首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
国道212线陇南段是我国地质灾害最发育的地区之一,绘制该区的滑坡危险等级地图对灾害管理和发展规划是极其必要的。基于滑坡的野外调查、机理研究和室内试验等工作,分析了滑坡与各种要素的相关性,选择控制滑坡的9个重要要素作为评价要素,利用GIS和二元统计的信息值模型和滑坡先验风险要素模型绘制了研究区的滑坡危险等级地图。最后,选用区内11个具有明显滑动位移的活动滑坡与滑坡危险等级地图比较,检验其可靠度。结果表明,活动的滑坡绝大部分都位于危险等级很高和高的范围内,说明两种模型的评价结果与研究区实际情况相吻合,同时也反映出信息值模型与实际情况更加相符。  相似文献   

2.
Ardesen is a settlement area which has been significantly damaged by frequent landslides which are caused by severe rainfalls and result in many casualties. In this study a landslide susceptibility map of Ardesen was prepared using the Analytical Hierarchy Process (AHP) with the help of Geographical Information Systems (GIS) and Digital Photogrametry Techniques (DPT). A landslide inventory, lithology–weathering, slope, aspect, land cover, shear strength, distance to the river, stream density and distance to the road thematics data layers were used to create the map. These layer maps are produced using field, laboratory and office studies, and by the use of GIS and DPT. The landslide inventory map is also required to determine the relationship between these maps and landslides using DPT. In the study field in the Hemsindere Formation there are units that have different weathering classes, and this significantly affects the shear strength of the soil. In this study, shear strength values are calculated in great detail with field and laboratory studies and an additional layer is evaluated with the help of the stability studies used to produce the landslide susceptibility map. Finally, an overlay analysis is carried out by evaluating the layers obtained according to their weight, and the landslide susceptibility map is produced. The study area was classified into five classes of relative landslide susceptibility, namely, very low, low, moderate, high, and very high. Based on this analysis, the area and percentage distribution of landslide susceptibility degrees were calculated and it was found that 28% of the region is under the threat of landslides. Furthermore, the landslide susceptibility map and the landslide inventory map were compared to determine whether the models produced are compatible with the real situation resulting in compatibility rate of 84%. The total numbers of dwellings in the study area were determined one by one using aerial photos and it was found that 30% of the houses, with a total occupancy of approximately 2,300 people, have a high or very high risk of being affected by landslides.  相似文献   

3.
证据权法在区域滑坡危险性评价中的应用以贵州省为例   总被引:3,自引:0,他引:3  
以GIS为技术平台,采用证据权法对研究区进行了滑坡地质灾害危险性分析。综合分析历史滑坡数据及其环境因素和触发因素,数据源主要有地形图、DEM、地质图,选取地层岩性、构造、高程、坡度、坡向、地形起伏度、道路、水系作为危险性评价因子。首先应用ArcGIS软件对数据源进行处理,提取各个评价因子图层,并对每个图层进行分级、缓冲区分析等处理,建立若干证据层。然后将历史灾害点与评价因子进行空间关联分析,计算每个评价因子等级的权重,最后计算出评价单元的危险性指数,并将危险性分为极高危险区、高危险区、中等危险区、低危险区。采用成功率曲线法对证据权法评价精度进行验证,结果表明本次评价的精度为71%。利用历史滑坡数据对评价结果进行验证,结果显示评价结果与实际情况较为吻合,说明证据权可以客观定量地评价各影响因子对滑坡的影响程度,该方法应用于区域地质灾害危险性评价比较有效。  相似文献   

