首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although partly active aeolian sand sheets and dunes cover large areas in the zones of (dis)continuous permafrost, little precise information is available about the influence of cold-climate conditions on modern aeolian processes. This means that palaeoenvironmental reconstructions in the stabilised, mainly Late Pleistocene dune fields and cover sand regions in the ‘sand belts’ of the European Lowlands and the Northern Great Plains of the USA and Canada, are necessarily still based on ancient evidence. Cold-climate wind deposits are typically derived from areas of abundant sediment supply like unvegetated flood plains, glacial outwash plains, till plains and lake shores. The common parabolic and transverse dune forms resemble those observed in temperate regions. Although a variety of periglacial features has been identified in Late Pleistocene dune and cover sands none of them indicate that permafrost is crucial to aeolian activity. Specific structures in aeolian strata permit tentative interpretation of the moisture content of depositional sand surfaces, the nature of annual sedimentation cycles and the processes by which strata were deposited and/or contorted. But surprisingly little is known about the role of vegetation in the process of sand accumulation. Dunes are most informative with respect to reconstructions of past wind regimes, which offer important data for verification of palaeoclimatic simulations.  相似文献   

2.
The Algodones dune field of southeastern California is one of the largest active dune fields in North America. The dune field is migrating in an easterly direction, oblique to the resultant sand flow direction (S 24° E). The migration of the Algodones results from an interaction between regional winds and the dune field. This interaction generates a localized secondary flow that has caused the dune field to migrate in a direction oblique to the resultant sand flow direction. Four lines of evidence suggest that the Algodones has migrated in an easterly direction: (1) A ramp, interpreted as the trailing edge of the dune field, 35 m thick and 500 m wide composed of aeolian deposits that borders the western edge of the dune field. No similar deposits are found on the eastern (leading edge) margin of the dune field. (2) Leading-edge sand-sheet deposits are exposed in interdune areas within the dune field. These deposits are west of the modern leading-edge sand sheet. (3) Across the breadth of the dune field sands are consistently coarser and more poorly sorted in the west and finer and better sorted in the east. This observation suggests that sand is transported from west to east. (4) Eastward migration of a large compound-complex crescentic dune. If the dune field continues to migrate it will deposit a vertical sequence consisting of: a basal sand-sheet deposit consisting of wind and water-ripple laminae, small-scale aeolian cross-strata, and ephemeral stream (wadi) deposits; aeolian dune deposits consisting of medium-scale aeolian compound cross-strata; small-scale simple sets of aeolian cross-strata with highly variable dip directions; a sand sheet containing low-angle wind-ripple cross-strata capped by a coarse sand lag super bounding surface.  相似文献   

3.
The Hornby Bay Group is a Middle Proterozoic 2.5 km-thick succession of terrestrial siliciclastics overlain by marine siliciclastics and carbonates. A sequence of conglomeratic and arenaceous rocks at the base of the group contains more than 500 m of mature hematitic quartz arenite interpreted to have been deposited by migrating aeolian bedforms. Bedforms and facies patterns of modern aeolian deposits provided a basis for recognizing two sequences of aeolian arenite. Both sequences interfinger with alluvial—wadi fan conglomerates and arenites deposited by braided streams. Depositional processes, facies patterns and paleotopographic position of the arenites are consistent with modern sand sea dynamics.Distal aeolian facies in both sequences are composed of trough crossbed megasets deposited by climbing, sinuous-crested, transverse dunes. Megasets comprise a gradational assemblage of tabular to wedge-planar cosets formed by deflation/reactivation of dune lee slopes and migration of smaller superposed aeolian bedforms (small dunes and wind ripples). Megasets in the proximal facies are thinner, display composite internal stratification and have a tabular-planar geometry which suggests that they were formed by smaller, straight-crested transverse dunes. Most stratification within the crossbeds is inferred to have formed by the downwind climbing of aeolian ripples across the lee slopes of dunes.Remarkably few Precambrian aeolian deposits have been reported previously. This seems anomalous, because most Precambrian fluvial sediments appear to have been deposited by low sinuosity (braided) streams, the emergent parts of which are prime areas for aeolian deflation. Frequent floods and rapid lateral migration of Precambrian humid climate fluvial systems probably restricted aeolianite deposition to arid paleoclimates. Thus the apparent anomaly may reflect non-recognition and/or non-preservation of aeolianites and/or variations in some aspect of sand sea formation and migration unique to the Precambrian. Reconstruction of the Hornby Bay Group aeolianites using recently developed criteria for their recognition suggests that the latter reason did not exert a strong influence.  相似文献   

