首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
High-pressure single crystal X-ray diffraction experiments of phase anhydrous B and superhydrous B have been carried out to 7.3 and 7.7?GPa, respectively, at room temperature. Fitting a third-order Birch-Murnaghan equation of state to the P-V data yields values of V 0?=?838.86?±?0.04?Å3, KT,0?=?151.5?±?0.9?GPa and K′?=?5.5?±?0.3 for Anhy-B and V 0?=?624.71?± 0.03?Å3, KT,0?=?142.6?±?0.8?GPa and K′?=?5.8?±?0.2 for Shy-B. A similar analysis of the axial compressibilities in Anhy-B reveals that the c-axis is most compressible (Kc?=?137?±?3?GPa), the b-axis is least compressible (Kb?=?175?±?4?GPa), and the a-axis is intermediate (Ka?=?148?±?1?GPa). In Shy-B, the a-axis is most compressible (Ka?=?135?±?1?GPa), followed by the b- and c-axes which have similar compressibilities (Kb?=?146?±?3?GPa; Kc?=?148?±?3?GPa). The fact that the b-axis of Shy-B is approximately 16% more compressible than Anhy-B is primarily due to differences in the O-T layer in which the H atoms are located and the linkages with the adjacent O layers. The rigid edge-sharing chains of MgO6 and SiO6 octahedra in the O layer control compressibility along the a- and c-axes in both structures. The net result is a reduction in the overall anisotropic compression from ~22% in Anhy-B to ~9% in Shy-B.  相似文献   

2.
Compressibilities and high-pressure crystal structures have been determined by X-ray methods at several pressures for phenakite and bertrandite. Phenakite (hexagonal, space group R \(\bar 3\) ) has nearly isotropic compressibility with β=1.60±0.03×10?4 kbar?1 and β=1.45±0.07×10?4 kbar?1. The bulk modulus and its pressure derivative, based on a second-order Birch-Murnaghan equation of state, are 2.01±0.08 Mbar and 2±4, respectively. Bertrandite (orthorhombic, space group Cmc21) has anisotropic compression, with β a =3.61±0.08, β b =5.78±0.13 and β c =3.19±0.01 (all ×10?4 kbar?1). The bulk modulus and its pressure derivative are calculated to be 0.70±0.03 Mbar and 5.3±1.5, respectively. Both minerals are composed of frameworks of beryllium and silicon tetrahedra, all of which have tetrahedral bulk moduli of approximately 2 Mbar. The significant differences in linear compressibilities of the two structures are a consequence of different degrees of T-O-T bending.  相似文献   

3.
The unit-cell dimensions and crystal structure of sillimanite at various pressures up to 5.29 GPa have been refined from single-crystal X-ray diffraction data. As pressure increases, a and b decrease linearly, whereas c decreases nonlinearly with a slightly positive curvature. The axial compression ratios at room pressure are βabc=1.22:1.63:1.00. Sillimanite exhibits the least compressibility along c, but the least thermal expansivity along a (Skinner et al. 1961; Winter and Ghose 1979). The bulk modulus of sillimanite is 171(1) GPa with K′=4 (3), larger than that of andalusite (151 GPa), but smaller than that of kyanite (193 GPa). The bulk moduli of the [Al1O6], [Al2O4], and [SiO4] polyhedra are 162(8), 269(33), and 367(89) GPa, respectively. Comparison of high-pressure data for Al2SiO5 polymorphs reveals that the [SiO4] tetrahedra are the most rigid units in all these polymorphic structures, whereas the [AlO6] octahedra are most compressible. Furthermore, [AlO6] octahedral compressibilities decrease from kyanite to sillimanite, to andalusite, the same order as their bulk moduli, suggesting that [AlO6] octahedra control the compression of the Al2SiO5 polymorphs. The compression of the [Al1O6] octahedron in sillimanite is anisotropic with the longest Al1-OD bond shortening by ~1.9% between room pressure and 5.29 GPa and the shortest Al1-OB bond by only 0.3%. The compression anisotropy of sillimanite is primarily a consequence of its topological anisotropy, coupled with the compression anisotropy of the Al-O bonds within the [Al1O6] octahedron.  相似文献   

