首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Dolomite Controls on Phanerozoic Seawater Chemistry   总被引:1,自引:0,他引:1  
We investigate the potential role of dolomite as a long-term buffer on Phanerozoic seawater composition. Using a comprehensive model of Phanerozoic geochemical cycling, we show how variations in the formation rate of sedimentary marine dolomite have buffered seawater saturation state. The total inventory of inorganic carbon reflects the sum of fluxes derived from continental weathering, basalt-seawater exchange, alumino-silicate diagenesis (reverse weathering), and global deposition of calcium carbonate. Although these fluxes are approximately balanced, model results indicate that seawater saturation state is sensitive to the marine dolomite depositional flux. This conclusion is consistent with and constrained by independent proxy data for seawater ion ratios, paleo-atmospheric CO2 concentrations, and paleo-pH data, and dolomite mass-age distribution through Phanerozoic time. Abundant research indicates that dolomite’s occurrence in marine sediments is sensitive to many factors: temperature, seawater composition, paleogeographic setting, continental organization, etc. Although the complexity of the process of dolomite formation prevents a complete understanding of the relative role of these factors, our model results clearly underscore the importance of this mineral in the chemical history of Phanerozoic seawater.  相似文献   

2.
Early marine diagenetic dolomite is a rather thermodynamically-stable carbonate phase and has potential to act as an archive of marine porewater properties. However, the variety of early to late diagenetic dolomite phases that can coexist within a single sample can result in extensive complexity. Here, the archive potential of early marine dolomites exposed to extreme post-depositional processes is tested using various types of analyses, including: petrography, fluid inclusion data, stable δ13C and δ18O isotopes, 87Sr/86Sr ratios, and U-Pb age dating of various dolomite phases. In this example, a Triassic carbonate platform was dissected and overprinted (diagenetic temperatures of 50 to 430°C) in a strike-slip zone in Southern Spain. Eight episodes of dolomitization, a dolostone cataclasite and late stage meteoric/vadose cementation were recognized. The following processes were found to be diagenetically relevant: (i) protolith deposition and fabric-preservation, and marine dolomitization of precursor aragonite and calcite during the Middle–Late Triassic; (ii) intermediate burial and formation of zebra saddle dolomite and precipitation of various dolomite cements in a Proto-Atlantic opening stress regime (T ca 250°C) during the Early–Middle Jurassic; (iii) dolomite cement precipitation during early Alpine tectonism, rapid burial to ca 15 km, and high-grade anchizone overprint during Alpine tectonic evolution in the Early Eocene to Early Miocene; (iv) brecciation of dolostones to cataclasite during the onset of the Carboneras Fault Zone activity during the Middle Miocene; and (v) late-stage regression and subsequent meteoric overprint. Data shown here document that, under favourable conditions, early diagenetic marine dolomites and their archive data may resist petrographic and geochemical resetting over time intervals of 108 or more years. Evidence for this preservation includes preserved Late Triassic seawater δ13CDIC values and primary fluid inclusion data. Data also indicate that oversimplified statements based on bulk data from other petrographically-complex dolomite archives must be considered with caution.  相似文献   

3.
The Miocene Port Campbell Limestone in the Otway Basin (Port Campbell Embayment), south-eastern Australia, is a shallowly buried (<350 m), temperate carbonate grainstone which consists primarily of benthonic foraminifera, bryozoans, brachiopods, echinoids and planktonic foraminifera. Volumetrically insignificant calcite cements include scalenohedral, blocky and syntaxial overgrowths. Dolomite is present in variable amounts (1–25%), scattered throughout the unit as euhedral rhombs, usually comprising <2% of the whole rock volume. The dolomite post-dates the calcite cements and is mainly an interparticle cement with crystal size varying between 10 and 150 μm (mean 50 μm). Under cathodoluminescence the dolomite rhombs have a dull core and a nonluminescent outer rim. The dolomite is nonstoichiometric, Ca-rich (Ca54–62Mg38–46), with high trace element concentrations. The Mn concentrations range from 0 to 310 p.p.m. in the crystal cores (mean 140 p.p.m.) and 80–240 p.p.m. in the crystal rims (mean 140 p.p.m.). The Fe concentrations increase from the crystal cores (range 640–5690 p.p.m.; mean 2030 p.p.m.) to the crystal rims (range 2840–9440 p.p.m.; mean 6040 p.p.m.), whereas the Sr concentrations decrease from the crystal cores (range 690–1510 p.p.m.; mean 1280 p.p.m.) to the crystal rims (620–1240 p.p.m.; mean 930 p.p.m.). The δ13CPDB values of the dolomite range between +2.5 and +2.6%, whereas the δ18OPDB values range from +0.3% to+0.6%. This dolomite occurrence supports the idea that marine or near-marine dolomite can form not only syndepositionally, but also in the shallow subsurface of temperate units, soon after sediment deposition, under reducing conditions. The fine-grained, low-permeability nature of the Port Campbell Limestone contributed to the reducing conditions at shallow depth, the high trace element concentrations of the dolomite (especially in Fe) and the near marine composition of the dolomitizing fluids, as large volumes of meteoric water were inhibited.  相似文献   