4.
About half of the arid and semi-arid lands in the world are deserts that comprise various types of aeolian sand dunes deposits. In Shaanxi Province, aeolian sand dunes cover considerable areas of the Yulin desert and northern Jinbian. Sand dunes are moving in the main wind direction and converting some agricultural area to wasteland. Remote sensing of sand dunes helps in the understanding of aeolian process and desertification. Remote sensing data combined with field studies are valuable in studying sand dunes, regional aeolian depositional history. In particular, active and inactive sand dunes of the north Shaanxi Province were studied using remote sensing and geographic information system. In this study, we describe the Landsat thematic mapper (TM) images, covering north Shaanxi Province, which were used to study the distribution, shape, size, trends, density and movement of sand dunes and their effect on desertification of cultivated lands. Estimation was made depending on soil erodibility factor (Ⅰ) and local climatic factor (C) during the period (June to September). The result indicates that soil erosion caused sand drift of 8.957 5, 7.03 ton for Yulin and Jinbian, respectively. The mean sand dunes movement rate were 4.37, 3.11 m, whereas, monthly sand dune advance rate were 1.092 5, 0.777 5 m, for the two locations, respectively. The study reveals that cultivated lands extended obliquely to the direction of sand dune movement are extremely affected, while other segments that extend parallel to the direction of the movement are not affected. Accordingly the north Shaanxi Province was divided into areas of different classes of potential risk. Moreover, blown sands and sand movement from neighboring highlands also affect the area of western desert.  相似文献   

5.
The stratigraphy and landscape evolution of the Lodbjerg coastal dune system record the interplay of environmental and cultural changes since the Late Neolithic. The modern dunefield forms part of a 40 km long belt of dunes and aeolian sand‐plains that stretches along the west coast of Thy, NW Jutland. The dunefield, which is now stabilized, forms the upper part of a 15–30 m thick aeolian succession. The aeolian deposits drape a glacial landscape or Middle Holocene lake sediments. The aeolian deposits were studied in coastal cliff exposures and their large‐scale stratigraphy was examined by ground‐penetrating radar mapping. The contact between the aeolian and underlying sediments is a well‐developed peaty palaeosol, the top of which yields dates between 2300 BC and 600 BC . Four main aeolian units are distinguished, but there is some lateral stratigraphic variation in relation to underlying topography. The three lower aeolian units are separated by peaty palaeosols and primarily developed as 1–4 m thick sand‐plain deposits; these are interpreted as trailing edge deposits of parabolic dunes that moved inland episodically. Local occurrence of large‐scale cross‐stratification may record the head section of a migrating parabolic dune. The upper unit is dominated by large‐scale cross‐stratification of various types and records cliff‐top dune deposition. The nature of the aeolian succession indicates that the aeolian landscape was characterized by alternating phases of activity and stabilization. Most sand transported inland was apparently preserved. Combined evidence from luminescence dating of aeolian sand and radiocarbon dating of palaeosols indicates that phases of aeolian sand movement were initiated at about 2200 BC , 700 BC and AD 1100. Episodes of inland sand movement were apparently initiated during marked climate shifts towards cooler, wetter and more stormy conditions; these episodes are thought to record increased coastal erosion and strong‐wind reworking of beach and foredune sediments. The intensity, duration and areal importance of these sand‐drift events increased with time, probably reflecting the increasing anthropogenic pressure on the landscape. The formation of the cliff‐top dunes after AD 1800 records the modern retreat of the coastal cliffs.  相似文献   

