首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystal and magnetic structures of ilvaite Ca(Fe2+, Fe3+)Fe2+Si2O7O(OH) have been obtained by profile refinement of high resolution neutron powder data from a natural sample from Seriphos, Greece. Below about 400 K an electronic transition from an itinerant to an ordered state is expected, with the structure changing from orthorhombic to monoclinic. The structure remains monoclinic P2 1/a down to 5 K, with Fe2+ almost completely ordered on one of the A-sites and Fe3+ on the other: the ordering may increase with decreasing temperature. The B-site contains Fe2+ plus a small amount of Mn2+ impurity. There are two magnetic transitions, at 116 K and 40 K: at 80 K the Fe2+ and Fe3+ spins on the A-sites along one infinite c-axis chain are parallel, and antiparallel to those along the adjoined edge-sharing centrosymmetrically related chain. The spin vectors are all perpendicular to the plane of these chains, i.e. almost parallel to the crystallographic b-axis. At 5 K, this order is maintained, but the Fe2+ spins on the B-sites order antiferromagnetically as well, again almost along the b-axis. These results explain the earlier Mössbauer and magnetisation measurements.  相似文献   

2.
Natural barbosalite Fe2+Fe3+ 2 (PO4)2(OH)2 from Bull Moose Mine, South Dakota, U.S.A., having ideal composition, was investigated with single crystal X-ray diffraction techniques, Mössbauer spectroscopy and SQUID magnetometry to redetermine crystal structure, valence state of iron and evolution of 57Fe Mössbauer parameter and to propose the magnetic structure at low temperatures. At 298?K the title compound is monoclinic, space group P21/n, a o ?= 7.3294(16)?Å, b o ?=?7.4921(17)?Å, c o ?=?7.4148 (18)?Å, β?=?118.43(3)°, Z?=?2. No crystallographic phase transition was observed between 298?K and 110?K. Slight discontinuities in the temperature dependence of lattice parameters and bond angles in the range between 150?K and 180?K are ascribed to the magnetic phase transition of the title compound. At 298?K the Mössbauer spectrum of the barbosalite shows two paramagnetic components, typical for Fe2+ and Fe3+ in octahedral coordination; the area ratio Fe3+/Fe2+ is exactly two, corresponding to the ideal value. Both the Fe2+ and the Fe3+ sublattice order magnetically below 173?K and exhibit a fully developed magnetic pattern at 160?K. The electric field gradient at the Fe2+ site is distorted from axial symmetry with the direction of the magnetic field nearly perpendicular to Vzz, the main component of the electric field gradient. The temperature dependent magnetic susceptibility exhibits strong antiferromagnetic ordering within the corner-sharing Fe3+-chains parallel to [101], whereas ferromagnetic coupling is assumed within the face-sharing [1?1?0] and [?1?1?0] Fe3+-Fe2+-Fe3+ trimer, connecting the Fe3+-chains to each other.  相似文献   

3.
Ilvaite samples from six different localities in Japan are found to be members of a solid-solution series varying from Ca(Fe2+,Fe3+)2Fe2+(OH)O Si2O7 to approaximately Ca(Fe2+,Fe3+)2Fe 0.5 2+ Mn 0.5 2+ (OH)O Si2O7, and have been studied by Mössbauer spectrometry and magnetic measurements. The variation in intensity of Mössbauer doublets confirms that Mn substitutes for Fe2+ in the M(B) cation site. An temperatures decreasing from 300 K to 4K, an abrupt change in the reciprocal mass magnetic susceptibility, 1/x g, occurs about 120 K; 1/x g depends linearly upon temperature above 120 K. This change, which is characterized by an unusual mode of decrease in 1/x g, has been interpreted based on Mössbauer spectra at 80 K: the spectra of Fe2+ and Fe3+ in the M(A) site show Zeeman splitting, whereas those of Fe2+ in the M(B) site do not show the effect. This Mössbauer evidence suggests that magnetic spins of Fe in M(A) are in an ordered state, very likely of antiparallel coupling, whereas those of Fe in M(B) are randomly oriented, showing that below 120 K ilvaite has two different magnetic states for Fe ions. As there is a line of evidence that the spins of Fe in M(B) would take an ordered state at extremely low temperatures, ilvaite magnetism may be regarded as basically antiferromagnetic. The magnetic spins of Fe in M(A) and M(B) undergo magnetic transitions at different specific temperatures, thus giving as a whole unusual features of magnetism.  相似文献   