4.
The compressibility of antigorite has been determined up to 8.826(8) GPa, for the first time by single crystal X-ray diffraction in a diamond anvil cell, on a specimen from Cerro del Almirez. Fifteen pressure–volume data, up to 5.910(6) GPa, have been fit by a third-order Birch–Murnaghan equation of state, yielding V 0 = 2,914.07(23) Å3, K T0 = 62.9(4) GPa, with K′ = 6.1(2). The compression of antigorite is very anisotropic with axial compressibilities in the ratio 1.11:1.00:3.22 along a, b and c, respectively. The new equation of state leads to an estimation of the upper stability limit of antigorite that is intermediate with respect to existing values, and in better agreement with experiments. At pressures in excess of 6 GPa antigorite displays a significant volume softening that may be relevant for very cold subducting slabs.  相似文献   

5.
The compression behavior of natural adamite [Zn2AsO4OH] has been investigated up to 11.07 GPa at room temperature utilizing in situ angle-dispersive X-ray diffraction and a diamond anvil cell. No phase transition has been observed within the pressure range investigated. A third-order Birch–Murnaghan equation of state fitted to all of the data points yielded V 0 = 430.1(4) Å3, K 0 = 80(3) GPa, K′ 0 = 1.9(5). The K 0 was obtained as 69(1) GPa when K′ 0 was fixed at 4. Analysis of axial compressible moduli shows the intense compression anisotropy of adamite: K a0 = 37(3) GPa, K b0 = 153(6) GPa, K c0 = 168(8) GPa; hence, a axis is the most compressible and the compressibility of b and c axis is comparable. Furthermore, the comparisons among the compressional properties of adamite, libethenite (Cu2PO4OH, also belongs to olivenite group), and andalusite (Al2SiO4O has the similar structure with adamite) at high pressure were made.  相似文献   

6.
Omphacite is an important mineral component of eclogite. Single-crystal synchrotron X-ray diffraction data on natural (Ca, Na) (Mg, Fe, Al)Si2O6 omphacite have been collected at the Advanced Photon Source beamlines 13-BM-C and 13-ID-D up to 47 GPa at ambient temperature. Unit cell parameter and crystal structure refinements were carried out to constrain the isothermal equation of state and compression mechanism. The third-order Birch–Murnaghan equation of state (BM3) fit of all data gives V 0 = 423.9(3) Å3, K T0 = 116(2) GPa and K T0′ = 4.3(2). These elastic parameters are consistent with the general trend of the diopside–jadeite join. The eight-coordinated polyhedra (M2 and M21) are the most compressible and contribute to majority of the unit cell compression, while the SiO4 tetrahedra (Si1 and Si2) behave as rigid structural units and are the most incompressible. Axial compressibilities are determined by fitting linearized BM3 equation of state to pressure dependences of unit cell parameters. Throughout the investigated pressure range, the b-axis is more compressible than the c-axis. The axial compressibility of the a-axis is the largest among the three axes at 0 GPa, yet it quickly drops to the smallest at pressures above 5 GPa, which is explained by the rotation of the stiffest major compression axis toward the a-axis with the increase in pressure.  相似文献   

7.
The comparative compressibility and high-pressure stability of a natural epidote (0.79 Fe-total per formula unit, Fetot pfu) and clinozoisite (0.40 Fetot pfu) were investigated by single-crystal X-ray diffraction and Raman spectroscopy. The lattice parameters of both phases exhibit continuous compression behavior up to 30 GPa without evidence of phase transformation. Pressure–volume data for both phases were fitted to a third-order Birch–Murnaghan equation of state with V 0 = 461.1(1) Å3, K 0 = 115(2) GPa, and \(K_{0}^{'}\) = 3.7(2) for epidote and V 0 = 457.8(1) Å3, K 0 = 142(3) GPa, and \(K_{0}^{'}\) = 5.2(4) for clinozoisite. In both epidote and clinozoisite, the b-axis is the stiffest direction, and the ratios of axial compressibility are 1.19:1.00:1.15 for epidote and 1.82:1.00:1.19 for clinozoisite. Whereas the compressibility of the a-axis is nearly the same for both phases, the b- and c-axes of the epidote are about 1.5 times more compressible than in clinozoisite, consistent with epidote having a lower bulk modulus. Raman spectra collected up to 40.4 GPa also show no indication of phase transformation and were used to obtain mode Grüneisen parameters (γ i) for Si–O vibrations, which were found to be 0.5–0.8, typical for hydrous silicate minerals. The average pressure coefficient of Raman frequency shifts for M–O modes in epidote, 2.61(6) cm?1/GPa, is larger than found for clinozoisite, 2.40(6) cm?1/GPa, mainly due to the different compressibility of FeO6 and AlO6 octahedra in M3 sites. Epidote and clinozoisite contain about 2 wt% H2O are thus potentially important carriers of water in subducted slabs.  相似文献   