6.
The Akchar Erg of the Sahara of western Mauritania shows a morphology and stratigraphy that can be recognized as the amalgamation of late Pleistocene and Holocene deposits that reflect eustatic and climatic events. Mapping, trenching, and dating by 14C methods and artefacts show that the prominent complex linear dunes (draas) of the Akchar Erg are actually composite features showing at least three constructional and two destructional phases. The constructional phases are represented by three convex-up layers: (i) a modern veneer moulded into superimposed crescentic dunes, which partially mantle the larger linear bedforms; (ii) a middle, partly root-turbated sand deposited sometime during the last 4000 years; and (iii) a core of linear dune sand formed during the last glacial period (13 000–20 000 yr BP), which today shows relict relief, intense root-turbation, and pedogenesis. These constructional phases are separated by super bounding surfaces that coincide with erg destructional phases. Surface 2 bounds the middle aeolian sand, and is marked by a lag surface of small granules. Surface 1 is a very prominent surface with an abundance of Neolithic artefacts, and represents stabilization of the linear dunes during the humid, interglacial period (4000–11 000 yr BP). Interdraa deposits originated during the interglacial period, and consist of continental lacustrine limestones and sandstones, humic sands deposited in marshes, and sabkhas on the coast. The sabkhas originated during interglacial highstand of sea-level when interdraa areas were marine embayments, and subsequently dried during regression. The draa and interdraa sequences, therefore, in spite of being adjacent facies, actually represent different events and were not formed simultaneously. The upwind sand-sheet margin of the Akchar Erg shows exposures of the middle and core aeolian sands (which were previously protected from deflation by vegetation) being progressively cannibilized in the current phase of erg construction, and revealing a crystalline basement rock. In this proximal area, conditions are not favourable for the incorporation of these aeolian accumulations into the stratigraphic record.  相似文献   

7.
Temporal trends in grain-size measures on a linear sand dune   总被引:4,自引:0,他引:4  
IAN LIVINGSTONE 《Sedimentology》1989,36(6):1017-1022
Within aeolian dune systems spatial patterns of grain-size variation have been recognized, but little has been said about temporal changes. Increasingly it is becoming clear that linear dunes are associated with bi-directional wind regimes which are often seasonal. In the Namib Sand Sea, where linear dunes are aligned roughly north-south, winds blow from the west in summer and from the east in winter. In response to this regime, sand is eroded from the west slopes and deposited on the east slopes in summer, and eroded from the east slopes and deposited on the west slopes in winter. Preliminary evidence from a study of a single Namib linear dune reported here confirms that this seasonal aeolian regime induces seasonal responses in some grain-size measurements due to the dynamics of sand transport on the dune, the characteristics of the sand source immediately upwind of the sample point and the nature of the deposit. Thus, time of sampling is crucial to the results obtained.  相似文献   

8.
FIKRY KHALAF 《Sedimentology》1989,36(2):253-271
Several types of aeolian deposits have been recognized in Kuwait: (a) smooth sand sheets that resemble desert floor sand, (b) immobile sands that include rugged vegetated sand sheets and wadi fill deposits, and (c) mobile sands that form active sand sheets and sand dunes. Simple size frequency curves illustrate the genetic relationship between the various aeolian sediment types. The four size parameters, namely, mean size, sorting, skewness and kurtosis, were calculated. Scatter plot diagrams of sorting versus mean size and sorting versus kurtosis are effective in differentiating smooth sand sheet deposits from dune sands. Active sand sheet deposits can also be recognized because they are usually located between the two end members–smooth sand sheets and dune sands. Size parameters change with location regardless of their types. Coarsening and positive skewness usually increase downwind. Mineralogical and textural characteristics of the aeolian deposits in Kuwait revealed that they are mostly derived from the lower Mesopotamian muddy flood plain deposits, the sand fraction of the Al-Dibdibba gravelly deposits and the disintegrated material from calcretic and gypcretic duricrusts. Distribution of depositional and deflational areas indicates that the northern desert of Kuwait is characterized by a positive sand budget, whereas the southern desert has a negative sand budget.  相似文献   