4.
Kinetic rates of Fe2+-Mg disordering in three orthopyroxenes (mean value of XFe = Fe2+/(Fe2++Mg) = 0.175,0.482,0.770 respectively) have been determined employing heating experiments and single crystal X-ray structural refinements. Disordering rate constants \((\vec K)\) (550800° C) for two pyroxenes are given by: ln \((\vec K)\) = 27.107(±5.177)?32062(±783)T?1(XFe = 0.175) ln \((\vec K)\) = 16.142(±0.057)?18227(±423)T?1(XFe = 0.770) The distribution coefficients KD (representing a steady state of disordering FeM2 + MgM1 ? FeM1 + MgM2) are given by: ln KD = 5.016(±0.223)-7033(±1473) T?1(XFe = 0.175) ln KD = 1.988(±0.122)-3809(±913)T?1(XFe = 0.770) These distribution coefficients provide the constraint of the disordering reaction on the value of the equilibrium constant for Fe2+-Mg order-disorder. Until the low temperature dependence of KD is well constrained, the calculation of cooling rates of pyroxenes and host rocks cannot be done reliably.  相似文献   

5.
The mixed valence iron silicate ilvaite, CaFe 2 2+ Fe3+Si2O8(OH), displays electron delocalization associated with Fe2+→Fe3+ charge transfer as observed by Mössbauer spectroscopy. Previous studies report the observation of an ‘electron hopping phenomenon’ with resolution of discrete valence states below 320 K. Mössbauer spectra of a suite of naturally occurring ilvaites were recorded over a temperature range, 80 K to 575 K. Five quadrupole doublets were resolved by computer fitting and assigned to Fe2+(A), Fe2+(B), Fe3+(A), and Fe2+(A)→Fe3+(A)‖c and ⊥c. Contrary to prior work, doublets associated with electron delocalization are resolved at 80 K and preclude the use of a Verwey-type order-disorder model. We propose a thermal activation model and discuss its criteria from molecular orbital and mineralogical viewpoints.  相似文献   

6.
The Mössbauer spectra of ilvaite CaFe 2 2+ Fe3+[Si2O7/O/OH] and their temperature dependence between 298 K and 455 K can be satisfactorily least-squares fitted by a superposition of the resonances for Fe2+(8d), Fe3+(8d) and Fe2+(4c). The relative areas under the three resonances are nearly equal and vary only weakly with temperature. No additional resonances or line broadenings have to be introduced, if we assume that the hyperfine interactions of Fe2+(8d) and Fe3+(8d) fluctuate between their values due to electron hopping between the iron ions at the 8d sites. Hopping can be assumed to occur homogeneously among nearly equivalent sites. The fluctuation rate is described by an Arrhenius law with a pre-exponent of about 9 × 108 s?1 and an activation energy of 0.11 eV indicating non-adiabatic hopping. In addition to the intersite hopping process, the strong decrease of the quadrupole splitting and the isomer shift of Fe2+(8d) between 298 K and 360 K suggests the occurrence of intrinsic charge delocalization from Fe2+(8d) which does not involve the neighbouring Fe3+(8d) ions.  相似文献   

7.
Ilvaite, Ca(Fe2+,Fe3+)Fe2+Si2O8(OH) shows two magnetic phase transitions, which have been studied by Mössbauer spectroscopy within the temperature range 120–4 K. The continued charge localization between Fe2+ and Fe3+ ions in octahedral A-sites causes the Fe2+-Fe3+ interaction to be ferromagnetic, although the overall magnetic order is antiferromagnetic. The thermal evolution of the hyperfine fields at the Fe2+ (A) and Fe3+ (A) sites indicates B hf: 328 and 523 kOe respectively at 0 K and T N1= 116K. The corresponding values for Fe2+ (B) site are: B hf 186 kOe and T N2=36K. An additional hyperfine field exists at the Fe2+(B) site within the temperature range 116–36K due to short-range order induced by the spin ordering in A sites. The considerable difference between the two magnetic transition temperatures is due to spin frustration, because the Fe2+ (B) site occurs on a corner common between two triangles with respect to two sets of Fe2+ (A) and Fe3+ (A) sites with opposite spin directions.  相似文献   

