zero-field splitting for each of the four Al sites are evaluated. The splittings of the lower excited state 2 E as well as the admixture of 4 T 2 state into 2 E have also been determined. The predicted results are compared with the available experimental data on the four possible, but so far not uniquely identified, substitutional Cr3+ sites in kyanite thus enabling correlation of the spectroscopic properties and substitutional sites.  相似文献   

13.
Four samples of synthetic chromium-bearing spinels of (Mg, Fe2+)(Cr, Fe3+)2O4 composition and four samples of natural spinels of predominantly (Mg, Fe2+)(Al, Cr)2O4 composition were studied at ambient conditions by means of optical absorption spectroscopy. Synthetic end-member MgCr2O4 spinel was also studied at pressures up to ca. 10 GPa. In both synthetic and natural samples, chromium is present predominantly as octahedral Cr3+ seen in the spectra as two broad intense absorption bands in the visible range caused by the electronic spin-allowed 4 A 2g  → 4 T 2g and 4 A 2g  → 4 T 1g transitions (U- and Y-band, respectively). A distinct doublet structure of the Y-band in both synthetic and natural spinels is related to trigonal distortion of the octahedral site in the spinel structure. A small, if any, splitting of the U-band can only be resolved at curve-fitting analysis. In all synthetic high-chromium spinels, a couple of relatively narrow and weak bands of the spin-allowed transitions 4 A 2g  → 2 E g and 4 A 2g  → 2 T 1g of Cr3+, intensified by exchange-coupled interaction between Cr3+ and Fe3+ at neighboring octahedral sites of the structure, appear at ~14,400 and ~15,100 cm?1. A vague broad band in the range from ca. 15,000 to 12,000 cm?1 in synthetic spinels is tentatively attributed to IVCr2+ + VICr3+ → IVCr3+ + VICr2+ intervalence charge-transfer transition. Iron, mainly as octahedral Fe3+, causes intense high-energy absorption edge in near UV-range (ligand–metal charge-transfer O2? → Fe3+, Fe2+ transitions). As tetrahedral Fe2+, it appears as a strong infrared absorption band at around 4,850 cm?1 caused by electronic spin-allowed 5 E → 5 T 2 transitions of IVFe2+. From the composition shift of the U-band in natural and synthetic MgCr2O4 spinels, the coefficient of local structural relaxation around Cr3+ in spinel MgAl2O4–MgCr2O4 system was evaluated as ~0.56(4), one of the lowest among (Al, Cr)O6 polyhedra known so far. The octahedral modulus of Cr3+ in MgCr2O4, derived from pressure-induced shift of the U-band of Cr3+, is ~313 (50) GPa, which is nearly the same as in natural low-chromium Mg, Al-spinel reported by Langer et al. (1997). Calculated from the results of the curve-fitting analysis, the Racah parameter B of Cr3+ in natural and synthetic MgCr2O4 spinels indicates that Cr–O-bonding in octahedral sites of MgCr2O4 has more covalent character than in the diluted natural samples. Within the uncertainty of determination in synthetic MgAl2O4 spinel, B does not much depend on pressure.  相似文献   

14.
Synthetic melilites on the join Ca2MgSi2O7 (åkermanite: Ak)-Ca2Fe3+AlSiO7 (ferrialuminium gehlenite: FAGeh) were studied using X-ray powder diffraction and 57Fe Mössbauer spectroscopic methods to determine the distribution of Fe3+ between two different tetrahedral sites (T1 and T2), and the relationship between ionic substitution and incommensurate (IC) structure. Melilites were synthesized from starting materials with compositions of Ak100, Ak80FAGeh20, Ak70FAGeh30 and Ak50FAGeh50 by sintering at 1,170–1,350 °C and 1 atm. The average chemical compositions and end-member components, Ak, FAGeh and Geh (Ca2Al2SiO7), of the synthetic melilites were Ca2.015Mg1.023Si1.981O7 (Ak100), Ca2.017Mg0.788Fe 0.187 3+ Al0.221Si1.791O7 (Ak78FAGeh19Geh3), Ca1.995Mg0.695Fe 0.258 3+ Al0.318Si1.723O7 (Ak69FAGeh25Geh6) and Ca1.982Mg0.495Fe 0.449 3+ Al0.519Si1.535O7 (Ak49FAGeh44Geh7), respectively. Rietveld refinements using X-ray powder diffraction data measured using CuK α -radiation at room temperature converged successfully with goodness-of-fits of 1.15–1.26. The refined Fe occupancies at the T1 and T2 sites and the Mg and Si contents determined by electron microprobe analysis gave the site populations of [0.788Mg + 0.082Fe3+ + 0.130Al]T1[0.104Fe3+ + 0.104Al + 1.792Si]T2 for Ak78FAGeh19Geh3, [0.695Mg + 0.127Fe3+ + 0.178Al]T1[0.132Fe3+ + 0.144Al + 1.724Si]T2 for Ak69FAGeh25Geh6 and [0.495Mg + 0.202Fe3+ + 0.303Al]T1[0.248Fe3+ + 0.216Al + 1.536Si]T2 for Ak49FAGeh44Geh7 (apfu: atoms per formula unit), respectively. The results indicate that Fe3+ is distributed at both the T1 and the T2 sites. The mean T1–O distance decreases with the substitution of Fe3+ + Al3+ for Mg2+ at the T1 site, whereas the mean T2–O distance increases with substitution of Fe3+ + Al3+ for Si4+ at the T2 site, causing decrease in the a dimension and increase in the c dimension. However, in spite of the successful Rietveld refinements for the X-ray powder diffraction data measured using CuK α-radiation at room temperature, each Bragg reflection measured using CuK α1-radiation at room temperature showed weak shoulders, which were not observed in those measured at 200 °C. The Mössbauer spectra of the melilites measured at room temperature consist of two doublets assigned to Fe3+ at the T1 site and two or three doublets to Fe3+ at the T2 site, implying the existence of multiple T1 and T2 sites with different site distortions. These facts can be interpreted in terms of the IC structure in all synthetic melilites at room temperature, respectively. The results of Mössbauer analysis indicate that the IC structure in melilite is caused by not only known multiple T1 site, but also multiple T2 site at room temperature.  相似文献   