9.
The Permian Cedar Mesa Sandstone represents the product of at least 12 separate aeolian erg sequences, each bounded by regionally extensive deflationary supersurfaces. Facies analysis of strata in the White Canyon area of southern Utah indicates that the preserved sequences represent erg‐centre accumulations of mostly dry, though occasionally water table‐influenced aeolian systems. Each sequence records a systematic sedimentary evolution, enabling phases of aeolian sand sea construction, accumulation, deflation and destruction to be discerned and related to a series of underlying controls. Sand sea construction is signalled by a transition from damp sandsheet, ephemeral lake and palaeosol deposition, through a phase of dry sandsheet deposition, to the development of thin, chaotically arranged aeolian dune sets. The onset of the main phase of sand sea accumulation is reflected by an upward transition to larger‐scale, ordered sets which represent the preserved product of climbing trains of sinuous‐crested transverse dunes with original downwind wavelengths of 300–400 m. Regularly spaced reactivation surfaces indicate periodic shifts in wind direction, which probably occurred seasonally. Compound co‐sets of cross strata record the oblique migration of superimposed slipfaced dunes over larger, slipfaceless draa. Each aeolian sequence is capped by a regionally extensive supersurface characterized by abundant calcified rhizoliths and bioturbation and which represents the end product of a widespread deflation episode whereby the accumulation surface was lowered close to the level of the water table as the sand sea was progressively cannibalized by winds that were undersaturated with respect to their potential carrying capacity. Aeolian sequence generation is considered to be directly attributable to cyclical changes in climate and related changes in sea level of probable glacio‐eustatic origin that characterize many Permo‐Carboniferous age successions. Sand sea construction and accumulation occurred during phases of increased aridity and lowered sea level, the main sand supply being former shallow marine shelf sediments that lay to the north‐west. Sand sea deflation and destruction would have commenced at, or shortly after, the time of maximum aridity as the available sand supply became exhausted. Restricted episodes of non‐aeolian accumulation would have occurred during humid (interglacial) phases, accumulation and preservation being enabled by slow rises in the relative water table. Subsidence analysis within the Paradox Basin, together with comparisons to other similar age successions suggests that the climatic cycles responsible for generating the Cedar Mesa erg sequences could be the product of 413 000 years so‐called long eccentricity cycles. By contrast, annual advance cycles within the aeolian dune sets indicate that the sequences themselves could have accumulated in just a few hundred years and therefore imply that the vast majority of time represented by the Cedar Mesa succession was reserved for supersurface development.  相似文献   

10.
Grainfall processes in the lee of transverse dunes, Silver Peak, Nevada   总被引:6,自引:0,他引:6  
Grainfall deposition and associated grainflows in the lee of aeolian dunes are important in that they are preserved as cross‐beds in the geological record and provide a key to the interpretation of the aeolian rock record. Despite their recognized importance, there have been very few field, laboratory or numerical simulation studies of leeside depositional processes on aeolian dunes. As part of an ongoing study, the relationships among grainfall, wind (speed and direction), stoss sand transport rates and dune morphometry (height and aspect ratio) were investigated on four relatively small, straight‐crested transverse dunes at Silver Peak, Nevada. Between 55% and 95% of the total grainfall was found to be deposited within 1 m of the crest, and 84–99% within 2 m, depending primarily on dune size and shape. Grainfall decay rates on high dunes of large aspect ratio were observed to be very consistent, with a weak positive dependence on wind speed. For small dunes with low aspect ratios, grainfall deposition was more varied and decreased rapidly within 1 m of the dune crest, whereas at increased distance from the dune crest, it eventually approached the smaller decay rates observed on the large dunes. No dependence of grainfall on wind speed was observed for these small dunes. Comparison of field data with predictions from 1 ) saltation model of grainfall, based on the computation of saltation path lengths, indicates lack of agreement in the following areas: (1) deposition rate magnitude; (2) variation in decay rate with wind speed; and (3) the magnitude and location of the localized lee‐slope depositional maxima. The Silver Peak field results demonstrate the importance of dune aspect ratio and related wake effects in determining the rate and pattern of grainfall. This work confirms earlier speculation by 7 ) that temporary, turbulent suspension (or `modified saltation') of relatively large grains does occur within the dune wake, so that transport distances generally are larger than predicted by numerical simulations of `true' saltation.  相似文献   