8.
The transformation of vivianite and the direct synthesis starting from pure chemicals lead to the formation of lipscombite {Fe x 2+ Fe 3?x 3+ [(OH)3?x/(PO4)2]} with varying Fe2+/Fe3+ molar ratios. The influence of this ratio on the Mössbauer spectra, solubility, electrokinetic potential and infrared spectra has been studied. By means of Mössbauer spectroscopy, the distribution of the Fe2+ and Fe3+ ions between the octahedral sites I and II has been investigated. The unit cell dimensions have been determined from Guinier-Hägg X-ray diffraction patterns. The crystal system is tetragonal for synthetic lipscombite with a=5.3020±0.0005 Å and c=12.8800±0.0005 Å. Lipscombite has been found to show a negative and time-dependent zeta-potential which, moreover, is influenced by the pH of the suspension and the Fe2+/Fe3+ molar ratio. An explanation of the time-dependence of the zeta-potential on variations of solubility is proposed. Infrared absorption spectrum only is characterized by two absorption bands: v OH(3,500 cm?1) and v P?O(1,100-960 cm?1). The density at 25° C is determined in toluene as 3.36±0.01 g·cm?3.  相似文献   

9.
The dielectric constants and dissipation factors of synthetic tephroite (Mn2SiO4), fayalite (Fe3SiO4) and a forsteritic olivine (Mg1.80Fe0.22SiO4) were measured at 1 MHz using a two-terminal method and empirically determined edge corrections. The results are: tephroite, κ′a= 8.79 tan δa = 0.0006 κ′b = 10.20 tan δb = 0.0006 κ′c= 8.94 tan δc= 0.0008 fayalite, gk′a = 8.80 tan δa = 0.0004 gk′b= 8.92 tan δb = 0.0018 gk′c = 8.58 tan δc = 0.0010 olivine, gk′a = 7.16 tan δa = 0.0006 gk′b = 7.61 tan δb = 0.0008 gk′c = 7.03 tan δc = 0.0006 The low dielectric constant and loss of the fayalite indicate an exceptionally low Fe3+ content. An FeO polarizability of 4.18 Å3, determined from αD(FeO) = [αD (Fe2SiO4)-αD(SiO2)]/2, is probably a more reliable value for stoichiometric FeO than could be obtained from FexO where x = 0.90–0.95. The agreement between measured dielectric polarizabilities as determined from the Clausius-Mosotti equation and those calculated from the sum of oxide polarizabilities according to αD(M2M′X2) = 2αD(MX) + αD(M′X2) is ~+2.8% for tephroite and +0.2% for olivine. The deviation from additivity in tephroite is discussed.  相似文献   

10.
The blue colors of several minerals and gems, including aquamarine (beryl, Be3Al2Si6O18) and cordierite (Al3(Mg, Fe)2Si5AlO18), have been attributed to charge transfer (CT) between adjacent Fe2+ and Fe3+ cations, while Fe2+→Ti4+ CT has been proposed for blue kyanites (Al2SiO5). Such assignments were based on chemical analyses and on polarization-dependent absorption bands measured in visible-region spectra. We have attempted to characterize the Fe cations in each of these minerals by Mössbauer spectroscopy (MS). In blue kyanites, significant amounts of both Fe2+ and Fe3+ were detected with MS, indicating that Fe2+→Fe3+ CT, Fe2+→Ti4+ CT, and Fe2+ and Fe3+ crystal field transitions each could contribute to the electronic spectra. In aquamarines, coexisting Fe2+ and Fe3+ ions were resolved by MS, supporting our assignment of the broad, relatively weak band at 16,100 cm?1 in Ec spectra to Fe2+→Fe3+ CT between Fe cations replacing Al3+ ions 4.6Å apart along c. A band at 17,500 cm?1 in Ec spectra of cordierite is generally assigned to Fe2+ (oct)→Fe3+ (tet) CT between cations only 2.74 Å apart. However, no Fe3+ ions were detected in the MS at 293K of several blue cordierites showing the 17,500 cm?1 band and reported to contain Fe3+. A quadrupole doublet with parameters consistent with tetrahedral Fe3+ appears in 77K MS, but the Fe3+/Fe2+ ratios from MS are much smaller than values from chemical analysis. These results sound a cautionary note when correlating Mössbauer and chemically determined Fe3+/Fe2+ ratios for minerals exhibiting Fe2+→Fe3+ CT.  相似文献   