8.
The behavior of a natural topaz, Al2.00Si1.05O4.00(OH0.26F1.75), has been investigated by means of in situ single-crystal synchrotron X-ray diffraction up to 45 GPa. No phase transition or change in the compressional regime has been observed within the pressure-range investigated. The compressional behavior was described with a third-order Birch–Murnaghan equation of state (III-BM-EoS). The III-BM-EoS parameters, simultaneously refined using the data weighted by the uncertainties in P and V, are as follows: K V = 158(4) GPa and K V  = 3.3(3). The confidence ellipse at 68.3 % (Δχ2 = 2.30, 1σ) was calculated starting from the variance–covariance matrix of K V and K′ obtained from the III-BM-EoS least-square procedure. The ellipse is elongated with a negative slope, indicating a negative correlation of the parameters K V and K V , with K V = 158 ± 6 GPa and K V  = 3.3 ± 4. A linearized III-BM-EoS was used to obtain the axial-EoS parameters (at room-P), yielding: K(a) = 146(5) GPa [β a = 1/(3K(a)) = 0.00228(6) GPa?1] and K′(a) = 4.6(3) for the a-axis; K(b) = 220(4) GPa [β b = 0.00152(4) GPa?1] and K′(b) = 2.6(3) for the b-axis; K(c) = 132(4) GPa [β c = 0.00252(7) GPa?1] and K′(c) = 3.3(3) for the c-axis. The elastic anisotropy of topaz at room-P can be expressed as: K(a):K(b):K(c) = 1.10:1.67:1.00 (β a:β b:β c = 1.50:1.00:1.66). A series of structure refinements have been performed based on the intensity data collected at high pressure, showing that the P-induced structure evolution at the atomic scale is mainly represented by polyhedral compression along with inter-polyhedral tilting. A comparative analysis of the elastic behavior and P/T-stability of topaz polymorphs and “phase egg” (i.e., AlSiO3OH) is carried out.  相似文献   

9.
In situ high-pressure synchrotron X-ray diffraction and Raman spectroscopic studies of orthorhombic CaFe2O4-type β-CaCr2O4 chromite were carried out up to 16.2 and 32.0 GPa at room temperature using multi-anvil apparatus and diamond anvil cell, respectively. No phase transition was observed in this study. Fitting a third-order Birch–Murnaghan equation of state to the P–V data yields a zero-pressure volume of V 0 = 286.8(1) Å3, an isothermal bulk modulus of K 0 = 183(5) GPa and the first pressure derivative of isothermal bulk modulus K 0′ = 4.1(8). Analyses of axial compressibilities show anisotropic elasticity for β-CaCr2O4 since the a-axis is more compressible than the b- and c-axis. Based on the obtained and previous results, the compressibility of several CaFe2O4-type phases was compared. The high-pressure Raman spectra of β-CaCr2O4 were analyzed to determine the pressure dependences and mode Grüneisen parameters of Raman-active bands. The thermal Grüneisen parameter of β-CaCr2O4 is determined to be 0.93(2), which is smaller than those of CaFe2O4-type CaAl2O4 and MgAl2O4.  相似文献   