11.
Aeolian dune fields characterized by partly vegetated bedforms undergoing active construction and with interdune depressions that lie at or close to the water table are widespread on Skei?arársandur, Southern Iceland. The largest aeolian dune complex on the sandur covers an area of 80 km2 and is characterized by four distinct landform types: (i) spatially isolated aeolian dunes; (ii) extensive areas of damp and wet (flooded) interdune flat with small fluvial channels; (iii) small aeolian dune fields composed of assemblages of bedforms with simple morphologies and small, predominantly damp, interdune corridors; and (iv) larger aeolian dune fields composed of assemblages of complex bedforms floored by older aeolian dune deposits that are themselves raised above the level of the surrounding wet sandur plain. The morphology of each of these landform areas reflects a range of styles of interaction between aeolian dune, interdune and fluvial processes that operate coevally on the sandur surface. The geometry, scale, orientation and facies composition of sets of strata in the cores of the aeolian dunes, and their relationship to adjoining interdune strata, have been analysed to explain the temporal behaviour of the dunes in terms of their mode of initiation, construction, pattern of migration, style of accumulation and nature of preservation. Seasonal and longer‐term flooding‐induced changes in water table level have caused episodic expansion and contraction of the wet interdune ponds. Most of the dunes are currently undergoing active construction and migration and, although sediment availability is limited because of the high water table, substantial aeolian transport must occur, especially during winter months when the surface of the wet interdune ponds is frozen and sand can be blown across the sandur without being trapped by surface moisture. Bedforms within the larger dune fields have grown to a size whereby formerly damp interdune flats have been reduced to dry enclosed depressions and dry aeolian system accumulation via bedform climb is ongoing. Despite regional uplift of the proximal sandur surface in response to glacial retreat and unloading over the past century, sediment compaction‐induced subsidence of the distal sandur is progressively placing aeolian deposits below the water table and is enabling the accumulation of wet aeolian systems and increasing the likelihood of their long‐term preservation. Wet, dry and stabilizing aeolian system types all co‐exist on Skei?arársandur and the dunes are variously undergoing coeval construction, accumulation, bypass, stabilization and destruction as a result of interactions between localized factors.  相似文献   

12.
Fluvial-aeolian interactions: Part I, modern systems   总被引:4,自引:0,他引:4  
R. P. LANGFORD 《Sedimentology》1989,36(6):1023-1035
Two modern fluvial-aeolian depositional systems (Great Sand Dunes National Monument, Colorado and the Mojave River Wash, California) are remarkably similar in spite of different climates, sizes, fluvial sediment textures, and relative directions of aeolian and fluvial transport. Dune growth and migration, and deflation of blowouts create 8–10 m of local relief in unflooded aeolian landscapes. There are six prominent fluvial-aeolian interactions. (1) Fluvial flow extends into the aeolian system until it is dammed by aeolian landforms; (2) interdune areas (overbank-interdunes) upstream of aeolian dams, and alongside channels are flooded; (3) water erodes dunes alongside channels and interdunes; (4) flood waters deposit sediment in interdune areas; (5) fluvially derived groundwater floods interdunes (interdune-playas); (6) wind erodes fluvial sediment and redeposits it in the aeolian system. Unique and characteristic sediments are deposited in overbank-interdunes and in interdune-playas, reflecting alternate fluvial and aeolian processes and rapidly changing flow and salinity conditions. These fluvial-aeolian interdune deposits are characterized by irregular, concave-up bases and flat upper surfaces containing mudcracks or evaporite cement. Characteristic low-relief surfaces form in aeolian systems as an effect of flooding. Fluvial deposits are resistant to aeolian deflation. Aeolian sand is preserved when flood sediments are deposited around the bases of the dunes. Thus repetitive fluvial and aeolian aggradation tends to be ‘stepwise’ as interdune floors are suddenly raised during floods. The effects of flooding should be easy to recognize in ancient aeolianites, even beyond the area covered with overbank muds.  相似文献   