4.
Landslide zonation studies emphasize on preparation of landslide hazard zonation maps considering major instability factors contributing to occurrence of landslides. This paper deals with geographic information system-based landslide hazard zonation in mid Himalayas of Himachal Pradesh from Mandi to Kullu by considering nine relevant instability factors to develop the hazard zonation map. Analytical hierarchy process was applied to assign relative weightages over all ranges of instability factors of the slopes in study area. To generate landslide hazard zonation map, layers in geographic information system were created corresponding to each instability factor. An inventory of existing major landslides in the study area was prepared and combined with the landslide hazard zonation map for validation purpose. The validation of the model was made using area under curve technique and reveals good agreement between the produced hazard map and previous landslide inventory with prediction accuracy of 79.08%. The landslide hazard zonation map was classified by natural break classifier into very low hazard, low hazard, moderate hazard, high hazard and very high landslide hazard classes in geographic information system depending upon the frequency of occurrence of landslides in each class. The resultant hazard zonation map shows that 14.30% of the area lies in very high hazard zone followed by 15.97% in high hazard zone. The proposed model provides the best-fit classification using hierarchical approach for the causative factors of landslides having complex structure. The developed hazard zonation map is useful for landslide preparedness, land-use planning, and social-economic and sustainable development of the region.  相似文献   

5.
Landslides are one of the most frequent and common natural hazards in many parts of Himalaya. To reduce the potential risk, the landslide susceptibility maps are one of the first and most important steps in the landslide hazard mitigation. Earth observation satellite and geographical information system-based techniques have been used to derive and analyse various geo-environmental parameters significant to landslide hazards. In this study, a bivariate statistics method was used for spatial modelling of landslide susceptibility zones. For this purpose, thematic layers including landslide inventory, geology, slope angle, slope aspect, geomorphology, slope morphology, drainage density, lineament and land use/land cover were used. A large number of landslide occurrences have been observed in the upper Tons river valley area of Western Himalaya. The result has been used to spatially classify the study area into zones of very high, high, moderate, low and very low landslide susceptibility zones. About 72% of active landslides have been observed to occur in very high and high hazard zones. The result of the analysis was verified using the landslide location data. The validation result shows significant agreement between the susceptibility map and landslide location. The result can be used to reduce landslide hazards by proper planning.  相似文献   

6.
This is the first landslide inventory map in the island of Lefkada integrating satellite imagery and reports from field surveys. In particular, satellite imagery acquired before and after the 2003 earthquake were collected and interpreted with the results of the field survey that took place 1 week after this strong (Mw?=?6.3) event. The developed inventory map indicates that the density of landslides decreases from west to east. Furthermore, the spatial distribution of landslides was statistically analyzed in relation to the geology and topography for investigating their influence to landsliding. This was accomplished by overlaying these causal factors as thematic layers with landslide distribution data. Afterwards, weight values of each factor were calculated using the landslide index method and a landslide susceptibility map was developed. The susceptibility map indicates that the highest susceptibility class accounts for 38 % of the total landslide activity, while the three highest classes that cover the 10 % of the surface area, accounting for almost the 85 % of the active landslides. Our model was validated by applying the approaches of success and prediction rate to the dataset of landslides that was previously divided into two groups based on temporal criteria, estimation and validation group. The outcome of the validation dataset was that the highest susceptibility class concentrates 18 % of the total landslide activity. However, taking into account the frequency of landslides within the three highest susceptibility classes, more than 85 %, the model is characterized as reliable for a regional assessment of earthquake-induced landslides hazard.  相似文献   

7.
Landslide susceptibility mapping is among the useful tools applied in disaster management and planning development activities in mountainous areas. The susceptibility maps prepared in this research provide valuable information for landslide hazard management in Lashgarak region of Tehran. This study was conducted to, first, prepare landslide susceptibility maps for Lashgarak region and evaluate landslide effect on mainlines and, second, to analyze the main factors affecting landslide hazard increase in the study area in order to propose efficient strategies for landslide hazard mitigation. A GIS-based multi-criteria decision analysis model (fuzzy logic) is used in the present work for scientific evaluation of landslide susceptible areas in Lashgarak region. To this end, ArcGIS, PCIGeomatica, and IDIRISI software packages were used. Eight information layers were selected for information analysis: ground strength class, slope angle, terrain roughness, normalized difference moisture index, normalized difference vegetation index, distance from fault, distance from the river, and distance from the road. Next, eight different scenarios were created to determine landslide susceptibility of the study area using different operators (intersection (AND), union (OR), algebraic sum (SUM), multiplication (PRODUCT), and different fuzzy gamma values) of fuzzy overlay approach. After that, the performance of various fuzzy operators in landslide susceptibility mapping was empirically compared. The results revealed the excellent consistency of landslide susceptibility map prepared using the fuzzy union (OR) operator with landslide distribution map in the study area. Eventually, the accuracy of landslide susceptibility map prepared using the fuzzy union (OR) operator was evaluated using the frequency ratio diagram. The results showed that frequency values of the landslides gradually increase from “low susceptibility” to high “susceptibility” as 88.34% of the landslides are categorized into two “high” and “very high” susceptibility classes, implying the satisfactory consistency between the landslide susceptibility map prepared using fuzzy union (OR) operator and landslide distribution map.  相似文献   