15.
The color and spectroscopic properties of ironbearing tourmalines (elbaite, dravite, uvite, schorl) do not vary smoothly with iron concentration. Such behavior has often been ascribed to intervalence charge transfer between Fe2+ and Fe3+ which produces a new, intense absorption band in the visible portion of the spectrum. In the case of tourmaline, an entirely different manifestation of the interaction between Fe2+ and Fe3+ occurs in which the Fe2+ bands are intensified without an intense, new absorption band. At low iron concentrations, the intensity of light absorption from Fe2+ is about the same for Ec and Ec polarizations, but at high iron concentrations, the intensity of the Ec polarization increases more than ten times as much as Ec. This difference is related to intensification of Fe2+ absorption by adjacent Fe3+. Extrapolations indicate that pairs of Fe2+-Fe3+ have Fe2+ absorption intensity ~200 times as great as isolated Fe2+. Enhanced Fe2+ absorption bands are recognized in tourmaline by their intensity increase at 78 K of up to 50%. Enhancement of Fe2+ absorption intensity provides a severe limitration on the accuracy of determinations of Fe2+ concentration and site occupancy by optical spectroscopic methods. Details of the assignment of tourmaline spectra in the optical region are reconsidered.  相似文献   

16.
Electrical properties of natural alexandrite (BeAl2O4:Cr3+) are investigated by the thermally stimulated depolarization current (TSDC) technique. Samples are submitted to consecutive annealing processes and TSDC is carried out after each annealing, yielding bands with different parameters. These bands are fitted by a continuous distribution of relaxation parameters: activation energy and pre-exponential factor of the Arrhenius equation. It has been observed that annealing influences the dipole relaxation behavior, since it promotes a modification of Fe3+ and Cr3+ impurity distributions on sites of distinct symmetry: Al1 and Al2. In order to have a reference for comparison, TSDC is also carried out on a synthetic alexandrite sample, where the only impurity present is Cr3+ ion.  相似文献   

17.
The 57Fe Mössbauer spectra of deerites of different chemical composition, taken at several temperatures, show that Fe2+ and Fe3+ occupy all the six-coordinated lattice sites with a preference of Fe3+ probably for the M(1) to M(3) positions, and a preference of Fe2+ probably for the M(4) to M(6) and the M(7) to M(9) sites. The room and high temperature spectra reveal absorption patterns due to thermally activated Fe2+ → Fe3+ electron delocalization. The extent of electron delocalization is dependent on the chemical composition, e.g., the amount of ions (Mg, Mn, Al) substituting for Fe.  相似文献   