13.
ABSTRACT The ephemeral braided Hoanib River of NW Namibia flows for a few days a year, and only high discharges enable the river to pass through interdunal depressions within the northern Namib Desert dune field to the Atlantic. The dune field comprises mainly large transverse dunes resulting from predominant SSW winds. River flood deposits between aeolian dunes are analogous to mudstone layers conformably interbedded with ancient aeolianite dune foresets. Deep floods pond laterally to considerable depths (metres to >10 m) in adjacent interdunes, depositing mud layers (1–50 cm) to considerable heights on avalanche and stoss faces of bounding dunes. Fairly passive flooding only disturbs aeolian stratification minimally. Floodwater clay infiltrates and settles as an impermeable seal, with a flood pond on top, perched, above regional groundwater. Flood ponds evaporate slowly for long periods (>3 years). Early emergence desiccates higher parts of a mud layer. Subsequent floods can refill a predecessor pond, benefiting from the existing impervious seal. Potential preservation of such mud layers is lower on the stoss face, but high on the avalanche face after burial by subsequent dune reactivation and migration. The leeward (right) Hoanib bank, a dune stoss face, is river and wind eroded to exhume fossil interdune pond mud layers of an earlier Hoanib channel. The highly inclined layers are interbedded with dune avalanche foresets and represent the edges of two successive fossil ponds exposed in plan. Ancient flood pond mudstones occur in the Permian–Triassic hydrocarbon reservoir, the Sherwood Sandstone Group of the Cheshire Basin (Kinnerton Formation) and Irish Sea Basin and were previously used erroneously to argue against the aeolian origin of cross‐bed sets. Hoanib studies show that primary river interaction with a dune field might preserve only localized erosional omission surfaces in ancient aeolianites, with little sandy barform preservation, prone to aeolian reworking. Around the main fluvial channel locus, however, flood pond mudstone layers should form a predictable halo, within which fluid permeability will decrease.  相似文献   

14.
The Lower Jurassic erg (aeolian sand sea) deposits of the Wingate Sandstone on the Colorado Plateau are beautifully exposed near Many Farms, Arizona. These 3-D outcrops allow a detailed study of structures and sequenses in the erg body. The erg sequence comprises chiefly oblique dune deposits. The dune facies are in most cases characterized by a well-developed tripartite upbuilding. Each dune coset contains unusually thick and intricate bottomsets, medial low-angle dipping toesets, and upper steeply dipping foresets. The foresets reveal significant across-crest transport of sand and dip within a narrow range of directions towards the ESE. The bottomset beds are composed of compound cross-bedding that documents strong along-crest transport towards the SSW, whereas the toeset beds reveal upslope, downslope, and along-crest transport of sand. The ancient dunes apparently formed in a directionally varying wind flow with prevailing winds (early summer) from the NW and periodic strong winds (late summer) from the SW. The dunes were oblique not only to seasonal transport directions, but also to the resultant annual transport direction and dune migration direction. This was caused by the interaction of the dune system with the primary winds which resulted in secondary airflow and significant along-crest transport of sand. The erg deposits at Many Farms are separated by a number of super bounding surfaces suggesting several episodes of erg formation and destruction. The initial erg system was dominated by transverse dunes, but overlying ergs only contained oblique dunes. All erg systems were bounded to the SW by wide regions of erg margin environments in which aeolian sand sheet, fluvial, and lacustrine facies were deposited. Even though fluvial deposits are absent from the main part of the sequence at the study area, the effects of this system are reflected within the erg deposits at Many Farms.  相似文献   