8.
Bivariate and multivariate statistical analyses were used to predict the spatial distribution of landslides in the Cuyahoga River watershed, northeastern Ohio, U.S.A. The relationship between landslides and various instability factors contributing to their occurrence was evaluated using a Geographic Information System (GIS) based investigation. A landslide inventory map was prepared using landslide locations identified from aerial photographs, field checks, and existing literature. Instability factors such as slope angle, soil type, soil erodibility, soil liquidity index, landcover pattern, precipitation, and proximity to stream, responsible for the occurrence of landslides, were imported as raster data layers in ArcGIS, and ranked using a numerical scale corresponding to the physical conditions of the region. In order to investigate the role of each instability factor in controlling the spatial distribution of landslides, both bivariate and multivariate models were used to analyze the digital dataset. The logistic regression approach was used in the multivariate model analysis. Both models helped produce landslide susceptibility maps and the suitability of each model was evaluated by the area under the curve method, and by comparing the maps with the known landslide locations. The multivariate logistic regression model was found to be the better model in predicting landslide susceptibility of this area. The logistic regression model produced a landslide susceptibility map at a scale of 1:24,000 that classified susceptibility into four categories: low, moderate, high, and very high. The results also indicated that slope angle, proximity to stream, soil erodibility, and soil type were statistically significant in controlling the slope movement.  相似文献   

9.
Landslide hazard or susceptibility assessment is based on the selection of relevant factors which play a role on the slope instability, and it is assumed that landslides will occur at similar conditions to those in the past. The selected statistical method compares parametric maps with the landslide inventory map, and results are then extrapolated to the entire evaluated territory with a final product of landslide hazard or susceptibility map. Elements at risk are defined and analyzed in relation with landslide hazard, and their vulnerability is thus established. The landslide risk map presents risk scenarios and expected financial losses caused by landslides, and it utilizes prognoses and analyses arising from the landslide hazard map. However, especially the risk scenarios for future in a selected area have a significant importance, the literature generally consists of the landslide susceptibility assessment and papers which attempt to assess and construct the map of the landslide risk are not prevail. In the paper presented herein, landslide hazard and risk assessment using bivariate statistical analysis was applied in the landslide area between Hlohovec and Sered?? cities in the south-western Slovakia, and methodology for the risk assessment was explained in detail.  相似文献   

10.
Slope instability research and susceptibility mapping is a fundamental component of hazard management and an important basis for provision of measures aimed at decreasing the risk of living with landslides. On this basis, this paper presents the result of a comprehensive study on slope stability analyses and landslide susceptibility mapping carried out in part of Sado Island of Japan. Various types of landslides occurred in the island throughout history. Little is known about the triggering factors and severity of old landslides, but for many of the recent slope failures, the slope characteristics and stratigraphy are such that ground surfaces retain water perennially and landslides occur when additional moisture is induced during rainfall and snowmelt. A range of methods are available in literature for preparation of landslide susceptibility maps. In this study we used two methods namely, the analytical hierarchy process (AHP) and logistic regression, to produce and later compare two susceptibility maps. AHP is a semi-qualitative method, which involves a matrix-based pair-wise comparison of the contribution of different factors for landsliding. Logistic regression on the other hand promotes a multivariate statistical analysis with an objective to find the best-fitting model that describes the relationship between the presence or absence of landslides (dependent variable) and a set of causal factors (independent parameters). Elevation, lithology and slope gradient were casual factors in this study. The determinations of factor weights by AHP and logistic regression were preceded by the calculation of class weights (landslide densities) based on bivariate statistical analyses (BSA). The differences between the AHP derived susceptibility map and the logistic regression counterpart are relatively minor when broad-based classifications are considered. However, with an increase in the number of susceptibility classes, the logistic regression map gave more details but the one derived by AHP failed to do so. The reason is that the majority of pixels in the AHP map have high values, and an increase in the number of classes gives little change in the spatial distribution of susceptibility zones in the middle. To verify the practicality of the two susceptibility maps, both of them were compared with a landslide activity map containing 18 active landslide zones. The outcome was that the active landslide zones do not completely fit into the very high susceptibility class of both maps for various reasons. But 70% of these landslide zones fall into the high and very high susceptibility zones of the AHP map while this is 63% in the case of logistic regression. This indicates that despite the skewed distribution of susceptibility indices, the AHP map was better to capture the reality on the ground than the logistic regression equivalent.  相似文献   