4.
A reassessment of the abundance of dolomite in carbonate sediments has confirmed that carbonates deposited during the past 150 Ma contain, on average, less dolomite than Proterozoic and Paleozoic carbonates. The lower dolomite content of the more recent carbonate sediments results from the increase in the deposition of CaCO3 in deep-sea sediments, and to the difficulty of dolomitizing deep-sea CaCO3 by reaction with cold, unevaporated seawater. The decrease in the rate of dolomite formation during the past 150 Ma has led to an increase in the output of oceanic Mg+2 by the reaction of seawater with clay minerals and with ocean-floor basalts. The increase in the output of marine Mg+2 into these reservoirs has been brought about by an increase in the Mg+2 concentration of seawater. During the past 40 Ma, the concentration of Mg+2 in seawater has probably increased by ~18 mmol/kg, and probably has been accompanied by an equimolar increase in the concentration of SO4?2.  相似文献   

5.
Detailed petrographic analyses along a depositional transect from a carbonate platform to shale basin reveals that dolomite is the principal burial diagenctic mineral in the Maryville Limestone. This study examines the role of burial dolomitization of subtidal carbonates. Dolomite occurs as a replacement of precursor carbonate and as inter- and intraparticle cements. Four different types of dolomite are identified based on detailed petrographic and gcochemical analyses. Type I dolomite occurs as small, irregular disseminations typically within mud-rich facies.Type II dolomite typically occurs as inclusions of planar euhedral rhombs (ferroan), 5–300 μm in size, in blocky clear ferroan calcite (meteoric) spar. Type II dolomite is non-luminescent. Type I and II dolomite formed during shallow to intermediate burial diagenesis. Type III dolomite consists of subhedral to anhedral crystals 10–150 μm in size occurring as thin seams along stylolites and as thick bands a few millimetres in width. This dolomite consists of dominantly non-luminescent rhombs and, less commonly, orange luminescent and zoned rhombs. Type IV dolomite consists of baroque or saddle-shaped, 100–1500 μm crystals, and is non-luminescent. Type IV dolomite formed during the period of maximum burial. Types III and IV dolomite increase in abundance downslope. Type III dolomite contains 1.2–2.6 wt% Fe and a maximum of 1000 ppm Mn. The distribution of these elements displays no distinct vertical or lateral trends. In contrast, Fe and Mn distributions in Type IV dolomite exhibit distinct spatial trends, decreasing from 3.5–4.5 wl% Fe and 0.1–0.3 wt% Mn in the west (slope/basin) to 1.5–2.5 wt% Fe and less than 600 ppm Mn in the east (shelf margin), a distance of approximately 60 km. Spatial trends in Fe and Mn distributions in Type IV saddle dolomite, suggest a west-east fluid flow during late burial diagenesis. Types III and IV dolomite have a mean δ18O value of - 7.8%00 and a mean δ13C value of + 1.1%00 (relative to the PDB standard). Based on a range of assumed basinal water composition of 2.8%00 SMOW, temperatures calculated from δ18O values of Types III and IV dolomite range between 75 and 160°C. 87Sr/86Sr data for Types III and IV dolomite range from 0.7111 to 0.7139. These values are radiogenic when compared to Cambrian marine values and are consistent with the presence of a diagenetic fluid that interacted with siliciclastic sediments. The distribution of Palaeozoic facies in the southern Appalachians indicates a Cambrian shale source for the fluids, whilst burial curves suggest a Middle Ordovician age for burial fluid movement.  相似文献   