11.
Polarized spectra EX, EY, and EZ of purple yoderite, taken at 295 and 100 K, result in a revised interpretation for the mineral. Major bands at around 16,900 (X>Y?Z), 18,600 (X?Y), and 20,600 cm?1 (XZ>Y) may be attributed to spin-allowed transitions of Mn3+ in trigonal bipyramids (A2 or A3). Minor features may be assigned to single ion Fe3+. However, charge transfer possibilities for bands at 18,600 and 25,500 cm?1 in yoderite cannot be ruled out and are discussed. The extremely high intensity of Mn3+ spin-allowed bands (?, 216 to 1,900 [1·g-atom?1·cm?1]) is attributed to fivefold coordination of the A2 and A3 position and to the covalency of the Mn3+-O bonds.  相似文献   

12.
Magnetization and neutron diffraction measurements have been made on grunerite, Fe7Si8O22(OH)2, a monoclinic double-chain silicate with Fe2+ octahedral bands. The mineral orders antiferromagnetically at 47K into a collinear structure with a second transition at 8K to a canted arrangement. The magnetic susceptibility follows a Curie-Weiss Law above 120K, with a paramagnetic Curie temeprature ?p=67K. Magnetization measurements below 47K indicate a spin-flop or metamagnetic transition in an applied field of about 12KOe. Powder neutron diffraction measurements between 8–45K reveal that all the Fe2+ spins within an octahedral band are ferromagnetically coupled parallel to the b axis, with each band antiferromagnetically coupled to neighboring bands. Below 8K Fe2+ spins at the M1 and M4 sites are canted away from the b axis, whereas those at the M2 and M3 sites are not significantly affected. The ordered Fe2+ moment on the M4 site is substantially lower than those on the other sites, most likely indicating strong covalency effects, i.e. considerable spin transfer to neighboring oxygen atoms.  相似文献   

13.
The color and spectroscopic properties of ironbearing tourmalines (elbaite, dravite, uvite, schorl) do not vary smoothly with iron concentration. Such behavior has often been ascribed to intervalence charge transfer between Fe2+ and Fe3+ which produces a new, intense absorption band in the visible portion of the spectrum. In the case of tourmaline, an entirely different manifestation of the interaction between Fe2+ and Fe3+ occurs in which the Fe2+ bands are intensified without an intense, new absorption band. At low iron concentrations, the intensity of light absorption from Fe2+ is about the same for Ec and Ec polarizations, but at high iron concentrations, the intensity of the Ec polarization increases more than ten times as much as Ec. This difference is related to intensification of Fe2+ absorption by adjacent Fe3+. Extrapolations indicate that pairs of Fe2+-Fe3+ have Fe2+ absorption intensity ~200 times as great as isolated Fe2+. Enhanced Fe2+ absorption bands are recognized in tourmaline by their intensity increase at 78 K of up to 50%. Enhancement of Fe2+ absorption intensity provides a severe limitration on the accuracy of determinations of Fe2+ concentration and site occupancy by optical spectroscopic methods. Details of the assignment of tourmaline spectra in the optical region are reconsidered.  相似文献   