11.
本文发展了一种基于分形统计的滑坡易发程度评价方法,该方法仅使用已有的滑坡数据,首先通过分形统计获得滑坡分布的分形丛集关系,再通过GIS的空间操作与分析生成滑坡易发程度区划图。提出一种对滑坡易发程度区划图的可信度和预测效果进行评价的方法。本文介绍了这些方法及其在浙江地区应用的结果。  相似文献   

12.
The Sibiciu Basin is located in Romania between the Buzău Mountains and the Buzau Subcarpathians (Curvature Carpathians and Subcarpathians). The geology of the basin consists of Paleogene flysch deposits represented by an alternation of sandstones, marls, clays and schists and Neogene deposits represented by marls, clays and sands. The area is affected by different types of landslides (shallow, medium-deep and deep-seated failures). In Romania, in the last decades, direct and indirect methods have been applied for landslide susceptibility assessment. The most utilized before 2000 were based on qualitative approaches. This study evaluates the landslide susceptibility in the Sibiciu Basin using a bivariate statistical analysis and an index of entropy. A landslide inventory map was prepared, and a susceptibility estimate was assessed based on the following parameters which influence the landslide occurrence: slope angle, slope aspect, curvature, lithology and land use. The landslide susceptibility map was divided into five classes showing very low to very high landslide susceptibility areas.  相似文献   

13.
Landslide hazard zonation is essential for planning future developmental activities. At the present study, after the preparation of a landslide inventory of the study area, nine factors as well as sub-data layers of factor class weights were tested for an integrated analysis of landslide hazard in the region. The produced factor maps were weighted with the analytic hierarchy process method and then classified into four classes—negligible, low, moderate, and high. The final produced map for landslide hazard zonation in Golestan watershed revealed that: (1) about 53.85 % of the basin is prone to moderate and high threats of landslides. (2) Landslide events at the Golestan watershed were strongly correlated to the slope angle of the basin. It was observed that the active landslide zones, including moderate to high landslide hazard classes, have a high correlation to slope classes over 30° (R 2?=?0.769). (3) The regions most susceptible to landslide hazard are those located south and southwest of the watershed, which included rock topples, falls, and debris landslides.  相似文献   

14.
Landslide susceptibility mapping is an indispensable prerequisite for landslide prevention and reduction. At present, research into landslide susceptibility mapping has begun to combine machine learning with remote sensing and geographic information system (GIS) techniques. The random forest model is a new integrated classification method, but its application to landslide susceptibility mapping remains limited. Landslides represent a serious threat to the lives and property of people living in the Zigui–Badong area in the Three Gorges region of China, as well as to the operation of the Three Gorges Reservoir. However, the geological structure of this region is complex, involving steep mountains and deep valleys. The purpose of the current study is to produce a landslide susceptibility map of the Zigui–Badong area using a random forest model, multisource data, GIS, and remote sensing data. In total, 300 pre-existing landslide locations were obtained from a landslide inventory map. These landslides were identified using visual interpretation of high-resolution remote sensing images, topographic and geologic data, and extensive field surveys. The occurrence of landslides is closely related to a series of environmental parameters. Topographic, geologic, Landsat-8 image, raining data, and seismic data were used as the primary data sources to extract the geo-environmental factors influencing landslides. Thirty-four layers of causative factors were prepared as predictor variables, which can mainly be categorized as topographic, geological, hydrological, land cover, and environmental trigger parameters. The random forest method is an ensemble classification technique that extends diversity among the classification trees by resampling the data with replacement and randomly changing the predictive variable sets during the different tree induction processes. A random forest model was adopted to calculate the quantitative relationships between the landslide-conditioning factors and the landslide inventory map and then generate a landslide susceptibility map. The analytical results were compared with known landslide locations in terms of area under the receiver operating characteristic curve. The random forest model has an area ratio of 86.10%. In contrast to the random forest (whole factors, WF), random forest (12 major factors, 12F), decision tree (WF), decision tree (12F), the final result shows that random forest (12F) has a higher prediction accuracy. Meanwhile, the random forest models have higher prediction accuracy than the decision tree model. Subsequently, the landslide susceptibility map was classified into five classes (very low, low, moderate, high, and very high). The results demonstrate that the random forest model achieved a reasonable accuracy in landslide susceptibility mapping. The landslide hazard zone information will be useful for general development planning and landslide risk management.  相似文献   

