首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Differential equations describing the tidal evolution of the earth's rotation and of the lunar orbital motion are presented in a simple close form. The equations differ in form for orbits fixed to the terrestrial equator and for orbits with the nodes precessing along the ecliptic due to solar perturbations. Analytical considerations show that if the contemporary lunar orbit were equatorial the evolution would develop from an unstable geosynchronous orbit of the period about 4.42 h (in the past) to a stable geosynchronous orbit of the period about 44.8 days (in the future). It is also demonstrated that at the contemporary epoch the orbital plane of the fictitious equatorial moon would be unstable in the Liapunov's sense, being asymptotically stable at early stages of the evolution. Evolution of the currently near-ecliptical lunar orbit and of the terrestrial rotation is traced backward in time by numerical integration of the evolutional equations. It is confirmed that about 1.8 billion years ago a critical phase of the evolution took place when the equatorial inclination of the moon reached small values and the moon was in a near vicinity of the earth. Before the critical epoch t cr two types of the evolution are possible, which at present cannot be unambiguously distinguished with the help of the purely dynamical considerations. In the scenario that seems to be the most realistic from the physical point of view, the evolution also has started from a geosynchronous equatorial lunar orbit of the period 4.19 h. At t < t cr the lunar orbit has been fixed to the precessing terrestrial equator by strong perturbations from the earth's flattening and by tidal effects; at the critical epoch the solar perturbations begin to dominate and transfer the moon to its contemporary near-ecliptical orbit which evolves now to the stable geosynchronous state. Probably this scenario is in favour of the Darwin's hypothesis about originating the moon by its separation from the earth. Too much short time scale of the evolution in this model might be enlarged if the dissipative Q factor had somewhat larger values in the past than in the present epoch. Values of the length of day and the length of month, estimated from paleontological data, are confronted with the results of the developed model.  相似文献   

2.
The announced missions to the Saturn and Jupiter systems renewed the space community interest in simple design methods for gravity assist tours at planetary moons. A key element in such trajectories are the V-Infinity Leveraging Transfers (VILT) which link simple impulsive maneuvers with two consecutive gravity assists at the same moon. VILTs typically include a tangent impulsive maneuver close to an apse location, yielding to a desired change in the excess velocity relative to the moon. In this paper we study the VILT solution space and derive a linear approximation which greatly simplifies the computation of the transfers, and is amenable to broad global searches. Using this approximation, Tisserand graphs, and heuristic optimization procedure we introduce a fast design method for multiple-VILT tours. We use this method to design a trajectory from a highly eccentric orbit around Saturn to a 200-km science orbit at Enceladus. The trajectory is then recomputed removing the linear approximation, showing a Δv change of <4%. The trajectory is 2.7 years long and comprises 52 gravity assists at Titan, Rhea, Dione, Tethys, and Enceladus, and several deterministic maneuvers. Total Δv is only 445 m/s, including the Enceladus orbit insertion, almost 10 times better then the 3.9 km/s of the Enceladus orbit insertion from the Titan–Enceladus Hohmann transfer. The new method and demonstrated results enable a new class of missions that tour and ultimately orbit small mass moons. Such missions were previously considered infeasible due to flight time and Δv constraints.  相似文献   

3.
The aim of this investigation is to present the secular and periodic perturbations of the six orbital elements of a close binary system due to rotational distortion. In our study we consider very small inclinationst of the orbital plane of the system, whereas the eccentricity of the orbit may assume any value between 0<e<1. The final formulae for the various elements have been expressed by means of the unperturbed true anomaly measured from the ascending node.  相似文献   

4.
The D'Alembert model for the spin/orbit problem in celestial mechanics is considered. Using a Hamiltonian formalism, it is shown that in a small neighborhood of a p:q spin/orbit resonance with (p,q) different from (1,1) and (2,1) the 'effective' D'Alembert Hamiltonian is a completely integrable system with phase space foliated by maximal invariant curves; instead, in a small neighborhood of a p:q spin/orbit resonance with (p,q) equal to (1,1) or (2,1) the 'effective' D'Alembert Hamiltonian has a phase portrait similar to that of the standard pendulum (elliptic and hyperbolic equilibria, separatrices, invariant curves of different homotopy). A fast averaging with respect to the 'mean anomaly' is also performed (by means of Nekhoroshev techniques) showing that, up to exponentially small terms, the resonant D'Alembert Hamiltonian is described by a two-degrees-of-freedom, properly degenerate Hamiltonian having the lowest order terms corresponding to the 'effective' Hamiltonian mentioned above.  相似文献   

