首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
Microbial production of CO2 in red soil in Stone Forest National Park   总被引:2,自引:0,他引:2  
Lunan stone forest is a kind of typical karst in China,Which is mainly developed under red soil.In the winter of 1999,three study sites were chosen in stone forest national park according to vegetation cover,geomporphologic location and soil types,CO2 concentration was measured with Gastec punp at different dephts of soil (20,40,60cm) and at the same time soil samples were gatered and soil properties such as soil moisure,pH,soil organic content were analyzed and the total nmuber of viable microbes were counted in laboratory,In the study,dependent variable was chosen as the mean soil log(PCO2),and soil properties were chosen as the independent variables.Multiple stepwise regression analysis showed that the totla amount of microbes and soil moisture are the best indicators of the CO2 production,With the equation LOG(PCO2)=-0.039(TNM)-0.056 (Mo) 1.215 accounting for 86% of the variation of the soil CO2 concentration,where TNM is the total number of microbes in teh soil and Mo is the moisture of soil sample.  相似文献   

2.
Lunan stone forest is a kind of typical karst in China, which is mainly developed under red soil. In the winter of 1999, three study sites were chosen in stone forest national park according to vegetation cover, geomorphologic location and soil types. CO2 concentration was measured with Gastec pump at different depths of soil (20, 40, 60 cm) and at the same time soil samples were gathered and soil properties such as soil moisture, pH, soil organic content were analyzed and the total number of viable microbes were counted in laboratory. In the study, dependent variable was chosen as the mean soil log (PCO2), and soil properties were chosen as the independent variables. Multiple stepwise regression analysis showed that the total amount of microbes and soil moisture are the best indicators of the CO2 production, with the equation LOG(PCO2) = - 0.039(TNM) - 0.056(Mo) + 1.215 accounting for 86% of the variation of the soil CO2 concentration, where TNM is the total number of microbes in the soil and Mo is the moisture of soil sample.  相似文献   

3.
Throughfall, stemflow, evapotranspiration and infiltration are likely to vary with forest types, and consequently affect soil moisture regimes in different soil layers. In this study, the spatial and temporal characteristics of soil moisture were investigated to understand variations in soil moisture in three typical forests, including Phyllostachys pubescens forest (abbreviated as PPF), Schima superba forest (abbreviated as SSF) and Cunninghamia lanceolata forest (abbreviated as CLF) in the upper reaches of Lijiang River basin in southern China. The results showed that, (1) Litterfall and soil physical properties differed significantly in the three typical forests. Infiltration capacity in SSF was more favorable to soil moisture than in PPF and CLF. (2) Large variations were found in soil moisture at different forest stands and depths. Due to complicated vertical structures, there were obvious differences in soil moisture from the 0-20 cm soil layer to the 50-80 cm soil layer. (3) Average soil moisture in each layer was higher in SSF than in PPF and CLF. (4) Soil moisture in different layers correlated closely with precipitation (P<0.01) and the three typical forests had the same change trends with rainfall during the studying period. (5) In topsoil, soil moisture was influenced by soil properties which were mostly determined by litterfall, while in deep soil, soil moisture was affected by variations of soil characteristics, which were mostly determined by root distribution. This study provides a scientific basis for better understanding the relationships between forest vegetation and its hydrological effects, helping to facilitate water resources conservation and achieving wise forest management in the upper reaches of Lijiang River basin.  相似文献   

4.
黄磊  张志山  胡宜刚  张鹏  赵洋 《中国沙漠》2012,32(6):1583-1589
对固沙植被区典型分布的藻类结皮、藓类结皮和流沙下不同深度的土壤气体采样,主要研究和讨论了不同类型生物土壤结皮下土壤CO2浓度的变化特征,及土壤温度和土壤水分对它的影响。结果表明,藻类结皮和藓类结皮在0~40 cm处的土壤空气CO2浓度平均值基本保持在600~1 100 μmol·mol-1之间,大于同一深度流沙下土壤CO2浓度值,但三者之间的差异并不显著。土壤温度与土壤CO2浓度呈正相关关系,且在表层相关性最强,具体表现为流沙>藓类结皮>藻类结皮。土壤水分对土壤CO2浓度的影响在表层0~5 cm为流沙>藻类结皮>藓类结皮,但在下层10~40 cm处为藻类结皮>藓类结皮>流沙。  相似文献   

5.
Coastal sand dune ecosystems generally have infertile soil with low water-holding capacity and high salinity. However, many plant species have adapted to the harsh sand environment along the southeastern coast of China. Studying the microbial biomass in such an ecosystem can improve our understanding of the roles that microbes play in soil fertility and nutrient cycling. We investigated the differences in soil microbial biomass carbon (MBC) and nitrogen (MBN) contents and their seasonal dynamics in five forest types (a secondary forest and plantations of Casuarinas, Pine, Acacia, and Eucalyptus). The results indicated that the seasonal variations of soil MBC and MBN contents in all five forest stands were higher in spring and winter, but lower in summer and autumn. The MBC content was lower in the Casuarinas plantation than in the other plantations in the same soil layer. However, no significant differences were observed in MBN contents among the different forest types. The MBC and MBN concentrations were positively correlated with soil moisture, but negatively correlated with soil temperature. The MBC and MBN contents also decreased with increasing soil depth. Across all soil layers, secondary forest had the highest MBC and MBN concentrations. Our study also showed that the MBC and MBN contents were positively affected by total soil carbon (TC), pH, and litter N content, but were negatively impacted by soil bulk density and litter C content. Moreover, the MBN content was positively correlated with root N content. In summary, environmental factors and the differences in litter and fine roots, soil nutrient contents, as well as the soil physical and chemical properties caused by different tree species collectively affected the concentrations of the soil MBC and MBN.  相似文献   