15.
Wind sedimentation in the Jafurah sand sea, Saudi Arabia   总被引:2,自引:0,他引:2  
The Jafurah sand sea of the Eastern Province of Saudi Arabia extends along the Arabian Gulf coastline from Kuwait in the north to the Rub Al Khali in the south, a distance of about 800 km. Sand drifts southward to south-eastward from regions of high wind energy in the north to low wind energy in the south. The aeolian landscape is zoned, with areas of deflation, transport and deposition from north to south. Drift rates in the zone of transport, near Abqaiq, range from 2 m3 m-w-1 yr-1 on sabkhas, to 29 m3 m-w-1 yr-1 on the crests of dunes. Average drift rates of approximately 18 m3 m-w-1 yr-1 observed during the study can cause about 1 m of accumulation per 5500 yr in a 100 km zone of deposition downwind, not including the bulk transport represented by the forward advance of dunes. Dune advance ranged from 23 m (2.9 m high dune) to 3 m (23 m high dune) during April-October 1980. The study area consists of dune, interdune, sand sheet and siliciclastic sabkha terrains, each of which is characterized by differing drift rates, and differing rates of erosion or deposition. Sedimentation occurs by lateral movement of dunes and interdunes, and vertical accretion by sand sheets and sabkhas.  相似文献   

16.
17.
Reappraisal of the Late Proterozoic Venkatpur Sandstone indicates that the bulk of the sandstone is aeolian in origin. Aeolian stratification types, namely (i) inverse graded translatent strata, (ii) adhesion laminae, (iii) grainflow strata and (iv) grainfall strata, are present throughout the outcrop belt. Nine facies have been identified that represent both aeolian and related aqueous environments within a well-developed erg. Cosets of large cross-beds at the Bellampalli section in the NW of the study area record dune fields in the interior of the sand sea. To the SE, at the Godavari River and Ramgundam sections, a progressive increase in the relative proportion of the flat-bedded to cross-bedded facies and intercalated non-aeolian facies delineates the transition from the dune-field to sand-sheet environment. An alternating sequence of aeolian and marine sediments at Laknavaram, in the extreme SE, marks the termination of the sand sea. Palaeocurrent data suggest that the NW-SE trend of the sections represents a transect across the sand sea in a direction normal to the resultant primary palaeowind direction. Abundant horizontally stratified units in the Vankatpur Sandstone do not always represent the interdune sediments. On the basis of the thickness and geometry of the units, nature of bounding surfaces and associated facies sequence, the facies is variously interpreted to represent interdune, inland sabkha, sand sheet and coastal sand flat deposits.  相似文献   

18.
The Upper Jurassic Guará Formation comprises an 80–200 m thick continental succession exposed in the western portion of the Rio Grande do Sul State (Brazil). It comprises four distinct facies associations: (i) simple to locally composite crescentic aeolian dune sets, (ii) aeolian sand sheets, (iii) distal floodflows, and (iv) fluvial channels. The vertical stacking of the facies associations defines several 5–14 m thick wetting-upward cycles. Each cycle starts with aeolian dune sets followed by aeolian sand sheets deposits and culminating in either fluvial channels or distal flood strata. Within some cycles, aeolian sand sheets are absent and fluvial deposits rest directly above aeolian dune facies. The transitions from one facies association to another are abrupt and marked by erosive surfaces that delineate distinct episodes of sediment accumulation. The origin of both the wetting-upward cycles and the erosive surfaces was controlled by the ground-water table level, dry sand availability and aeolian and fluvial sediment transport capacity variations, related to climatic fluctuations between relatively arid and humid conditions. Preservation of the fluvial–aeolian deposits reflects an overall relative water table rise driven by subsidence.  相似文献   