6.
Anomalously saline waters in Ocean Drilling Program Holes 1127, 1129, 1130, 1131 and 1132, which penetrate southern Australian slope sediments, and isotopic analyses of large benthic foraminifera from southern Australian continental shelf sediments, indicate that Pleistocene–Holocene meso‐haline salinity reflux is occurring along the southern Australian margin. Ongoing dolomite formation is observed in slope sediments associated with marine waters commonly exceeding 50‰ salinity. A well‐flushed zone at the top of all holes contains pore waters with normal marine trace element contents, alkalinities and pH values. Dolomite precipitation occurs directly below the well‐flushed zone in two phases. Phase 1 is a nucleation stage associated with waters of relatively low pH (ca 7) caused by oxidation of H2S diffusing upward from below. This dolomite precipitates in sediments < 80 m below the sea floor and has δ13C values consistent with having formed from normal sea water (? 1‰ to + 1‰ Vienna Pee Dee Belemnite). The Sr content of Phase 1 dolomite indicates that precipitation can occur prior to substantial metastable carbonate dissolution (< 300 ppm in Holes 1129 and 1127). Dolomite nucleation is interpreted to occur because the system is undersaturated with respect to the less stable minerals aragonite and Mg‐calcite, which form more readily in normal ocean water. Phase 2 is a growth stage associated with the dissolution of metastable carbonate in the acidified sea water. Analysis of large dolomite rhombs demonstrates that at depths > 80 m below the sea floor, Phase 2 dolomite grows on dolomite cores precipitated during Phase 1. Phase 2 dolomite has δ13C values similar to those of the surrounding bulk carbonate and high Sr values relative to Phase 1 dolomite, consistent with having formed in waters affected by aragonite and calcite dissolution. The nucleation stage in this model (Phase 1) challenges the more commonly accepted paradigm that inhibition of dolomitization by sea water is overcome by effectively increasing the saturation state of dolomite in sea water.  相似文献   

7.
ABSTRACT Field, geochemical, and petrographic data for late Pleistocene dolomites from southeastern Barbados suggest that the dolomite precipitated in the zone of mixing between a coastal meteoric phreatic lens and normal marine waters. The dolomite is localized in packstones and wackestones from the algalAmphistegina fore-reef calcarenite facies. Stable isotopic evidence suggests that meteoric water dominated the diagenetic fluids responsible for dolomitization. Carbon isotopes in pure dolomite phases average about -15%0 PDB. This light carbon is attributed to the influence of soil gas CO2, and precludes substantial mixing with seawater. A narrow range of oxygen isotopic compositions coupled with a wide range of carbon compositions attest to the meteoric diagenetic overprint. Dolomitization likely occurred with as little as a five per cent admixture of seawater. Strontium compositions of the dolomites indicate probable replacement dolomitization of original unstable mineralogy. The dolomite is characterized by low sodium values. Low concentrations of divalent manganese and iron suggest oxidizing conditions at the time of dolomitization. A sequence of petrographic features suggests a progression of diagenetic fluids from more marine to more meteoric. Early marine diagenesis was followed by replacement dolomitization of skeletal grains and matrix. Limpid, euhedral dolomite cements precipitated in primary intra- and interparticle porosity subsequent to replacement dolomitization. As waters became progressively less saline, dolomite cements alternated with thin bands of syntaxial calcite cement. The final diagenetic phase precipitated was a blocky calcite spar cement, representing diagenesis in a fresh-water lens. This sequence of diagenetic features arose as the result of a single fall in eustatic sea-level following deposition. A stratigraphic-eustatic-diagenetic model constrains both the timing and rate of dolomitization in southeastern Barbados. Dolomitization initiated as sea-level began to fall immediately following the oxygen isotope stage 7–3 high stand, some 216 000 yr bp . Due to the rapidity of late Pleistocene glacio-eustasy, dolomitization (locally complete) is constrained to have occurred within about 5000 yr.  相似文献   

8.
South of the Caledonian Brabant-Wales Massif a more than 200 m thick Tournaisian to Lower Visean replacive dolomite unit can be followed for several hundred kilometres from the Boulonnais (France) to Aachen (Germany). Field observations, of features such as karst cavities occurring at the top of the Lower Visean dolomite which are filled by Lower Visean crinoidal limestone, indicate that dolomitization and karstification took place during the Early Visean. This early development of the dolomite is in agreement with the presence of stylolites cutting the dolomite fabric. The minor element composition of the majority of the dolomites remains almost uniform throughout the entire studied area. Values for Fe, Mn, Na and Sr are normally in the range 700–4700 ppm, 15–400 ppm, 80–300 ppm and 50–200 ppm, respectively. The δ13C values (range-0.72 to +5.31%o) mainly reflect the carbon isotopic composition of the precursor limestones. The δ18O values, in contrast, are highly variable: ranging from-19.15 to +0.85%o. This rather large range of δ18O values is explained by multiple-step re-equilibration/recrystallization during progressive burial and subsequent uplift of the dolomites. These processes are also responsible for the high 87Sr/86Sr values of the dolomites which range from about 0.7088 to 0.7098. They are distinctly more radiogenic than Lower Visean marine carbonates (0.7076–0.7078). Correlation, however, of δ18O values or 87Sr/86Sr ratios with dolomite and/or cathodoluminescenec (CL) textures has not been very successful. This suggests that recrystallization may remain unrecognized if only petrographic techniques are used. Nevertheless, certain CL textures can be related to specific interactions with the ambient recrystallizing fluids.  相似文献   