6.
利用开路式土壤碳通量测量系统-LI-8100对塔里木河下游6种土地利用方式下土壤呼吸速率的日变化进行了野外定位测量,并就水热因子及土壤理化性质对土壤日呼吸速率差异的影响进行了分析。结果表明,梨园、弃耕地、棉田、人工林、草地和天然林土壤呼吸速率日变化均呈单峰曲线,土壤日呼吸速率差异显著。大气温度和土地利用方式是造成土壤日呼吸差异的主要因素,其中土地利用方式通过改变地表温度、土壤水分、电导率、pH、盐分含量及机械组成等影响土壤日呼吸速率。  相似文献   

7.
陕西咸阳人工林地土壤干层研究   总被引:20,自引:4,他引:16  
赵景波  杜娟  周旗  岳应利 《地理科学》2005,25(3):322-328
根据咸阳庞西村苹果林地、梧桐林地和草地土壤含水量测定,研究了0~6m土壤含水量的变化和土壤干层特点与分布。结果显示, 咸阳人工林地从表层向下含水量呈现由高到低再到低的变化;10龄苹果林地2~4m深处土壤含水量平均为8.3%,12龄梧桐林2~4m深处土壤含水量平均为8.6%,均发育了明显的土壤干层;4龄苹果林下土层有干化显示,但无干层发育;草地土层含水量明显较苹果林地高,无土壤干化的显示。研究表明,土壤干层形成的具体原因一是降水量少决定的薄膜水带埋藏深度小,二是薄膜水的运移速度缓慢和含水量低。为保持人工林基本正常的生长和土壤水的正常运移,应避免严重的土壤干层出现。咸阳附近土壤干层的出现表明土壤干层在黄土高原广泛分布,该区的植被恢复首先应以疏林或森林草原为主,待土壤水分改善后再考虑恢复森林植被。  相似文献   

8.
Nitrous oxide(N_2 O) is one of the most important greenhouse gases in the atmosphere; freeze–thaw cycles(FTCs) might strongly influence the emission of soil N_2 O on the Qinghai–Tibetan Plateau(QTP). However, there is a lack of in situ research on the characteristics of soil N_2 O concentration and flux in response to variations in soil properties caused by FTCs.Here, we report the effect of FTC-induced changes in soil properties on the soil N_2 O concentration and flux in the permafrost region of the higher reaches of the Shule River Basin on the northeastern margin of the QTP. We measured chemical properties of the topsoil, activities of soil microorganisms, and air temperature(AT), as well as soil N_2 O concentration and flux, over an annual cycle from July 31, 2011, to July 30, 2012. The results showed that soil N_2 O concentration was significantly affected by soil temperature(ST), soil moisture(SM), soil salinity(SS), soil polyphenol oxidase(SPO), soil alkaline phosphatase(SAP), and soil culturable actinomycetes(SCA), ranked as SMSSSTSPOSAPSCA, whereas ST significantly increased soil N_2 O flux, compared with SS. Overall, our study indicated that the soil N_2 O concentration and flux in permafrost zone FTCs were strongly affected by soil properties, especially soil moisture, soil salinity, and soil temperature.  相似文献   

9.
黄土高原半干旱区天然锦鸡儿灌丛对土壤水分的影响   总被引:13,自引:4,他引:13  
本文选择黄土高原半干旱区定西地区的一种地带性植被,天然甘蒙锦鸡儿灌丛,将其0~99m深的土壤水分含量与人工柠条锦鸡儿灌丛、人工杏树林、天然草地、放牧荒坡和农地的土壤水分含量进行了比较。结果发现,天然锦鸡儿灌丛在1m以下土壤各层的水分含量均高于人工柠条灌丛和人工杏树林,而与放牧荒坡和农地的土壤湿度接近,略低于农地。天然锦鸡儿灌丛4m以上土层的土壤湿度还明显高于天然草地;天然锦鸡儿灌丛形成的难效—无效水层深度在2m土层以上,而人工柠条灌丛形成的难效无效水层则深达56m,人工杏树林42m,天然草地、放牧荒坡分别为36m和33m,农地1m。  相似文献   

10.
Based on the static opaque chamber method, the respiration rates of soil microbial respiration, soil respiration, and ecosystem respiration were measured through continuous in-situ experiments during rapid growth season in semiarid Leymus chinensis steppe in the Xilin River Basin of Inner Mongolia, China. Soil temperature and moisture were the main factor affecting respiration rates. Soil temperature can explain most CO2 efflux variations (R2=0.376–0.655) excluding data of low soil water conditions. Soil moisture can also effectively explain most of the variations of soil and ecosystem respiration (R2=0.314–0.583), but it can not explain much of the variation of microbial respiration (R2=0.063). Low soil water content (≤5%) inhibited CO2 efflux though the soil temperature was high. Rewetting the soil after a long drought resulted in substantial increases in CO2 flux at high temperature. Bivariable models based on soil temperature at 5 cm depth and soil moisture at 0–10 cm depth can explain about 70% of the variations of CO2 effluxes. The contribution of soil respiration to ecosystem respiration averaged 59.4%, ranging from 47.3% to 72.4%; the contribution of root respiration to soil respiration averaged 20.5%, ranging from 11.7% to 51.7%. The contribution of soil to ecosystem respiration was a little overestimated and root to soil respiration little underestimated because of the increased soil water content that occurred as a result of plant removal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号