18.
Comparison of polarized optical absorption spectra of natural Ca-rich diopsides and synthetic NaCrSi2O6 and LiCrSi2O6 clinopyroxenes, evidences as vivid similarities, as noticeable differences. The similarities reflect the fact that in all cases Cr3+ enters the small octahedral M1-site of the clinopyroxene structure. The differences are due to some iron content in the natural samples causing broad intense near infrared bands of electronic spin-allowed dd transitions of Fe2+(M1, M2) and intervalence Fe2+/Fe3+ charge-transfer transition, and by different symmetry and different local crystal fields strength of Cr3+ in the crystal structures. The positions of the spin-allowed bands of Cr3+, especially of the low energy one caused by the electronic 4 A 2g → 2 T 1g transition, are found to be in accordance with mean M1–O distances. The local relaxation parameter ε calculated for limCr 3+ → 0 from the spectra and interatomic á Cr - O ñ \left\langle {Cr - O} \right\rangle and á Mg - O ñ \left\langle {Mg - O} \right\rangle distances yields a very high value, 0.96, indicating that in the clinopyroxene structure the local lattice relaxation around the “guest” ion, Cr3+, deviates greatly from the “diffraction” value, ε = 0, than in any other known Cr3+-bearing systems studied so far. Under pressure the spin-allowed bands of Cr3+ shift to higher energies and decrease in intensity quite in accordance with the crystal field theoretical expectations, while the spin-forbidden absorption lines remain practically unshifted, but also undergo a strong weakening. There is no evident dependence of the Racah parameter B of Cr3+ reflecting the covalence of the oxygen-chromium bond under pressure: within the uncertainty of determination it may be regarded as practically constant. The values of CrO6 octahedral modulus, k\textpoly\textloc k_{\text{poly}}^{\text{loc}} , derived from high-pressure spectra of natural chromium diopside and synthetic NaCrSi2O6 kosmochlor are very close, ~203 and ~196 GPa, respectively, being, however, nearly twice higher than that of MgO6 octahedron in diopside, 105(4) GPa, obtained by Thompson and Downs (2008). Such a strong stiffening of the structural octahedron, i.e. twice higher value of k\textCr3 + \textloc k_{{{\text{Cr}}^{3 + } }}^{\text{loc}} comparing with that of k\textMg2 + \textloc k_{{{\text{Mg}}^{2 + } }}^{\text{loc}} , may be caused by simultaneous substitution of Ca2+ by larger Na+ in the neighboring M2 sites at so-called jadeite-coupled substitution Mg2+ + Ca2+ → Cr3+ + Na+. It is also remarkable that the values of CrO6 octahedral modulus of NaCrSi2O6 kosmochlor obtained here are nearly twice larger than that of 90(16) GPa, evaluated by high-pressure X-ray structural refinement by Origlieri et al. (2003). Taking into account that the overall compressibility of the clinopyroxene structure should mainly be due to the compressibility of M1- and M2-sites, our k\textCr3 + \textloc k_{{{\text{Cr}}^{3 + } }}^{\text{loc}} -value, ~196 GPa, looks much more consistent with the bulk modulus value, 134(1) GPa.  相似文献   

19.
Fifteen samples of (Mg,Fe)SiO3 majorite with varying Fe/Mg composition and one sample of (Mg,Fe)(Si,Al)O3 majorite were synthesized at high pressure and temperature under different conditions of oxygen fugacity using a multianvil press, and examined ex situ using X-ray diffraction and Mössbauer and optical absorption spectroscopy. The relative concentration of Fe3+ increases both with total iron content and increasing oxygen fugacity, but not with Al concentration. Optical absorption spectra indicate the presence of Fe2+–Fe3+ charge transfer, where band intensity increases with increasing Fe3+ concentration. Mössbauer data were used in conjunction with electron microprobe analyses to determine the site distribution of all cations. Both Al and Fe3+ substitute on the octahedral site, and charge balance occurs through the removal of Si. The degree of Mg/Si ordering on the octahedral sites in (Mg,Fe)SiO3 majorite, which affects both the c/a ratio and the unit cell volume, is influenced by the thermal history of the sample. The Fe3+ concentration of (Mg,Fe)(Si,Al)O3 majorite in the mantle will reflect prevailing redox conditions, which are believed to be relatively reducing in the transition zone. Exchange of material across the transition boundary to (Mg,Fe) (Si,Al)O3 perovskite would then require a mechanism to oxidize sufficient iron to satisfy crystal-chemical requirements of the lower-mantle perovskite phase.  相似文献   

20.
Based on the results of more than 600 electron microprobe analyses of 25 minerals the distribution pattern of the Cr6+ impurity in vanadates, phosphates, and arsenates collected in oxidation zones of six ore deposits of the Urals was studied. Among them are Pb minerals of the brackebuschite, apatite, adelite, and tsumcorite groups and alunite supergroup, as well as carminite, cornwallite, and bayidonite. Vanadates and arsenates with brackebuschite-type structures show a high affinity to Cr6+. The maximum content of the Cr6+ impurity is characteristic of minerals with specified Fe3+ trivalent cations (ferribushmakinite, arsenbrackebuschite, and gartrellite) or Al3+ (plumbogummite and bushmakinite). The prevailing scheme of isomorphous substitution, according to which chromium enters into the compositions of these minerals, is heterovalent: Cr6+ + M 2+Т 5+ + M 3+ (where Т = V, As, P; M 3+ = Fe, Al; M 2+ = Сu, Zn), whereas the role of isovalent substitutions Cr6+ → S6+ and Cr6+ → Mo6+ in oxosalts that formed in mineral occurrences of the Urals is insignificant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号