首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
I discuss open theoretical questions pertaining to the modified dynamics (MOND)—a proposed alternative to dark matter, which posits a breakdown of Newtonian dynamics in the limit of small accelerations. In particular, I point the reasons for thinking that MOND is an effective theory—perhaps, despite appearance, not even in conflict with GR. I then contrast the two interpretations of MOND as modified gravity and as modified inertia. I describe two mechanical models that are described by potential theories similar to (non-relativistic) MOND: a potential-flow model, and a membrane model. These might shed some light on a possible origin of MOND. The possible involvement of vacuum effects is also speculated on.  相似文献   

2.
We propose to use multiple-imaged gravitational lenses to set limits on gravity theories without dark matter, specifically tensor–vector–scalar (TeVeS) theory, a theory which is consistent with fundamental relativistic principles and the phenomenology of Modified Newtonian Dynamics (MOND) theory. After setting the framework for lensing and cosmology, we analytically derive the deflection angle for the point lens and the Hernquist galaxy profile, and study their patterns in convergence, shear and amplification. Applying our analytical lensing models, we fit galaxy-quasar lenses in the CfA-Arizona Space Telescope Lens Survey (CASTLES) sample. We do this with three methods, fitting the observed Einstein ring sizes, the image positions, or the flux ratios. In all the cases, we consistently find that stars in galaxies in MOND/TeVeS provide adequate lensing. Bekenstein's toy μ function provides more efficient lensing than the standard MOND μ function. But for a handful of lenses, a good fit would require a lens mass orders of magnitude larger/smaller than the stellar mass derived from luminosity unless the modification function μ and modification scale a 0 for the universal gravity were allowed to be very different from what spiral galaxy rotation curves normally imply. We discuss the limitation of present data and summarize constraints on the MOND μ function. We also show that the simplest TeVeS 'minimal-matter' cosmology, a baryonic universe with a cosmological constant, can fit the distance–redshift relation from the supernova data, but underpredicts the sound horizon size at the last scattering. We conclude that lensing is a promising approach to differentiate laws of gravity.  相似文献   

3.
I start with a brief introduction to MOND phenomenology and its possible roots in cosmology—a notion that may turn out to be the most far reaching aspect of MOND. Next I discuss the implications of MOND for the dark matter (DM) doctrine: MOND’s successes imply that baryons determine everything. For DM this would mean that the puny tail of leftover baryons in galaxies wags the hefty DM dog. This has to occur in many intricate ways, and despite the haphazard construction history of galaxies—a very tall order. I then concentrate on galaxy clusters in light of MOND, which still requires some yet undetected cluster dark matter, presumably in some baryonic form (CBDM). This CBDM might contribute to the heating of the X-ray emitting gas and thus alleviate the cooling flow puzzle. MOND, qua theory of dynamics, does not directly enter the microphysics of the gas; however, it does force a new outlook on the role of DM in shaping the cluster gas dynamics: MOND tells us that the cluster DM is not cold dark matter, is not so abundant, and is not expected in galaxies; it is thus not subject to constraints on baryonic DM in galaxies. The mass in CBDM required in a whole cluster is, typically, similar to that in hot gas, but is rather more centrally concentrated, totally dominating the core. The CBDM contribution to the baryon budget in the universe is thus small. Its properties, deduced for isolated clusters, are consistent with the observations of the “bullet cluster”. Its kinetic energy reservoir is much larger than that of the hot gas in the core, and would suffice to keep the gas hot for many cooling times. Heating can be effected in various ways depending on the exact nature of the CBDM, from very massive black holes to cool, compact gas clouds.  相似文献   

4.
It is well known that the application of Newtonian dynamics to an expanding spherical region leads to the correct relativistic expression (the Friedmann equation) for the evolution of the cosmic scalefactor. Here, the cosmological implications of Milgrom's modified Newtonian dynamics (MOND) are considered by means of a similar procedure. Earlier work by Felten demonstrated that in a region dominated by modified dynamics the expansion cannot be uniform (separations cannot be expressed in terms of a scalefactor) and that any such region will eventually recollapse regardless of the initial expansion velocity and mean density. Here I show that, because of the acceleration threshold for the MOND phenomenology, a region dominated by MOND will have a finite size which, in the earlier Universe ( z >3), is smaller than the horizon scale. Therefore, uniform expansion and homogeneity on the horizon scale are consistent with MOND-dominated non-uniform expansion and the development of inhomogeneities on smaller scales. In the radiation-dominated era, the amplitude of MOND-induced inhomogeneities is much smaller than that implied by observations of the cosmic background radiation, and the thermal and dynamical history of the Universe is identical to that of the standard big bang model. In particular, the standard results for primordial nucleosynthesis are retained. When matter first dominates the energy density of the Universe, the cosmology diverges from that of the standard model. Objects of galaxy mass are the first virialized objects to form (by z =10), and larger structure develops rapidly. At present, the Universe would be inhomogeneous out to a substantial fraction of the Hubble radius.  相似文献   