19.
Meltwater flows emanating from the Pyrenees during the Pleistocene constructed a braided outwash plain in the Ebro Basin and led to the karstification of the Neogene gypsum bedrock. Synsedimentary evaporite dissolution locally increased subsidence rates and generated dolines and collapses that enabled the accumulation and preservation of outwash gravels and associated windblown deposits that were protected from erosion by later meltwater flows. In these localized depocentres, maximum rates of wind deceleration resulted from airflow expansion, enabling the accumulation of cross‐stratified sets of aeolian strata climbing at steep angles and thereby preserving up to 5 m thick sets. The outwash plain was characterized by longitudinal and transverse fluvial gravel bars, channels and windblown facies organized into aeolian sand sheets, transverse and complex aeolian dunes, and loess accumulations. Flat‐lying aeolian deposits merge laterally to partly deformed aeolian deposits encased in dolines and collapses. Synsedimentary evaporite dissolution caused gravels and aeolian sand deposits to subside, such that formerly near‐horizontal strata became inclined and generated multiple internal angular unconformities. During episodes when the wind was undersaturated with respect to its potential sand transporting capacity, deflation occurred over the outwash plain and coarse‐grained lags with ventifacts developed. Subsequent high‐energy flows episodically reached the aeolian dune field, leading to dune destruction and the generation of hyperconcentrated flow deposits composed in part of reworked aeolian sands. Lacustrine deposits in the distal part of the outwash plain preserve rhythmically laminated lutites and associated Gilbert‐type gravel deltas, which developed when fluvial streams reached proglacial lakes. This study documents the first evidence of an extensive Pleistocene proglacial aeolian dune field located in the Ebro Basin (41˙50° N), south of what has hitherto been considered to be the southern boundary of Pleistocene aeolian deposits in Europe. A non‐conventional mechanism (evaporite karst‐related subsidence) for the preservation of aeolian sands in the stratigraphic record is proposed.  相似文献   

20.
The existence of a mid‐Cretaceous erg system along the western Tethyan margin (Iberian Basin, Spain) was recently demonstrated based on the occurrence of wind‐blown desert sands in coeval shallow marine deposits. Here, the first direct evidence of this mid‐Cretaceous erg in Europe is presented and the palaeoclimate and palaeoceanographic implications are discussed. The aeolian sand sea extended over an area of 4600 km2. Compound crescentic dunes, linear draa and complex aeolian dunes, sand sheets, wet, dry and evaporitic interdunes, sabkha deposits and coeval extradune lagoonal deposits form the main architectural elements of this desert system that was located in a sub‐tropical arid belt along the western Tethyan margin. Sub‐critically climbing translatent strata, grain flow and grain fall deposits, pin‐stripe lamination, lee side dune wind ripples, soft‐sediment deformations, vertebrate tracks, biogenic traces, tubes and wood fragments are some of the small‐scale structures and components observed in the aeolian dune sandstones. At the boundary between the aeolian sand sea and the marine realm, intertonguing of aeolian deposits and marine facies occurs. Massive sandstone units were laid down by mass flow events that reworked aeolian dune sands during flooding events. The cyclic occurrence of soft sediment deformation is ascribed to intermittent (marine) flooding of aeolian dunes and associated rise in the water table. The aeolian erg system developed in an active extensional tectonic setting that favoured its preservation. Because of the close proximity of the marine realm, the water table was high and contributed to the preservation of the aeolian facies. A sand‐drift surface marks the onset of aeolian dune construction and accumulation, whereby aeolian deposits cover an earlier succession of coastal coal deposits formed in a more humid period. A prominent aeolian super‐surface forms an angular unconformity that divides the aeolian succession into two erg sequences. This super‐surface formed in response to a major tectonic reactivation in the basin, and also marks the change in style of aeolian sedimentation from compound climbing crescentic dunes to aeolian draas. The location of the mid‐Cretaceous palaeoerg fits well to both the global distribution of other known Cretaceous erg systems and with current palaeoclimate data that suggest a global cooling period and a sea‐level lowstand during early mid‐Cretaceous times. The occurrence of a sub‐tropical coastal erg in the mid‐Cretaceous of Spain correlates with the exposure of carbonate platforms on the Arabian platform during much of the Late Aptian to Middle Albian, and is related to this eustatic sea‐level lowstand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号