14.
Calcic amphiboles coexisting with epidotegroup minerals (zoisite, clinozoisite, epidote) and/or clinopyroxene±plagioclase±quartz±garnet occur in amphibolites and calc-silicate rocks that underwent amphibolite to lower granulite-facies metamorphism in the Acadian metamorphic high of central Massachusetts, USA. Across the region, peak metamorphic conditions range from about 580° C and 6.2 kbar to 730° C and 6.3 kbar. The coexistence of most Ca-amphiboles with Fe3+-rich epidote-group minerals suggests the presence of Fe3+ in most of these amphiboles. An empirical Fe3+ estimation for the microprobe analyses is based on two constraints: the Na?Ca content of the M4 sites of Ca-saturated, gravimetrically analyzed hornblendes gives the relation: Ca(M4) c =-1.479 Na(M4) c +2 (c=corrected). The second constraint is the stoichiometric equation Ca(M4)+Na(M4)+FM=15, where FM is the sum of all cations exclusive of Ca, Na, and K. Solving the two equations simultaneously gives: 20.185=0.479 Ca(M4)+1.479 ΣFM. Starting with the uncorrected values of Ca(M4) u and ΣFM(M4) u (u = uncorrected) of the all ferrous formula, the normalization factor NF for calculating the corrected cations of the ferric formulas is: 20.185/(0.478 Ca(M4) u +1.479 ΣFM u ). From the deficient oxygen the Fe3+ content which is equal to 2(23-ΣOX) can be calculated. Determinations of Fe3+ contents of four hornblende separates by Mössbauer spectroscopy are in agreement with the calculated values. The Ca-amphiboles show systematic changes in composition with increasing grade of metamorphism within the amphibolite and lower granulite-facies zones: increasing edenite and tschermakite substitution, increasing Ti content, and increasing Fe2+/(Fe2++Mg) ratio. In addition, the coexisting clinopyroxenes are also characterized by an increase in Fe2+/(Fe2++Mg) ratio. In quartz-free rocks with coexisting Ca-amphibole and plagioclase there is an increase in the ratio X Ab/X Ed, where X Ab=Na/(Na+Ca) in plagioclase and X Ed=Na in the amphibole A-site. These chemical changes in mineral composition together with the disappearance of epidote at the transition to granulite-facies metamorphic conditions are attributed to the continuous reaction: albite+epidote+Fe-Mg hornblende→Fe?Mg clinopyroxene+anorthite+(NaAlSi-1)Hbl+H2O.  相似文献   

15.
Three iron-rich 1:1 clay minerals, greenalite [Si2]{Fe 3 2+ }O5(OH)4, berthiérine [Si, Al]2{Fe2, Mg, Fe3+, Al}3 O5(OH)4 and cronstedtite [Si, Fe3+]2{Fe2+, Fe3+}3O5(OH)4 have been studied by Mössbauer spectroscopy, magnetization measurements and neutron diffraction to determine their magneticproperties. The predominant magnetic coupling is ferromagnetic for pairs of ferrous ions in the octahedral sheet, but antiferromagnetic for ferric pairs. The crystal field at Fe2+ sites in greenalite and berthiérine is effectively trigonal with an orbital singlet l z=0 as ground state. These mainly ferrous minerals order magnetically at 17K and 9K respectively. The magnetic structure of greenalite consists of ferromagnetic octahedral sheets, with the moments lying in the plane, coupled antiferromagnetically by much weaker interplane interactions. The ratio of intraplane to interplane coupling is of order 50, so the silicate has a two-dimensional aspect, both structurally and magnetically. Although the overall magnetic order is established as antiferromagnetic by neutron diffraction, the magnetization curves resemble those of a ferromagnet because of the very weak interplane coupling. Cronstedtite orders antiferromagnetically around 10K. Moments within the planes are antiferromagnetically coupled. The magnetism has no particular two-dimensional character because exchange paths between the layers are provided by the ferric cations present in the tetrahedral sheets.  相似文献   