10.
Two natural CO2-rich cordierite samples (1.00 wt% CO2, 0.38 wt% H2O, and 1.65 wt% CO2, 0.15 wt% H2O, respectively) were investigated by means of Raman spectroscopy and single-crystal X-ray diffraction at ambient and high pressures. The effect of heavy-ion irradiation (Au 2.2 GeV, fluence of 1 × 1012 ions cm?2) on the crystal structure was investigated to characterize the structural alterations complementary to results reported on hydrous cordierite. The linear CO2 molecules sustained irradiation-induced breakdown with small CO2-to-CO conversion rates in contrast to the distinct loss of channel H2O. The maximum CO2 depletion rate corresponds to ~12 ± 5 % (i.e. ~0.87 and ~1.49 wt% CO2 according to the two samples, respectively). The elastic properties of CO2-rich cordierite reveal stiffening due to the CO2 molecules (non-irradiated: isothermal bulk modulus K 0 = 120.3 ± 3.7 GPa, irradiated: K 0 = 109.7 ± 3.7 GPa), but show the equivalent effect of hydrous cordierite to get softer when irradiated. The degree of anisotropy of axial compressibilities and the anomalous elastic softening at increasing pressure agrees with those reported for hydrous cordierite. Nevertheless, the experimental high-pressure measurements using ethanol–methanol reveal a small hysteresis between compression and decompression, together with the noticeable effect of pressure-induced over-hydration at pressures between 4 and 5 GPa.  相似文献   

11.
The compression of synthetic braunite, Mn2+Mn3+ 6O8SiO4, was studied by high-pressure single-crystal X-ray diffraction carried out in a diamond-anvil cell. The equation of state at room temperature (third-order Birch-Murnaghan equation of state: V 0=1661.15(8) Å3, K 0,298=180.7±0.9 GPa, K′=6.5±0.3) was determined from unit-cell volume data to 9.18 GPa. Crystal structures were determined at 6 different pressures to 7.69 GPa. Compression of the structure (space group I41/acd) was found to be slightly anisotropic (a 0=9.4262(4) Å, K a =499±4 GPa, K a ′=19.7±0.9; c 0=18.6964(6) Å, K c =657±6 GPa, K c ′=15.7±1.4) which can be attributed to the fact that the Mn3+-O bonds, which are the most compressible bonds, are aligned closer to the (001) plane than to the c axis. The large bulk modulus is the result of the structural topology in which 2/3 and 1/2 of the edges of the Mn2+O8 and Mn3+O6 polyhedra share edges with other polyhedra. The Mn2+O8 polyhedra were found to compress isotropically, whereas anisotropic compressional behaviour was observed for all three Mn3+O6 octahedra. Although the polyhedral geometry of all three crystallographically independent Mn3+ sites shows the same type of uniaxially elongated distortion, the compression of the individual octahedral configurations was found to be strongly dependent upon both the geometry of the polyhedron itself and the types of, and the connectivity to, the neighbouring polyhedra. The differences in the configuration of the different oxygen atoms, and therefore the structural topology, is one of the major factors determining the type and degree of the pressure-induced distortion, while the Jahn-Teller effect plays a subordinate role.  相似文献   

12.
High-pressure in situ X-ray diffraction experiment of Fe- and Al-bearing phase D (Mg0.89Fe0.14Al0.25Si1.56H2.93O6) has been carried out to 30.5 GPa at room temperature using multianvil apparatus. Fitting a third-order Birch–Murnaghan equation of state to the P–V data yields values of V 0 = 86.10 ± 0.05 Å3; K 0 = 136.5 ± 3.3 GPa and K′ = 6.32 ± 0.30. If K′ is fixed at 4.0 K 0 = 157.0 ± 0.7 GPa, which is 6% smaller than Fe–Al free phase D reported previously. Analysis of axial compressibilities reveals that the c-axis is almost twice as compressible (K c  = 93.6 ± 1.1 GPa) as the a-axis (K a  = 173.8 ± 2.2 GPa). Above 25 GPa the c/a ratio becomes pressure independent. No compressibility anomalies related to the structural transitions of H-atoms were observed in the pressure range to 30 GPa. The density reduction of hydrated subducting slab would be significant if the modal amount of phase D exceeds 10%.  相似文献   