9.
ABSTRACT Gravity cores of Holocene sediments from a shallow ephemeral lake in the Coorong region (Pellet Lake, southeastern coastal Australia) show a mineral assemblage and sequence particular to its hydrology. The mineralogical sequence above an initial dolomitic siliciclastic sand reflects conditions of increasing salinity in the lower portions of the core (i.e. organic-rich aragonite to magnesite + hydromagnesite + aragonite) followed by a relative decrease in salinity (i.e. magnesite + aragonite + hydromagnesite to aragonite + hydromagnesite) in the upper portions of the core. This sequence is capped by ? 0.4 m of micritic dolomite and minor amounts of hydromagnesite, with the relative abundance of dolomite increasing upwards. Three stratigraphically and spatially distinct dolomite units (upper, lower and margin) are recognized using stable carbon and oxygen isotope data, unit cell calculations and MgCO3 mole per cent data of the dolomite. Detailed X-ray diffraction (XRD) analyses of samples with more than 80% dolomite shows that the dolomite is ordered. Average unit cell parameters, calculated from the XRD patterns, indicate that the upper dolomite unit has crystal lattices expanded in the co direction (co= 16.09 Å) relative to ideal dolomite (co= 16.02 Å) and contracted in the ao direction (ao= 4.796 Å) relative to ideal dolomite (ao= 4.812 Å). The mol fraction of MgCO3 in the upper dolomite shows up to 4.0 ±M 2.0 mole per cent excess Mg in the dolomite crystal lattice (calculated from XRD). This unusual dolomite crystal chemistry is probably generated by rapid precipitation from solutions which have greatly elevated Mg/Ca ratios. Transmission electron microscopy reveals that the upper dolomite has a heterogeneous microstructure which also suggests rapid precipitation from solution. The modulated microstructure found in calcium-rich dolomite is completely lacking. Dolomite ordering reflections are present in electron diffraction patterns, but are weak. Stable oxygen and carbon isotope values of the upper dolomite are tightly grouped (ave. δ18O ~+ 7.55%o, δ13C ~+ 4.10%o), yet show three upward-lightening oxygen cycles. The oxygen cycles correlate with three upward decreases in the calculated Mg content of the dolomite zone. These cycles may indicate the increased importance of rain-water dilution of the brine at times when the water in the lake was at its shallowest levels. Analyses of the lower dolomite and the margin dolomite suggest that these units precipitated more slowly from less evaporitic brines than the upper dolomite unit. The lower dolomite is close to stoichiometric, has less evaporitic stable isotope values than the upper dolomite, and has only a slightly expanded co-axis. The margin dolomite is Ca-rich, has a more homogeneous microstructure, and has expanded ao and co axes. The abundance of relatively soluble Mg-bearing phases, such as hydromagnesite and magnesite, may supply additional magnesium for the dolomitization of aragonite and calcite during subsequent diagenesis and burial of the sediment. This process may leave a finely laminated dolomicrite deposit which retains little, if any, evidence of evaporite minerals.  相似文献   