5.
It is proved that a periodic orbit of the three-dimensional circular restricted three-body problem can be continued analytically, when the mass of the third body is sufficiently small, to a periodic orbit of the three dimensional general three-body problem in a rotating frame. The above method is not applicable when the period of the periodic orbit of the restricted problem is equal to 2k (k any integer), in the usual normalized units. Several numerical examples are given.  相似文献   

6.
Halo orbits for solar sails at artificial Sun–Earth L1 points are investigated by a third order approximate solution. Two families of halo orbits are explored as defined by the sail attitude. Case I: the sail normal is directed along the Sun-sail line. Case II: the sail normal is directed along the Sun–Earth line. In both cases the minimum amplitude of a halo orbit increases as the lightness number of the solar sail increases. The effect of the z-direction amplitude on x- or y-direction amplitude is also investigated and the results show that the effect is relatively small. In case I, the orbit period increases as the sail lightness number increases, while in case II, as the lightness number increases, the orbit period increases first and then decreases after the lightness number exceeds ~0.01.  相似文献   

7.
Initial asteriod orbits are determined by a least squares adjustment of an arbitrary number (N) of optical and radar observations. The usual separation, into an orbit determination by three observations and a subsequent differential orbit improvement, is combined into a single algorithm. A priori information is used for very small arcs. Ephemerides very suitable for linking are obtained by strictly linear computations.  相似文献   

8.
Three integrals of motion have been found in the three-dimensional elliptic restricted three-body problem for small eccentricitye of the relative orbit of the primaries and small distancer and eccentricitye of the orbit of the third body around a primary. The integrals are given in the form of formal series in the mass-ratio , the eccentricitiese, e and the coordinates and velocities. These integrals depend periodically on the time.  相似文献   

9.
The restricted three-body Hamiltonian is partitioned into a two-center type principal part and its accompanying perturbational part. The mathematical analysis, involving the Jacobian elliptic functions, is adapted for the case of figure-eight orbits winding around the two given mass points. For many such orbits the elliptic function modulusk is small and can serve as a small parameter.Fourier expansions in terms of a parameter related tot are obtained for the intermediate orbit functions which provide representations in terms of elementary functions.  相似文献   

10.
In this paper the extended H filtering algorithms for the design of the GPS-based on-board autonomous navigation system for a low earth orbit (LEO) satellite are introduced. The dynamic process models for the estimation of position, velocity and acceleration from the GPS measurements are established. The nominal orbit of the small LEO satellite is determined by using the 7th–8th order Runge—Kutta algorithms. Three filtering approaches are applied to smooth the orbit solutions, respectively, based upon the simulated GPS pseudo range observables using the Satellite Navigation Tool Box. The simulation shows that the observed orbit errors obtained by using the extended H filtering algorithms can be reduced to a lower level than the observed orbit errors in the sense of RMS within 12 h of tracking time by using the H filtering algorithms and the extended Kalman filtering algorithms under the appropriately designed parameters. Based upon the position errors predicted by the three filtering algorithms after the last observation, we find that the extended H filtering algorithm provides the least position errors of the user satellite.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

11.
Three eclipsing binary systems with astrometric orbit have been studied. For a detailed analysis two circular‐orbit binaries (VW Cep and HT Vir) and one binary with an eccentric orbit (ζ Phe) have been chosen. Merging together astrometry and the analysis of the times of minima, one is able to describe the orbit of such a system completely. The O C diagrams and the astrometric orbits of the third bodies were analysed simultaneously for these three systems by the least‐squares method. The introduced algorithm is useful and powerful, but also time consuming, due to many parameters which one is trying to derive. The new orbits for the third bodies in these systems were found with periods 30, 221, and 261 yr, and eccentricities 0.63, 0.37, and 0.64 for VWCep, ζ Phe, and HT Vir, respectively. Also an independent approach to compute the distances to these systems was used. The use of this algorithm to VW Cep gave the distance d = (27.90 ± 0.29) pc, which is in excellent agreement with the previous Hipparcos result. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
The dynamics of the spin-orbit interaction of a sphereM 8 and a rotating asymmetrical rigid bodyM a are examined. No restrictions are imposed on the masses, on the orientation of the rotation axis to the orbit plane, or on the orbit eccentricity. The zonal potential harmonics ofM a induce a precession of the spin axis as well as a precession of the orbit plane, the net effect being a uniform precession of the node on an invariant plane normal to the constant total angular momentum of the system. In general, the effect of the tesseral harmonics is to induce short-period perturbations of small amplitude in both the orbital and spin motions. Resonances are shown to exist whenever the orbital and rotational periods are commensurable. In any resonant state a single coordinate is found to represent both orbital and spin perturbations; and the system may be described as trapped in a localized potential well. The resultant spin and orbit librations are in phase with a common period. The relative amplitudes of the spin/orbit modes are determined by the characteristic parameter =M a M s a 2 /3(M a +M s )C, wherea is the semimajor axis of the orbit, andC is the moment of inertia ofM a about the rotation axis. When ga1, the solutions reduce to those for pureorbital resonance, in whichM s librates in an appropriate reference frame while the rotation rate of the asymmetrical body remains constant. In the opposite extreme of 1, the solutions are appropriate to purerotational resonance, in which the orbital motion is unperturbed but the spin ofM a librates. In each of these special cases the equations developed herein on the basis of a single theory are in agreement with those previously determined from separate theories of spin and orbital resonances.  相似文献   