5.
6.
We compare orbits in a thin axisymmetric disc potential in Modified Newtonian Dynamics (MOND) with those in a thin disc plus near-spherical dark matter halo predicted by a ΛCDM cosmology. Remarkably, the amount of orbital precession in MOND is nearly identical to that which occurs in a mildly oblate CDM Galactic halo (potential flattening   q = 0.9  ), consistent with recent constraints from the Sagittarius stream. Since very flattened mass distributions in MOND produce rounder potentials than in standard Newtonian mechanics, we show that it will be very difficult to use the tidal debris from streams to distinguish between a MOND galaxy and a standard CDM galaxy with a mildly oblate halo.
If a galaxy can be found with either a prolate halo or one that is more oblate than   q ∼ 0.9  this would rule out MOND as a viable theory. Improved data from the leading arm of the Sagittarius dwarf – which samples the Galactic potential at large radii – could rule out MOND if the orbital pole precession can be determined to an accuracy of the order of  ±1°  .  相似文献   

7.
MOND理论和暗物质模型的检验   总被引:1,自引:0,他引:1  
张杨  赵文  韩金林 《天文学报》2003,44(4):375-381
从理论上探讨在地球引力系统内,修正动力学的引力理论以及暗物质模型的预言.着重研究修正动力学(MOND)的引力理论中一些常用的模型,对其中一个最简单模型,给出了球对称情况下引力势的一般表达式,计算了地球引力场中这些模型预言的卫星角速度,发现不同模型给出的角速度是不相同的,并且将这些值分别与牛顿理论的角速度值相比较.虽然这些模型的角速度与牛顿理论角速度的差异都很小,但简单模型的差异更大一些.对于月球作为卫星的情况,目前的技术有可能对这个角速度差进行实际观测.最后估算暗物质模型中月球绕地球运动角速度所受到的影响,证明它远远小于MOND理论的效应.由此对这个角速度差的观测,就构成检验MOND理论与暗物质模型的一个判据.  相似文献   

8.
Clusters of galaxies offer a robust test bed for probing the nature of dark matter that is insensitive to the assumption of the gravity theories. Both Modified Newtonian Dynamics (MOND) and General Relativity (GR) would require similar amounts of non-baryonic matter in clusters as MOND boosts the gravity only mildly on cluster scales. Gravitational lensing allows us to estimate the enclosed mass in clusters on small (∼20–50 kpc) and large (∼several 100 kpc) scales independent of the assumptions of equilibrium. Here, we show for the first time that a combination of strong and weak gravitational lensing effects can set interesting limits on the phase-space density of dark matter in the centres of clusters. The phase-space densities derived from lensing observations are inconsistent with neutrino masses ranging from 2–7 eV, and hence do not support the 2 eV-range particles required by MOND. To survive, the most plausible modification for MOND may be an additional degree of dynamical freedom in a covariant incarnation.  相似文献   

9.
The modified Newtonian dynamics (MOND), suggested by Milgrom as an alternative to dark matter, implies that isothermal spheres with a fixed anisotropy parameter should exhibit a near-perfect relation between the mass and velocity dispersion of the form M ∝ σ  4. This is consistent with the observed Faber–Jackson relation for elliptical galaxies: a luminosity–velocity dispersion relation with large scatter. However, the observable global properties of elliptical galaxies comprise a three-parameter family; they lie on a 'fundamental plane' in a logarithmic space consisting of central velocity dispersion, effective radius ( r e) and luminosity. The scatter perpendicular to this plane is significantly less than that about the Faber–Jackson relation. I show here that, in order to match the observed properties of elliptical galaxies with MOND, models must deviate from being strictly isothermal and isotropic; such objects can be approximated by high-order polytropic spheres with a radial orbit anisotropy in the outer regions. MOND imposes boundary conditions on the inner Newtonian regions which restrict these models to a dynamical fundamental plane of the form where the exponents may differ from the Newtonian expectations ( α =2, γ =1). Scatter about this plane is relatively insensitive to the necessary deviations from homology.  相似文献   