10.
The Late Cretaceous to Early Eocene, dominantly micritic, Amuri Limestone Group (ALG) was deposited in an approximately NW trending trough, in eastern Marlborough, New Zealand. The ALG comprises: the Mead Hill Formation; the Teredo, Lower and Middle Limestone formations; and the Upper and Lower Marl formations. Chert and dolomite are concentrated in the Mead Hill Formation, which contains five of six recognized diagenetic zones: Zone I at the base of the ALG consists almost entirely of chert; Zone II consists solely of chert and dolomite; Zone III comprises chert and limestone; Zone IV is composed of chert plus dolomite; Zone V is a chertified mudstone; and the minor amounts of chert found in the Middle Limestone Formation comprise Zone VI. With the exception of Zones IV and V, chert decreases stratigraphically upwards and away from the basin centre. All the dolomites are composed of <1 mm diameter rhombohedra in discontinuous beds and lenses. Generally Ca-rich, and non- to slightly ferroan, the dolomite contains approximately 500–900 ppm Mn and 200–400 ppm Sr. δ13C values average 1–2%PDB with δ18O ratios of about -4%PDB. Mass balance calculations indicate that the Mg2+ for dolomitization was derived from sea water. Sr, Fe and Mn concentrations are interpreted as indicating dolomite formation in the marine environment, with no influence from meteoric waters. The intimate association with pyrite implies dolomite formation in association with sulphate reduction, in the upper sediment column. δ18O data show that the bulk of the dolomite formed at temperatures below 50°C. All chert samples contain in excess of 90 wt% SiO2, about 1 wt% Al2O3 and 1 wt% from losses on ignition. Generally all other major elements total less than 2 wt% oxide. δ18O values range from 26·8 to 29·0%SMOW. Chert chemistry is consistent with the replacement of host carbonate and expulsion of carbonate-bound components from the site of chertification, and the effective dilution by SiO2 of non-carbonate-bound insoluble residues. δ18O data indicate that chert formed in fluids of similar composition and temperature as the dolomite. The abundance of disseminated pyrite in cherts implies an association with sulphate reduction. Silica for chertification is thought to have initially come from dissolution of siliceous organisms. However, there is insufficient biogenic silica available to form the volumes of chert observed. It is suggested that the bulk of the silica came from SiO2-rich pore waters generated by clay mineral reactions in the thick underlying mudstones. The ALG compacted down through these pore waters. Chert and dolomite nucleation are considered to have been penecontemporaneous. Dolomitization was initially probably the faster process, continuing as long as sulphate reduction prevailed and there was an adequate supply of Mg2+. The nucleation of chert, although initially slower (probably due to a relatively lower initial SiO2 supply), continued after cessation of dolomitization to the extent of completely chertifying the dolomite intercrystalline matrix. The amount of chertification decreased progressively as SiO2 supplies diminished, both stratigraphically upwards and away from the basin centre.  相似文献   

11.
Neoproterozoic marine dolomite cements represent reliable, albeit complex, archives of their palaeoenvironment. Petrological and high-resolution geochemical data from well-preserved fibrous dolomite and pyrite in the upper Ediacaran (ca 551·1 to 548·0 Ma) Dengying Formation in south-west China are presented and discussed here. The aim of this research is to reconstruct the redox state of late Ediacaran shallow seawater and porewater in the Sichuan Basin using early marine diagenetic fabrics. Based on crystalline texture and axis, four basic types of fibrous dolomite cements formed penecontemporaneously in a microbialite reef setting at the platform margin: (i) bladed dolomites (replacement from a high-Mg calcite precursor); (ii) fascicular fast dolomites (replacement from an aragonitic precursor); (iii) fascicular slow dolomites; and (iv) radial slow dolomites. The latter two fabrics are considered direct marine porewater precipitates due to their length-slow character, cathodoluminescent zonation, and enriched copper and cobalt concentrations. Marine cements yield rare earth element and yttrium patterns comparable to modern seawater and represent a refined set of archive data relative to previously published bulk dolostones. Redox-sensitive elements and cathodoluminescence indicate that the fascicular fast dolomites formed in suboxic seawater, while fascicular slow and radial slow dolomites formed in euxinic marine porewaters. Microbial sulphate reduction during the formation of fascicular slow and radial slow dolomites is recognized by nanometre-scale spheroidal ankerite and sulphur-containing dolomite, and intergrown pyrite grains with U-shaped δ34S transects. Data shown here suggest predominantly suboxic shallow late Ediacaran seawater and euxinic marine porewaters, with microbial activity promoting the direct precipitation of dolomite.  相似文献   

12.
Reactive-transport models are developed here that produce dolomite via two scenarios: primary dolomite (no CaCO3 dissolution involved) versus secondary dolomite (dolomitization, involving CaCO3 dissolution). Using the available dolomite precipitation rate kinetics, calculations suggest that tens of meters of thick dolomite deposits cannot form at near room temperature (25-35°C) by inorganic precipitation mechanism, though this mechanism will provide dolomite aggregates that can act as the nuclei for dolomite crystallization during later dolomitization stage. Increase in supersaturation, Mg+2/Ca+2 ratio and CO3-2 on the formation of dolomite at near room temperature are subtle except for temperature.This study suggests that microbial mediation is needed for appreciable amount of primary dolomite formation. On the other hand, reactive-transport models depicting dolomitization (temperature range of 40 to 200°C) predicts the formation of two adjacent moving coupled reaction zones (calcite dissolution and dolomite precipitation) with sharp dolomitization front, and generation of >20% of secondary porosity. Due to elevated temperature of formation, dolomitization mechanism is efficient in converting existing calcite into dolomite at a much faster rate compared to primary dolomite formation.  相似文献   