15.
Comparative evaluation of landslide susceptibility in Minamata area, Japan   总被引:6,自引:0,他引:6  
Landslides are unpredictable; however, the susceptibility of landslide occurrence can be assessed using qualitative and quantitative methods based on the technology of the Geographic Information Systems (GIS). A map of landslide inventory was obtained from the previous work in the Minamata area, the interpretation from aerial photographs taken in 1999 and 2002. A total of 160 landslides was identified in four periods. Following the construction of geospatial databases, including lithology, topography, soil deposits, land use, etc., the study documents the relationship between landslide hazard and the factors that affect the occurrence of landslides. Different methods, namely the logistic regression analysis and the information value model, were then adopted to produce susceptibility maps of landslide occurrence. After the application of each method, two resultant maps categorize the four classes of susceptibility as high, medium, low and very low. Both of them generated acceptable results as both classify the majority of the cells with landslide occurrence in high or medium susceptibility classes, which could be believed to be a success. By combining the hazard maps generated from both methods, the susceptibility was classified as high–medium and low–very low levels, in which the classification of high susceptibility level covers 6.5% of the area, while the areas predicted to be unstable, which are 50.5% of the total area, are classified as the low susceptibility level. However, comparing the results from both the approaches, 43% of the areas were misclassified, either from high–medium to low–very low or low–very low to high–medium classes. Due to the misclassification, 8% and 3.28% of all the areas, which should be stable or free of landsliding, were evaluated as high–medium susceptibility using the logistic regression analysis and the information value model, respectively. Moreover, in the case of the class rank change from high–medium susceptibility to low–very low, 35% and 39.72% of all mapping areas were predicted as stable using both the approaches, respectively, but in these areas landslides were likely to occur or were actually recognized.  相似文献   

16.
The Yushu County, Qinghai Province, China, April 14, 2010, earthquake triggered thousands of landslides in a zone between 96°20′32.9″E and 97°10′8.9″E, and 32°52′6.7″N and 33°19′47.9″N. This study examines the use of geographic information system (GIS) technology and Bayesian statistics in creating a suitable landslide hazard-zone map of good predictive power. A total of 2,036 landslides were interpreted from high-resolution aerial photographs and multi-source satellite images pre- and post-earthquake, and verified by selected field checking before a final landslide-inventory map of the study area could be established using GIS software. The 2,036 landslides were randomly partitioned into two subsets: a training dataset, which contains 80 % (1,628 landslides), for training the model; and a testing dataset 20 % (408 landslides). Twelve earthquake triggered landslide associated controlling parameters, such as elevation, slope gradient, slope aspect, slope curvature, topographic position, distance from main surface ruptures, peak ground acceleration, distance from roads, normalized difference vegetation index, distance from drainages, lithology, and distance from all faults were obtained from variety of data sources. Landslide hazard indices were calculated using the weight of evidence model. The landslide hazard map was compared with training data and testing data to obtain the success rate and predictive rate of the model, respectively. The validation results showed satisfactory agreement between the hazard map and the existing landslide distribution data. The success rate is 80.607 %, and the predictive rate is 78.855 %. The resulting landslide hazard map showed five classes of landslide hazard, i.e., very high, high, moderate, low and very low. The landslide hazard evaluation map should be useful for environmental recovery planning and reconstruction work.  相似文献   