16.
《Geochimica et cosmochimica acta》1999,63(19-20):3417-3427
In order to verify Fe control by solution - mineral equilibria, soil solutions were sampled in hydromorphic soils on granites and shales, where the occurrence of Green Rusts had been demonstrated by Mössbauer and Raman spectroscopies. Eh and pH were measured in situ, and Fe(II) analyzed by colorimetry. Ionic Activity Products were computed from aqueous Fe(II) rather than total Fe in an attempt to avoid overestimation by including colloidal particles. Solid phases considered are Fe(II) and Fe(III) hydroxides and oxides, and the Green Rusts whose general formula is [FeII1−xFeIIIx(OH)2]+x· [x/z A−z]−x, where compensating interlayer anions, A, can be Cl, SO42−, CO32− or OH, and where x ranges a priori from 0 to 1. In large ranges of variation of pH, pe and Fe(II) concentration, soil solutions are (i) oversaturated with respect to Fe(III) oxides; (ii) undersaturated with respect to Fe(II) oxides, chloride-, sulphate- and carbonate-Green Rusts; (iii) in equilibrium with hydroxy-Green Rusts, i.e., Fe(II)-Fe(III) mixed hydroxides. The ratios, x = Fe(III)/Fet, derived from the best fits for equilibrium between minerals and soil solutions are 1/3, 1/2 and 2/3, depending on the sampling site, and are in every case identical to the same ratios directly measured by Mössbauer spectroscopy. This implies reversible equilibrium between Green Rust and solution. Solubility products are proposed for the various hydroxy-Green Rusts as follows: log Ksp = 28.2 ± 0.8 for the reaction Fe3(OH)7 + e + 7 H+ = 3 Fe2+ + 7 H2O; log Ksp = 25.4 ± 0.7 for the reaction Fe2(OH)5 + e + 5 H+ = 2 Fe2+ + 5 H2O; log Ksp = 45.8 ± 0.9 for the reaction Fe3(OH)8 + 2e + 8 H+ = 3 Fe2+ + 8 H2O at an average temperature of 9 ± 1°C, and 1 atm. pressure. Tentative values for the Gibbs free energies of formation of hydroxy-Green Rusts obtained are: ΔfG° (Fe3(OH)7, cr, 282.15 K) = −1799.7 ± 6 kJ mol−1, ΔfG° (Fe2(OH)5, cr, 282.15 K) = −1244.1 ± 6 kJ mol−1 and ΔfG° (Fe3(OH)8, cr, 282.15 K) = −1944.3 ± 6 kJ mol−1.  相似文献   

17.
Mn2+Sb2S4, a monoclinic dimorph of clerite, and benavidesite (Mn2+Pb4Sb6S14) show well-individualized single chains of manganese atoms in octahedral coordination. Their magnetic structures are presented and compared with those of iron derivatives, berthierite (Fe2+Sb2S4) and jamesonite (Fe2+Pb4Sb6S14). Within chains, interactions are antiferromagnetic. Like berthierite, MnSb2S4 shows a spiral magnetic structure with an incommensurate 1D propagation vector [0, 0.369, 0], unchanged with temperature. In berthierite, the interactions between identical chains are antiferromagnetic, whereas in MnSb2S4 interactions between chains are ferromagnetic along c-axis. Below 6 K, jamesonite and benavidesite have commensurate magnetic structures with the same propagation vector [0.5, 0, 0]: jamesonite is a canted ferromagnet and iron magnetic moments are mainly oriented along the a-axis, whereas for benavidesite, no angle of canting is detected, and manganese magnetic moments are oriented along b-axis. Below 30 K, for both compounds, one-dimensional magnetic ordering or correlations are visible in the neutron diagrams and persist down to 1.4 K.  相似文献   