13.
Binaries in the Kuiper-belt are unlike all other known binaries in the Solar System. Both their physical and orbital properties are highly unusual and, because these objects are thought to be relics dating back to the earliest days of the Solar System, understanding how they formed may provide valuable insight into the conditions which then prevailed. A number of different mechanisms for the formation of Kuiper-belt binaries (KBBs) have been proposed including; two-body collisions inside the Hill sphere of a larger body; strong dynamical friction; exchange reactions; and chaos assisted capture. So far, no clear consensus has emerged as to which of these mechanisms (if any) can best explain the observed population of KBBs. Indeed, the recent characterization of the mutual orbit of the symmetric (i.e., roughly equal mass) KBB 2001 QW322 has only served to complicate the picture because its orbit does not seem readily explicable by any of the available models. The binary 2001 QW322 stands out even among the already unusual population of KBBs for the following reasons: its mutual orbit is extremely large (≈105 km or about 30% of the Hill sphere radius), retrograde, it is inclined ≈120° from the ecliptic and has very low eccentricity, i.e., e ≤ 0.4 (and possibly e ≤ 0.05). Here we propose a hybrid formation mechanism for this object which combines aspects of several of the mechanisms already proposed. Initially two objects are temporarily trapped in a long-living chaotic orbit that lies close to a retrograde periodic orbit in the three-dimensional Hill problem. This is followed by capture through gravitational scattering with a small intruder object. Finally, weak dynamical friction gradually switches the original orbit “adiabatically” into a large, almost circular, retrograde orbit similar to that actually observed.  相似文献   

14.
This paper presents a non-iterative approach to solve Kepler’s Equation, M = Ee sin E, based on non-rational cubic and rational quadratic Bézier curves. Optimal control point coordinates are first shown to be linear with respect to orbit eccentricity for any eccentric anomaly range. This property yields the development of a piecewise (e.g., 3, 4) solving technique providing accuracies better than 10−13 degree for orbit eccentricity e ≤ 0.99. The proposed method does not require large pre-computed discretization data, but instead solves a cubic/quadratic algebraic equation and uses a single final Halley iteration in only a few lines of code. The method still provides accuracies better than 10−5 degree for the near parabolic worst case (e = 0.9999) with very small mean anomalies (M < 0.0517 deg). The complexity of the proposed algorithm is constant, independent of the parameters e and M. This makes the method suitable for extensive orbit propagations. Presented at the 7th Dynamics and Control of Systems and Structures in Space Conference, July 18–22, 2006, Greenwich, England.  相似文献   

15.
Summary The evolution of the extreme values of the functionsx(t),y(t) andz(t) which are the coordinates of the third bodyP in the barycentric rotating frame of reference, when friction is present, is discussed. These values, which are constant for periodic orbits, change due to the presence of the resisting medium. It is shown that either the orbit tends to become circular and coplanar with the two primaries or to collide with one of the primaries.  相似文献   