17.
A Luoi is a Vietnamese–Laotian border district situated in the western part of Thua Thien Hue province, central Vietnam, where landslides occur frequently and seriously affect local living conditions. This study focuses on the spatial analysis of landslide susceptibility in this 263-km2 area. To analyze landslide manifestation in the study area, causative factor maps are derived of slope angle, weathering, land use, geomorphology, fault density, geology, drainage distance, elevation, and precipitation. The analytical hierarchical process approach is used to combine these maps for landslide susceptibility mapping. A landslide susceptibility zonation map with four landslide susceptibility classes, i.e. low, moderate, high, and very high susceptibility for landsliding, is derived based on the correspondence with an inventory of observed landslides. The final map indicates that about 37% of the area is very highly susceptible for landsliding and about 22% is highly susceptible, which means that more than half of the area should be considered prone to landsliding.  相似文献   

18.
The main objective of this study was to apply a statistical (information value) model using geographic information system (GIS) to the Chencang District of Baoji, China. Landslide locations within the study area were identified using reports and aerial photographs, and a field survey. A total of 120 landslides were mapped, of which 84 (70 %) were randomly selected for building the landslide susceptibility model. The remaining 36 (30 %) were used for model validation. We considered a total of 10 potential factors that predispose an area to a landslide for the landslide susceptibility mapping. These included slope degree, altitude, slope aspect, plan curvature, geomorphology, distance from faults, lithology, land use, mean annual rainfall, and peak ground acceleration. Following an analysis of these factors, a landslide susceptibility map was produced using the information value model with GIS. The resulting landslide susceptibility index was divided into five classes (very high, high, moderate, low, and very low) using the natural breaks method. The corresponding distribution area percentages were 29.22, 25.14, 15.66, 15.60, and 14.38 %, respectively. Finally, landslide locations were used to validate the results of the landslide susceptibility map using areas under the curve (AUC). The AUC plot showed that the susceptibility map had a success rate of 81.79 % and a prediction accuracy of 82.95 %. Based on the results of the AUC evaluation, the landslide susceptibility map produced using the information value model exhibited good performance.  相似文献   

19.
Mapping landslide susceptibility in Travis County, Texas, USA   总被引:4,自引:0,他引:4  
A geographic information system (GIS) was used to construct a landslide hazard map for Travis County, Texas. The County is experiencing rapid growth, and development has encroached into unstable terrain that is vulnerable to landslides. Four layers of data were superimposed to create the landslide hazard map. Slope was given the most emphasis, followed by geology, vegetation, and proximity to faults. The final map shows areas of low, medium, and high landslide susceptibility. Areas of high susceptibility occupy stream and reservoir banks, rock escarpments, and agricultural land. The landslide hazard map can be a useful geologic criterion for land use planning. Planners can use the map to allocate appropriate land uses to unstable terrain, and to identify existing structures at risk from landslide activity. The methods presented in this paper can be adapted to other counties in the U.S. and elsewhere. Results of this study suggest that geographic information systems can effectively compile and overlay several data layers relevant to landslide hazards.  相似文献   

20.
High incidences of slope movement are observed throughout Cuyahoga River watershed in northeast Ohio, USA. The major type of slope failure involves rotational movement in steep stream walls where erosion of the banks creates over-steepened slopes. The occurrence of landslides in the area depends on a complex interaction of natural as well as human induced factors, including: rock and soil strength, slope geometry, permeability, precipitation, presence of old landslides, proximity to streams and flood-prone areas, land use patterns, excavation of lower slopes and/or increasing the load on upper slopes, alteration of surface and subsurface drainage. These factors were used to evaluate the landslide-induced hazard in Cuyahoga River watershed using logistic regression analysis, and a landslide susceptibility map was produced in ArcGIS. The map classified land into four categories of landslide susceptibility: low, moderate, high, and very high. The susceptibility map was validated using known landslide locations within the watershed area. The landslide susceptibility map produced by the logistic regression model can be efficiently used to monitor potential landslide-related problems, and, in turn, can help to reduce hazards associated with landslides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号