18.
Single crystals of Li-aegirine LiFe3+Si2O6 were synthesized at 1573?K and 3?GPa, and a polycrystalline sample suitable for neutron diffraction was produced by ceramic sintering at 1223?K. LiFe3+Si2O6 is monoclinic, space group C2/c, a=9.6641(2)?Å, b= 8.6612(3)?Å, c=5.2924(2)?Å, β=110.12(1)° at 300?K as refined from powder neutron data. At 229?K Li-aegirine undergoes a phase transition from C2/c to P21 /c. This is indicated by strong discontinuities in the temperature variation of the lattice parameters, especially for the monoclinic angle β and by the appearance of Bragg reflections (hkl) with h+k≠2n. In the low-temperature form two non-equivalent Si-sites with 〈SiA–O〉=1.622?Å and 〈SiB–O〉=1.624?Å at 100?K are present. The bridging angles of the SiO4 tetrahedra O3–O3–O3 are 192.55(8)° and 160.02(9)° at 100?K in the two independent tetrahedral chains in space group P21 /c, whereas it is 180.83(9)° at 300?K in the high-temperature C2/c phase, i.e. the chains are nearly fully expanded. Upon the phase transition the Li-coordination changes from six to five. At 100?K four Li–O bond lengths lie within 2.072(4)–2.172(3)?Å, the fifth Li–O bond length is 2.356(4)?Å, whereas the Li–O3?A bond lengths amount to 2.796(4)?Å. From 57Fe Mössbauer spectroscopic measurements between 80 and 500?K the structural phase transition is characterized by a small discontinuity of the quadrupole splitting. Temperature-dependent neutron powder diffraction experiments show first occurrence of magnetic reflections at 16.5?K in good agreement with the point of inflection in the temperature-dependent magnetization of LiFe3+Si2O6. Distinct preordering phenomena can be observed up to 35?K. At the magnetic phase transition the unit cell parameters exhibit a pronounced magneto-striction of the lattice. Below T N Li-aegirine shows a collinear antiferromagnetic structure. From our neutron powder diffraction experiments we extract a collinear antiferromagnetic spin arrangement within the ac plane.  相似文献   

19.
Pale-blue to pale-green tourmalines from the contact zone of Permian pegmatites to mica schists and marbles from different localities of the Austroalpine basement units (Rappold Complex) in Styria, Austria, are characterized. All these Mg-rich tourmalines have small but significant Li contents, up to 0.29 wt% Li2O, and can be characterized as dravite, with FeO contents of ?~?0.9–2.7 wt%. Their chemical composition varies from X (Na0.67Ca0.19?K0.02?0.12) Y (Mg1.26Al0.97Fe2+ 0.36Li0.19Ti4+ 0.06Zn0.01?0.15) Z (Al5.31?Mg0.69) (BO3)3 Si6O18 V (OH)3? W [F0.66(OH)0.34], with a?=?15.9220(3), c?=?7.1732(2) Å to X (Na0.67Ca0.24?K0.02?0.07) Y (Mg1.83Al0.88Fe2+ 0.20Li0.08Zn0.01Ti4+ 0.01?0.09) Z (Al5.25?Mg0.75) (BO3)3 Si6O18 V (OH)3? W [F0.87(OH)0.13], with a?=?15.9354(4), c?=?7.1934(4) Å, and they show a significant Al-Mg disorder between the Y and the Z sites (R1?=?0.013–0.015). There is a positive correlation between the Ca content and?<?Y-O?>?distance for all investigated tourmalines (r?≈?1.00), which may reflect short-range order configurations including Ca and Fe2+, Mg, and Li. The tourmalines have XMg (XMg?=?Mg/Mg?+?Fetotal) values in the range 0.84–0.95. The REE patterns show more or less pronounced negative Eu and positive Yb anomalies. In comparison to tourmalines from highly-evolved pegmatites, the tourmaline samples from the border zone of the pegmatites of the Rappold Complex contain relatively low amounts of total REE (~8–36 ppm) and Th (0.1–1.8 ppm) and have low LaN/YbN ratios. There is a positive correlation (r?≈?0.91) between MgO of the tourmalines and the MgO contents of the surrounding mica schists. We conclude that the pegmatites formed by anatectic melting of mica schists and paragneisses in Permian time. The tourmalines crystallized from the pegmatitic melt, influenced by the metacarbonate and metapelitic host rocks.  相似文献   

20.
Manganoan lipscombite (Fe x /2+ , M y /2+ ) Fe 3?(x +y)/3+ [OH)3?(x+y)(PO4)2] was synthesized from pure chemicals. From the study of the Mn2+/Fe2+ atomic ratio by Mössbauer spectra, solubility, and electrokinetic properties, it was found that the crystal structure of lipscombite is not changed substantially by the manganese substitution. The unit cell parameters were determined from Guinier-Hägg X-ray diffraction patterns, which are identical for both synthetic ferrous-ferric and manganoan lipscombite. The two compounds crystallize in the tetragonal system with a=5.3020±0.0005 Å and c=12.8800±0.0005 Å.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号