13.
14.
The Middle Devonian Winnipegosis carbonate unit in south‐central Saskatchewan is partially to completely dolomitized. Two major types of replacive dolomite are distinguished. Microcrystalline to finely crystalline dolomite (type 1) displays nonplanar‐a to planar‐s textures, mimetically replaces the precursor limestone, accounts for about four‐fifths of dolomite phases volumetrically, and mainly occurs in the Winnipegosis mounds and the Lower Winnipegosis Member directly underlying the mounds. Medium crystalline dolomite (type 2) shows planar‐s to planar‐e textures, commonly occurs in the Lower Winnipegosis and Brightholme members, and decreases upward in abundance. The 87Sr/86Sr ratios of type 1 dolomite (0·70795 to 0·70807) fall within the estimated Sr‐isotopic range for Middle Devonian marine carbonates. Stratigraphic, petrographic and geochemical data constrain the formation of type 1 dolomite to hypersaline sea water in a near‐surface environment, after marine cementation and sub‐aerial diagenesis and prior to precipitation of the Middle Devonian Leofnard salts. Movement of dolomitizing fluids could be driven by density differences and elevation head. The shift to lower δ18O values of type 1 dolomite [?7·4 to ?5·1‰ Vienna Pee Dee Belemnite (VPDB)] is interpreted as the result of recrystallization at elevated temperatures during burial. Type 2 dolomite has higher 87Sr/86Sr ratios (0·70809–0·70928), suggesting that the dolomite probably formed from basinal fluids with an increased richness in the radiogenic Sr isotope. In type 2 dolomite, Sr2+ concentrations are lower, and Fe2+ and Mn2+ concentrations are higher, compared with the associated limestone and type 1 dolomite. Type 2 dolomite is interpreted as having been formed from upward‐migrating basinal fluids during latest Devonian and Carboniferous period.  相似文献   

15.
Diagenetically altered Pleistocene dolomite occurs in the shallow subsurface of the Arabian Gulf, offshore of Al Jubayl, Saudi Arabia. This dolomite accumulated in relatively shallow marine to sabkha depositional environments. In contrast with the thin extent of most other Quaternary sabkha and sabkha-related dolomite deposits, these deposits comprise a thick (>56 m) accumulation. Additionally, this Pleistocene dolomite displays a high degree of ordering and has a more nearly ideal stoichiometric composition than the dolomite from the depositionally and diagenetically analogous Abu Dhabi sabkha complex. The Pleistocene dolomite also has lower δ13 and δ18O values than the modern Abu Dhabi sabkha dolomite, and higher values than those commonly reported for analogous dolomite from the ancient rock record. The low δ18O values, in conjunction with the geological setting, indicate that the diagenetic waters were meteoric or mixed meteoric and marine in composition. Thus, the degree of ordering, stoichiometric and stable isotopic values indicate that this dolomite has undergone diagenetic alteration relative to its presumed Holocene precursor.  相似文献   

16.
Zebra dolomites, characterized by a repetition of dark grey (a) and light (b) coloured dolomite sheets building up abbabba-sequences, occur in Dinantian strata from deep boreholes (> 2000 m) south of the Brabant-Wales Massif in Belgium. These zebra dolomite sequences are several tens of metres thick. The dark grey dolomite sheets (a) consist of non-planar crystals, 80–150 μm in diameter. These crystals display a mottled red–orange luminescence and are interpreted to be replacive in origin. The white dolomite sheets (b) consist of coarse crystalline nonplanar b1 dolomite, which evolves outwards into transparent saddle shaped b2 dolomite. The b1 dolomites possess a mottled red–orange luminescence similar to the a dolomites, while the saddle shaped b2 rims display red to dark brown luminescent-zones. The b1 dolomites are possibly partly replacive and partly cavity filling. Their b2 rims display criteria typical for a cement origin. Locally, cavities exist between two succeeding white dolomite sheets. These cavities make up ≈5% of the zebra rocks and are locally filled by saddle shaped ankerite and/or xenomorphic ferroan calcite. Geochemical and fluid inclusion data (Th ≈ 120 °C) indicate a burial diagenetic origin for these zebra dolomites. The a and b1 dolomites are characterized by similar geochemical compositions and fluid inclusion data pointing toward a related origin. To explain the development of the zebra textures, suprahydrostatic pressures in conjunction with late Variscan tectonic compression are invoked. A model involving dolomitizing fluids expelled during the Variscan orogeny is proposed. An overpressured system is also invoked to explain the important porosity development, the creation of centimetre-scale subvertical displacements of the zebra pattern and the microfractures affecting the b1b2 dolomite crystals.  相似文献   