13.
Elastic behavior and pressure-induced structural evolution of synthetic boron-mullite “Al5BO9” (a = 5.678(2) Å, b = 15.015(4) Å and c = 7.700(3) Å, space group Cmc21, Z = 4) were investigated up to 7.4 GPa by in situ single-crystal X-ray diffraction with a diamond anvil cell under hydrostatic conditions. No phase transition or anomalous compressional behavior occurred within the investigated P range. Fitting the P–V data with a truncated second-order (in energy) Birch-Murnaghan Equation-of-State (BM-EoS), using the data weighted by the uncertainties in P and V, we obtained: V 0 = 656.4(3) Å3 and K T0 = 165(7) GPa (β V0 = 0.0061(3) GPa?1). The evolution of the Eulerian finite strain versus normalized stress (f EF E plot) leads to an almost horizontal trend, showing that a truncated second-order BM-EoS is appropriate to describe the elastic behavior of “Al5BO9” within the investigated P range. The weighted linear regression through the data points gives: F E(0) = 159(11) GPa. Axial compressibility coefficients yielded: β a  = 1.4(2) × 10?3 GPa?1, β b  = 3.4(4) × 10?3 GPa?1, and β c  = 1.7(3) × 10?3 GPa?1 (β a :β b :β c  = 1:2.43:1.21). The highest compressibilities observed in this study within (100) can be ascribed to the presence of voids represented by five-membered rings of polyhedra: Al1–Al3–Al4–Al1–Al3, which allow accommodating the effect of pressure by polyhedral tilting. Polyhedral tilting around the voids also explains the higher compressibility along [010] than along [001]. The stiffer crystallographic direction observed here might be controlled by the infinite chains of edge-sharing octahedra running along [100], which act as “pillars”, making the structure less compressible along the a-axis than along the b- and c-axis. Along [100], compression can only be accommodated by deformation of the edge-sharing octahedra (and/or by compression of the Al–O bond lengths), as no polyhedral tilting can occur. In addition, a comparative elastic analysis among the mullite-type materials is carried out.  相似文献   

14.
The speciation of CO2 in dacite, phonolite, basaltic andesite, and alkali silicate melt was studied by synchrotron infrared spectroscopy in diamond anvil cells to 1,000 °C and more than 200 kbar. Upon compression to 110 kbar at room temperature, a conversion of molecular CO2 into a metastable carbonate species was observed for dacite and phonolite glass. Upon heating under high pressure, molecular CO2 re-appeared. Infrared extinction coefficients of both carbonate and molecular CO2 decrease with temperature. This effect can be quantitatively modeled as the result of a reduced occupancy of the vibrational ground state. In alkali silicate (NBO/t = 0.98) and basaltic andesite (NBO/t = 0.42) melt, only carbonate was detected up to the highest temperatures studied. For dacite (NBO/t = 0.09) and phonolite melts (NBO/t = 0.14), the equilibrium CO2 + O2? = CO3 2? in the melt shifts toward CO2 with increasing temperature, with ln K = ?4.57 (±1.68) + 5.05 (±1.44) 103 T ?1 for dacite melt (ΔH = ?42 kJ mol?1) and ln K = ?6.13 (±2.41) + 7.82 (±2.41) 103 T ?1 for phonolite melt (ΔH = ?65 kJ mol?1), where K is the molar ratio of carbonate over molecular CO2 and T is temperature in Kelvin. Together with published data from annealing experiments, these results suggest that ΔS and ΔH are linear functions of NBO/t. Based on this relationship, a general model for CO2 speciation in silicate melts is developed, with ln K = a + b/T, where T is temperature in Kelvin and a = ?2.69 ? 21.38 (NBO/t), b = 1,480 + 38,810 (NBO/t). The model shows that at temperatures around 1,500 °C, even depolymerized melts such as basalt contain appreciable amounts of molecular CO2, and therefore, the diffusion coefficient of CO2 is only slightly dependent on composition at such high temperatures. However, at temperatures close to 1,000 °C, the model predicts a much stronger dependence of CO2 solubility and speciation on melt composition, in accordance with available solubility data.  相似文献   