16.
Contemporary surveys provide a huge number of detections of small solar system bodies, mostly asteroids. Typically, the reported astrometry is not enough to compute an orbit and/or perform an identification with an already discovered object. The classical methods for preliminary orbit determination fail in such cases: a new approach is necessary. When the observations are not enough to compute an orbit we represent the data with an attributable (two angles and their time derivatives). The undetermined variables range and range rate span an admissible region of solar system orbits, which can be sampled by a set of Virtual Asteroids (VAs) selected by an optimal triangulation. The attributable results from a fit and has an uncertainty represented by a covariance matrix, thus the predictions of future observations can be described by a quasi-product structure (admissible region times confidence ellipsoid), which can be approximated by a triangulation with each node surrounded by a confidence ellipsoid. The problem of identifying two independent short arcs of observations has been solved. For each VA in the admissible region of the first arc we consider prediction at the time of the second arc and the corresponding covariance matrix, and we compare them with the attributable of the second arc with its own covariance. By using the penalty (increase in the sum of squares, as in the algorithms for identification) we select the VAs which can fit together both arcs and compute a preliminary orbit. Even two attributables may not be enough to compute an orbit with a convergent differential corrections algorithm. The preliminary orbits are used as first guess for constrained differential corrections, providing solutions along the Line Of Variations (LOV) which can be used as second generation VAs to further predict the observations at the time of a third arc. In general the identification with a third arc will ensure a least squares orbit, with uncertainty described by the covariance matrix.  相似文献   

17.
Suitable lunar constellation coverage can be obtained by separating the satellites in inclinations and node angles. It is shown in the paper that a relevant saving of velocity variation ΔV can be achieved using weak stability boundary trajectories. The weakly stable dynamics of such transfers allows the separation of the satellites from the nominal orbit to the required orbit planes with a small amount of ΔV. This paper also shows that only one different set of orbital parameters at Moon can be reached with the same ΔV manoeuvre starting from a nominal trajectory and ending at a fixed periselenium altitude. In fact, such a feature is proved to be common to other simpler dynamical systems, such as the two- and three-body problems.  相似文献   

18.
The purpose of this paper is to study the motion of a spinless axisymmetric rigid body in a Newtonian field when we suppose the motion of the center of mass of the rigid body is on a Keplerian orbit. In this case the system can be reduced to a Hamiltonian system with configuration space of a two-dimensional sphere. We prove that the restricted planar motion is analytical nonintegrable and we find horseshoes due to the eccentricity of the orbit. In the caseI 3/I 1>4/3, we prove that the system on the sphere is also analytical nonintegrable.On leave from the Polytechnic Institute of Bucharest, Romania.  相似文献   

19.
Using a consistent perturbation theory for collisionless disk-like and spherical star clusters, we construct a theory of slow modes for systems having an extended central region with a nearly harmonic potential due to the presence of a fairly homogeneous (on the scales of the stellar system) heavy, dynamically passive halo. In such systems, the stellar orbits are slowly precessing, centrally symmetric ellipses (2: 1 orbits). Depending on the density distribution in the system and the degree of halo inhomogeneity, the orbit precession can be both prograde and retrograde, in contrast to systems with 1: 1 elliptical orbits where the precession is unequivocally retrograde. In the first paper, we show that in the case where at least some of the orbits have a prograde precession and the stellar distribution function is a decreasing function of angular momentum, an instability that turns into the well-known radial orbit instability in the limit of low angular momenta can develop in the system. We also explore the question of whether the so-called spoke approximation, a simplified version of the slow mode approximation, is applicable for investigating the instability of stellar systems with highly elongated orbits. Highly elongated orbits in clusters with nonsingular gravitational potentials are known to be also slowly precessing 2: 1 ellipses. This explains the attempts to use the spoke approximation in finding the spectrum of slow modes with frequencies of the order of the orbit precession rate. We show that, in contrast to the previously accepted view, the dependence of the precession rate on angular momentum can differ significantly from a linear one even in a narrow range of variation of the distribution function in angular momentum. Nevertheless, using a proper precession curve in the spoke approximation allows us to partially “rehabilitate” the spoke approach, i.e., to correctly determine the instability growth rate, at least in the principal (O(α T−1/2) order of the perturbation theory in dimensionless small parameter α T, which characterizes the width of the distribution function in angular momentum near radial orbits.  相似文献   

20.
On the basis of the results by Huang et al. (1990), this paper further discusses and analyses the four post-Newtonian effects in a near-Earth satellite orbit: the Schwarzschild solution, the post-Newtonian effects of the geodesic precession, the Lense-Thirring precession and the oblateness of the Earth. A full analytical solution to the effects including their direct perturbations and mixed perturbations due to the Newtonian oblateness (J 2) perturbation and the Schwarzschild solution is obtained using the quasi-mean orbital element method analogous to the Kozai's mean orbital element one. Some perturbation properties of the post-Newtonian effects are revealed. The results obtained not only can provide a sound scientific basis for the precise determination of a man-made satellite orbit but also is suitable for similar mechanics systems, such as the motions of planets, asteroids and natural satellites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号