10.
We apply the modified acceleration law obtained from Einstein gravity coupled to a massive skew symmetric field,   F μνλ  , to the problem of explaining X-ray galaxy cluster masses without exotic dark matter. Utilizing X-ray observations to fit the gas mass profile and temperature profile of the hot intracluster medium (ICM) with King 'β-models', we show that the dynamical masses of the galaxy clusters resulting from our modified acceleration law fit the cluster gas masses for our sample of 106 clusters without the need of introducing a non-baryonic dark matter component. We are further able to show for our sample of 106 clusters that the distribution of gas in the ICM as a function of radial distance is well fitted by the dynamical mass distribution arising from our modified acceleration law without any additional dark matter component. In a previous work, we applied this theory to galaxy rotation curves and demonstrated good fits to our sample of 101 low surface brightness, high surface brightness and dwarf galaxies including 58 galaxies that were fitted photometrically with the single-parameter mass-to-light ratio ( M / L )stars. The results obtained there were qualitatively similar to those obtained using Milgrom's phenomenological Modified Newtonian Dynamics (MOND) model, although the determined galaxy masses were quantitatively different, and MOND does not show a return to Keplerian behaviour at extragalactic distances. The results obtained here are compared to those obtained using Milgrom's phenomenological MOND model which does not fit the X-ray galaxy cluster masses unless an auxiliary dark matter component is included.  相似文献   

11.
We investigate the mean velocity dispersion and the velocity dispersion profile of stellar systems in modified Newtonian dynamics (MOND), using the N -body code n-mody , which is a particle-mesh-based code with a numerical MOND potential solver developed by Ciotti, Londrillo & Nipoti. We have calculated mean velocity dispersions for stellar systems following Plummer density distributions with masses in the range of 104 to  109 M  and which are either isolated or immersed in an external field. Our integrations reproduce previous analytic estimates for stellar velocities in systems in the deep MOND regime  ( a i, a e≪ a 0)  , where the motion of stars is either dominated by internal accelerations  ( a i≫ a e)  or constant external accelerations  ( a e≫ a i)  . In addition, we derive for the first time analytic formulae for the line-of-sight velocity dispersion in the intermediate regime  ( a i∼ a e∼ a 0)  . This allows for a much-improved comparison of MOND with observed velocity dispersions of stellar systems. We finally derive the velocity dispersion of the globular cluster Pal 14 as one of the outer Milky Way halo globular clusters that have recently been proposed as a differentiator between Newtonian and MONDian dynamics.  相似文献   

12.
We calculate the structure of a wake generated by, and the dynamical friction force on, a gravitational perturber travelling through a gaseous medium of uniform density and constant background acceleration   g ext  , in the context of Modified Newtonian Dynamics (MOND). The wake is described as a linear superposition of two terms. The dominant part displays the same structure as the wake generated in the Newtonian gravity scaled up by a factor  μ−1( g ext/ a 0)  , where a 0 is the constant MOND acceleration and μ the interpolating function. The structure of the second term depends greatly on the angle between   g ext  and the velocity of the perturber. We evaluate the dynamical drag force numerically and compare our MOND results with the Newtonian case. We mention the relevance of our calculations to orbit evolution of globular clusters and satellites in a gaseous protogalaxy. Potential differences in the X-ray emission of gravitational galactic wakes in MOND and in Newtonian gravity with a dark halo are highlighted.  相似文献   

13.
Strong gravitational lensing by galaxies in MOdified Newtonian Dynamics (MOND) has until now been restricted to spherically symmetric models. These models were able to account for the size of the Einstein ring of observed lenses, but were unable to account for double-imaged systems with collinear images, as well as four-image lenses. Non-spherical models are generally cumbersome to compute numerically in MOND, but we present here a class of analytic non-spherical models that can be applied to fit double-imaged and quadruple-imaged systems. We use them to obtain a reasonable MOND fit to 10 double-imaged systems, as well as to the quadruple-imaged system Q2237+030 which is an isolated bulge-disc lens producing an Einstein cross. However, we also find five double-imaged systems and three quadruple-imaged systems for which no reasonable MOND fit can be obtained with our models. We argue that this is mostly due to the intrinsic limitation of the analytic models, even though the presence of small amounts of additional dark mass on galaxy scales in MOND is also plausible.  相似文献   

14.
We have tested a previous analytical estimate of the dynamical friction time-scale in modified Newtonian dynamics (MOND) with fully non-linear N -body simulations. The simulations confirm that the dynamical friction time-scale is significantly shorter in MOND than in equivalent Newtonian systems, i.e. systems with the same phase-space distribution of baryons and additional dark matter. An apparent conflict between this result and the long time-scales determined for bars to slow and mergers to be completed in previous N -body simulations of MOND systems is explained. The confirmation of the short dynamical-friction time-scale in MOND underlines the challenge that the Fornax dwarf spheroidal poses to the viability of MOND.  相似文献   

15.
We compute the Milky Way potential in different cold dark matter (CDM) based models, and compare these with the MOdified Newtonian Dynamics (MOND) framework. We calculate the axial ratio of the potential in various models, and find that isopotentials are less spherical in MOND than in CDM potentials. As an application of these models, we predict the escape velocity as a function of the position in the Galaxy. This could be useful in comparing with future data from planned or already-underway kinematic surveys (RAVE, SDSS, SEGUE, SIM , Gaia or the hypervelocity stars survey). In addition, the predicted escape velocity is compared with the recently measured high proper motion velocity of the Large Magellanic Cloud (LMC). To bind the LMC to the Galaxy in a MOND model, while still being compatible with the RAVE-measured local escape speed at the Sun's position, we show that an external field modulus of less than  0.03 a 0  is needed.  相似文献   