17.
The Late Jurassic-early Senonian Cehennemdere Formation extending in an E-W direction in a wide area at the south of the Bolkar Mountains (Central Taurides, Turkey) is composed of platform carbonates. The formation was deposited in an environment that was being transformed from a shallow carbonate platform to an open shelf and a continental slope, and was buried until late Paleocene uplift. The formation, with a thickness of about 360 m, was chiefly developed as textures consisting of mudstone and wackestone and has been commonly dolomitized. Based on petrographic and geochemical properties, four types of replacement dolomites and two types of dolomite cements were distinguished. Replacement dolomite (RD), which is cut by low-amplitude stylolites developed as (1) fine crystalline planar-s dolomite (RD1); (2) medium crystalline planar-s dolomite (RD2); (3) medium-coarse crystalline planar-e dolomite (RD3) and; (4) coarse crystalline planar-s (e) dolomite (RD4). Two types of dolomite cements (CD) observed in low abundance and overlie low-amplitude stylolites: (1) coarse crystalline dolomite cement (CD1) filling dissolution voids and fractures in RD1 dolomites, and; (2) rim dolomite cement (CD2) that commonly develops on the space-facing surfaces of RD4 dolomite. Replacement dolomites are non-stoichiometric (Ca54–59Mg41–46), have similar geochemical properties, and are generally dull red/non luminescent in appearance. Replacement dolomite is represented by δ18O values from −4.5 to −0.5‰ VPDB, δ13C values of −0.7 to 2.7‰ VPDB, and 87Sr/86Sr ratios ranging from 0.707178 to 0.707692. Petrographic and geochemical data indicate that replacement dolomite (particularly RD2, RD3, and RD4 dolomite) was formed at shallow-intermediate burial depths during the Late Jurassic-Early Cretaceous, from seawater and/or from slightly modified seawater. The replacement dolomite (RD) was then recrystallized at increased burial depths and temperatures. Dolomite cements are similar to replacement dolomites in that they are non-stoichiometric (Ca55Mg45) and have similar trace element compositions. CD1 dolomite, which cuts low-amplitude stylolites, was formed during intermediate to deep burial following stylolite development. CD2 dolomite was precipitated in intercrystal pores in association with RD4 dolomite. Remaining pore space was filled with bitumen.  相似文献   

18.
The Early to Middle Cambrian Red Heart Dolomite and lower Arthur Creek Formation of the southern portion of the Georgina Basin, Australia, is an entirely dolomitized succession of shallow-water evaporitic mudflat and deeper-water subtidal lithologies. Three types of dolomite have been identified and are interpreted as: (1) syndepositional dolomite; (2) regional replacement dolomite; and (3) void-filling dolomite (cement). Syndepositional dolomite, derived from saline pore fluids developed in a sabkha environment, is a minor dolomite type with very fine crystal mosaics and has a mottled, non-zoned cathodoluminescence. The widespread regional replacement dolomite ranges from fine- to medium-crystalline forming mainly planar-s and non-planar-a crystal mosaics, and displays blotchy, mottled, non-zoned cathodoluminescence. Void-filling dolomite commonly forms planar-s to planar-e, medium to very coarse crystal mosaics. Rare non-planar-c, very coarsely crystalline saddle dolomite also exists. Void-filling dolomite has a successively zoned cathodoluminescence pattern from non-, to brightly, to dully luminescent. Geochemically, the syndepositional dolomite has δ18O (PDB) values ranging between ? 5.3 and ? 8.6%o. Regional replacement dolomites exhibit a wide range of δ18O values from ? 3.3 to ? 10.9%o whereas void-filling dolomite has δ18O values ranging from ? 10.8 to ? 14.3%o. All three dolomite types have similar δ13C (PDB) values, in the range between +1.7 and ?1.7%o. Three initial dolomitization episodes are interpreted: (1) a sabkha stage, forming the syndepositional dolomite and dolomitizing the evaporitic mudflat lithologies; (2) a brine-reflux stage, replacing the subtidal lithologies; and (3) a burial stage, forming the void-filling dolomite type. Final dolomite stabilization occurred during burial, at elevated temperatures, in the presence of basinal fluids, resulting in progressive recrystallization and stabilization of the earlier-formed syndepositional and replacement dolomites. Both textural and geochemical evolution should be taken into account when studying the origin of dolomites, based on their present geochemical composition. Sulphates are represented by very fine-crystalline syndepositional anhydrite in association with the syndepositional dolomite, and coarse to very coarse anhydrite cement. Evaportic mudflat (sabkha) and burial environments are inferred for the origin of the former and the latter anhydrite types, respectively. Evaporite dissolution breccias, indicative of the former presence of evaporites, are common throughout the succession.  相似文献   