15.
Serpentines are hydrous phyllosilicates which form by hydration of Mg–Fe minerals. The reasons for the occurrence of the structural varieties lizardite and chrysotile, with respect to the variety antigorite, stable at high pressure, are not yet fully elucidated, and their relative stability fields are not quantitatively defined. In order to increase the database of thermodynamic properties of serpentines, the PV Equations of State (EoS) of lizardite and chrysotile were determined at ambient temperature up to 10 GPa, by in situ synchrotron X-ray diffraction in a diamond-anvil cell. Neither amorphization nor hysteresis was observed during compression and decompression, and no phase transition was resolved in lizardite. In chrysotile, a reversible change in compression mechanism, possibly due to an unresolved phase transition, occurs above 5 GPa. Both varieties exhibit strong anisotropic compression, with the c axis three times more compressible than the others. Fits to ambient temperature Birch–Murnaghan EoS gave for lizardite V 0=180.92(3) Å3, K 0 = 71.0(19) GPa and K′ 0=3.2(6), and for chrysotile up to 5 GPa, V 0 = 730.57(31) Å3 and K 0 = 62.8(24) GPa (K′ 0 fixed to 4). Compared to the structural variety antigorite is stable at high pressure (HP) (Hilairet et al. 2006), the c axis is more compressible in these varieties, whereas the a and b axes are less compressible. These differences are attributed to the less anisotropic distribution of stiff covalent bonds in the corrugated structure of antigorite. The three varieties have almost identical bulk compressibility curves. Thus the compressibility has negligible influence on the relative stability fields of the serpentine varieties. They are dominated by first-order thermodynamic properties, which stabilizes antigorite at high temperature with respect to lizardite, and by out-of-equilibrium phenomena for metastable chrysotile (Evans 2004).  相似文献   

16.
Domain twinning of laihunite has been investigated based on diffracton phenomena, and its crystal structure has then been refined. Space group with respect to the domain isP21/c, and cell parametersa=5.813,b=4,812,c=10.211(A), β=90.87°. Atomic coordinate and bond length have been recalculated. Discussions are made of the Fe2+ distribution, lattice distortion, degree of order of laihunite and the relationship of this mineral with fayalite and ferrifayalite. The authors still hold that laih unite should be considered as a new silicate mineral with dominant Fe3+ and less amount of Fe2+.  相似文献   

17.
MgSiO3 akimotoite is stable relative to majorite-garnet under low-temperature geotherms within steeply or rapidly subducting slabs. Two compositions of Mg–akimotoite were synthesized under similar conditions: Z674 (containing about 550 ppm wt H2O) was synthesized at 22 GPa and 1,500 °C and SH1101 (nominally anhydrous) was synthesized at 22 GPa and 1,250 °C. Crystal structures of both samples differ significantly from previous studies to give slightly smaller Si sites and larger Mg sites. The bulk thermal expansion coefficients of Z674 are (153–839 K) of a 1 = 20(3) × 10?9 K?2 and a 0 = 17(2) × 10?6 K?1, with an average of α 0 = 27.1(6) × 10?6 K?1. Compressibility at ambient temperature of Z674 was measured up to 34.6 GPa at Sector 13 (GSECARS) at Advanced Photon Source Argonne National Laboratory. The second-order Birch–Murnaghan equation of state (BM2 EoS) fitting yields: V 0 = 263.7(2) Å3, K T0 = 217(3) GPa (K′ fixed at 4). The anisotropies of axial thermal expansivities and compressibilities are similar: α a  = 8.2(3) and α c  = 10.68(9) (10?6 K?1); β a  = 11.4(3) and β c  = 15.9(3) (10?4 GPa). Hydration increases both the bulk thermal expansivity and compressibility, but decreases the anisotropy of structural expansion and compression. Complementary Raman and Fourier transform infrared (FTIR) spectroscopy shows multiple structural hydration sites. Low-temperature and high-pressure FTIR spectroscopy (15–300 K and 0–28 GPa) confirms that the multiple sites are structurally unique, with zero-pressure intrinsic anharmonic mode parameters between ?1.02 × 10?5 and +1.7 × 10?5 K?1, indicating both weak hydrogen bonds (O–H···O) and strong OH bonding due to long O···O distances.  相似文献   