16.
Although very successful in explaining the observed conspiracy between the baryonic distribution and the gravitational field in spiral galaxies without resorting to dark matter (DM), the modified Newtonian dynamics (MOND) paradigm still requires DM in X-ray bright systems. Here, to get a handle on the distribution and importance of this DM, and thus on its possible form, we deconstruct the mass profiles of 26 X-ray emitting systems in MOND, with temperatures ranging from 0.5 to 9 keV. Initially, we compute the MOND dynamical mass as a function of radius, then subtract the known gas mass along with a component of galaxies which include the cD galaxy with   M / L K = 1  . Next, we test the compatibility of the required DM with ordinary massive neutrinos at the experimental limit of detection  ( m ν= 2 eV)  , with density given by the Tremaine–Gunn limit. Even by considering that the neutrino density stays constant and maximal within the central 100 or 150 kpc (which is the absolute upper limit of a possible neutrino contribution there), we show that these neutrinos can never account for the required DM within this region. The natural corollary of this finding is that, whereas clusters  ( T ≳ 3 keV)  might have most of their mass accounted for if ordinary neutrinos have a 2 eV mass, groups  ( T ≲ 2 keV)  cannot be explained by a 2 eV neutrino contribution. This means that, for instance, cluster baryonic dark matter (CBDM, Milgrom) or even sterile neutrinos would present a more satisfactory solution to the problem of missing mass in MOND X-ray emitting systems.  相似文献   

17.
I consider X-ray emitting clusters of galaxies in the context of modified Newtonian dynamics (MOND). Self-gravitating isothermal gas spheres are not good representations of rich clusters; the X-ray luminosity at a given temperature is typically an order of magnitude larger than observed, and the predicted X-ray surface brightness distribution is not well-matched by the standard 'β-model' fits to the observations. Pure gas spheres with a density distribution described by a β-model also fail because, with MOND, these objects are far from isothermal and again overluminous. These problems may be resolved by adding an additional dark mass component in the central regions, here modelled by a constant density sphere contained within two core radii and having a mass typically of one to two times the total cluster mass in the gas. With this additional component, the observed luminosity–temperature relation for clusters of galaxies is reproduced, and the typical mass discrepancy in actual clusters is three to four times smaller than implied by Newtonian dynamics. Thus, while MOND significantly reduces the mass of the dark component in clusters it does not remove it completely. I speculate on the nature of the dark component and argue that neutrinos, with mass near the experimental upper limit are a possible candidate.  相似文献   

18.
We investigate the possibility of discriminating between modified Newtonian dynamics (MOND) and Newtonian gravity with dark matter, by studying the vertical dynamics of disc galaxies. We consider models with the same circular velocity in the equatorial plane (purely baryonic discs in MOND and the same discs in Newtonian gravity embedded in spherical dark matter haloes), and we construct their intrinsic and projected kinematical fields by solving the Jeans equations under the assumption of a two-integral distribution function. We find that the vertical velocity dispersion of deep MOND discs can be much larger than in the equivalent spherical Newtonian models. However, in the more realistic case of high surface density discs, this effect is significantly reduced, casting doubt on the possibility of discriminating between MOND and Newtonian gravity with dark matter by using current observations.  相似文献   

19.
We test the modified Newtonian dynamics (MOND) theory with the velocity dispersion profiles of Galactic globular clusters populating the outermost region of the Milky Way halo, where the Galactic acceleration is lower than the characteristic MOND acceleration a 0. For this purpose, we constructed self-consistent, spherical models of stellar systems in MOND, which are the analogues of the Newtonian King models. The models are spatially limited, reproduce well the surface brightness profiles of globular clusters and have velocity dispersion profiles that differ remarkably in shape from the corresponding Newtonian models. We present dynamical models of six globular clusters, which can be used to efficiently test MOND with the available observing facilities. A comparison with recent spectroscopic data obtained for NGC 2419 suggests that the kinematics of this cluster might be hard to explain in MOND.  相似文献   

20.
龚志刚 《天文学进展》2000,18(2):114-119
虽然标准太阳模型取得了比较引人注目的成功,但是无论是只由太阳中微子流量的观测资料进行直接分析,还是从太阳振荡的角度讨论问题,目前都还不能完全否定非标准太阳模型。由近期的Super Kaniokande实验结果还无法解释太阳中微子问题也说明由天体物理研究对太阳中微子问题解释的可能性依然存在,而满足观测结果的非标准太阳模型则可以对太阳中微子问题的解决提供很大帮助。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号