19.
Three major types of dolomite occur in the Trenton Formation (Mid-Ordovician) of the Michigan Basin. These are: (1) ‘regional dolomite’ which is confined to the extreme western edge of the basin; (2) ‘cap dolomite’ which occurs in the upper portion of the Trenton and is confined to the basin's southern margin; and (3) ‘fracture-related’ dolomite which occurs in association with both large- and small-scale faults and fractures. These three dolomite types can be distinguished from one another by their major element chemistry, oxygen isotope ratios and rock texture. The regional dolomite is fine-grained, has <0.34 mol% FeCO3, and mean δ18O of ?6·8‰OPBD. The cap dolomite is texturally similar to regional dolomite but contains 3–13·0 mol% FeCO3 and has a mean δ18O of ?7·7‰. Fracture-related dolomites are coarse-grained, low in iron, and have the most depleted δ18O ratios (x?=–9·0%PDB). Petrographic relationships imply that the regional dolomite, formed prior to the cap dolomite probably during early diagenesis. The cap dolomite formed at relatively shallow depths as a result of the interaction of the overlying Utica Shale and the Trenton Limestone. Fracture-related dolomites post-date the cap dolomite and formed during deeper burial. A temperature of precipitation of approximately 80°C was calculated for fracture-related dolomites using oxygen isotope data. The distribution of the cap dolomite was controlled by the availability of Fe2? which was in turn controlled by the availability of S2?. In the centre of the basin Trenton-Utica deposition was continuous. The upper Trenton contained relatively high concentrations of organic matter which was used by sulphate reducing bacteria to produce H2S from seawater sulphate. The precipitation of iron sulphides (pyrite + iron monosulphide) followed and used up most of the available Fe2?. As a result only small amounts of ferroan dolomite formed. On the periphery of the basin, subaerial exposure resulted in the oxidation of most of the available organic matter. Sulphate reducing bacteria were therefore limited and produced limited amounts of H2S. As a result only a minor amount of iron sulphide (iron monosulphide) formed. The remaining Fe2- was then available for the formation of the ferroan cap dolomite. This model is supported by the following: (1) In the southern margin of the basin, the contact between Trenton cap dolomite and the overlying Utica Shale is sharp and probably unconformable. In the centre of the basin the contact is gradational. (2) In the centre of the basin, the total organic carbon content in the upper Trenton is an order of magnitude higher than in the cap dolomite. (3) The whole-rock concentration of iron is high in both the cap dolomite and in slightly dolomitized equivalent beds in the basin centre. (4) Iron sulphides are abundant in the centre of the basin and mostly in the form of pyrite. In the cap dolomite, iron sulphide is minor and primarily in the form of iron monosulphide.  相似文献   

20.
The geochemical significance of three selected ions (Mg2+, Na+, and Sr2+) supports a model of dolomitization by brackish groundwater. This groundwater zone contains sufficient quantities of Mg2+ to facilitate dolomitization (MgCaratios 1). Rising and falling of sea level and fluctuations of the phreatic zone related to climatic variations account for the thickness of the dolomite layers and the chemical distributions within these layers. Sodium concentrations in the calcite are 70–185 ppm, indicating formation in brackish water. Dolomite has sodium concentrations between 50–1400 ppm, suggesting formation in waters of similar salinity.Strontium in calcite ranges from 320–600 ppm, suggesting diagenesis in slightly saline waters in an open system. Dolomite contains 241 ppm Sr2+ on the average and calcite has 418 ppm Sr2+. The Sr2+ concentrations of the dolomite are characteristic of diagenesis in water less saline than sea water. Average strontium concentrations in the dolomite occur in two distinct groups, 260 ppm for dolomite with 39–43 mole-% MgCo3 and 195 ppm for the dolomite with 44–50 mole-% MgCO3. The difference in the Sr2+ concentrations of the two dolomite groups indicates the higher mole-% MgCO3 dolomite recrystallized in a less saline environment than the lower mole-% MgCO3 dolomite. These different environments are attributed to a relatively more saline coastal environment and a less saline inland environment.The more nearly stoichiometric dolomite (44–50 mole-% MgCO3) has less scatter when mole-% MgCO3 is plotted against Sr2+ and Na+. This suggests a greater approach to equilibrium with the dolomitizing fluid than the lower mole-% MgCO3 (39–43) dolomite. The more saline environment has higher Mg/Ca ratios and promotes more calcium-rich dolomite during diagenesis because of the inhibition from competing foreign ions and because it is thermodynamically a more favorable environment which causes more rapid crystallization. The less saline waters allow recrystallization to proceed more slowly, producing better ordering in the dolomites, textural preservation and development of subhedral to euhedral rhombic crystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号