18.
Static elasticity measurements at high pressures were carried out on oriented fluorapatite single crystals, some of which contained oriented amorphous ion tracks (ITs) implanted with relativistic Au ions (2.2 GeV) from the UNILAC linear accelerator at GSI, Darmstadt. High-pressure experiments on irradiated and non-irradiated crystal sections were carried out in diamond-anvil high-pressure cells under hydrostatic conditions. In situ single-crystal diffraction was performed to determine the high-precision lattice parameters, simultaneously monitoring the widths of X-ray diffraction Bragg peaks. High-pressure Raman spectra were analyzed with respect to the frequency shift and widths of bands, which correspond to the Raman-active vibrational modes of the phosphate tetrahedra. Swift heavy ion irradiation was found to induce anisotropic lattice expansion and tensile strain within the host lattice dependent on the ion-track orientation. The relatively low Grüneisen parameter for the ν 1b(A g) mode, which has been assigned to originate from the volume fraction of the amorphous tracks, and the γ(ν 1a)/γ(ν 1b) ratio reveals compressive strain on the amorphous ITs. The comparative compressibilities for the host lattice reveal approximately equivalent bulk moduli, but significantly different pressure derivatives (K T = 88.4 ± 0.7 GPa, ∂K/∂P = 6.3 ± 0.3 for non-irradiated, K T = 90.0 ± 1.7 GPa, ∂K/∂P = 3.8 ± 0.5 for irradiated samples). The axial compressibility moduli β −1 reveal significant differences, which correlate with the ion-track orientation [ba - 1 \beta_{a}^{ - 1}  = 240 ± 5 GPa, bc - 1 \beta_{c}^{ - 1}  = 361 ± 14 GPa, ∂( ba - 1 ) \left( {\beta_{a}^{ - 1} } \right) /∂P = 11.3 ± 1.2, ∂( bc - 1 ) \left( {\beta_{c}^{ - 1} } \right) /∂P = 11.6 ± 3.4 for irradiation ⊥(100); 246 ± 9 GPa, 364 ± 57 GPa, 9.5 ± 2.9, 14.7 ± 14.1 for irradiation ⊥(001), 230.7 ± 3.6 GPa, 373.5 ± 5.1 GPa, 19.2 ± 1.4, 20.1 ± 1.8 for no irradiation]. Line widths of XRD Bragg peaks in irradiated apatites confirm the strain of the host lattice, which appears to decrease with increasing pressure. By contrast, the bandwidths of Raman modes increase with pressure, and this is attributed to increasing strain gradients on the length scale of the short-range order. The investigations reveal considerable deviatoric stress on the [100]-oriented tracks due to the anisotropic elasticity, while the compression is uniform for the directions perpendicular to the tracks, which are aligned parallel to the c-axis. This difference might be considered to control the diffusion properties related to the annealing kinetics and its observed anisotropy, and hence to cause potential pressure effects on track-fading rates.  相似文献   

19.
In order to investigate compression mechanism and the pressure-induced amorphization of portlandite, Ca(OH)2, the crystal structure has been refined up to 9.7?GPa using Rietveld analysis. Angular-dispersive synchrotron X-ray powder diffraction experiments were performed using a diamond anvil cell and an imaging plate at BL-18C in the Photon Factory at KEK, Japan. Compression behavior is highly anisotropic and the c axis is approximately 2.5 times as compressible as the a axis (βa=0.004, βc=0.011?GPa?1). Because the refined fractional coordinate, z, of the O atom increases linearly with pressure, compression along the c axis is due to the shortening of the interlayer spacing. The compression mechanism shows no change up to the amorphization pressure and is basically the same as that of brucite, Mg(OH)2, observed below 10 GPa. The octahedral regularity of CaO6 approaches a regular configuration with pressure. The interlayer O…O distance is expected to be about 2.75 Å at the amorphization pressure and should affect hydrogen bonding.  相似文献   

20.
The compression behavior of a synthetic Ca4La6(SiO4)6(OH)2 has been investigated to about 9.33 GPa at 300 K using in situ angle-dispersive X-ray diffraction and a diamond anvil cell. No phase transition has been observed within the pressure range investigated. The values of zero-pressure volume V 0, K 0, and $K_{0}^{'}$ refined with a third-order Birch–Murnaghan equation of state are V 0 = 579.2 ± 0.1 Å3, K 0 = 89 ± 2 GPa, and $K_{0}^{'} = 10.9 \pm 0.8$ . If $K_{0}^{'}$ is fixed at 4, K 0 is obtained as 110 ± 2 GPa. Analysis of axial compressible modulus shows that the a-axis (K a0 = 79 ± 2 GPa) is more compressible than the c-axis (K c0 = 121 ± 7 GPa). A comparison between the high-pressure elastic response of Ca4La6(SiO4)6(OH)2 and the iso-structural calcium apatites is made. The possible reasons of the different elastic behavior between Ca4La6(SiO4)6(OH)2 and calcium apatites are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号