首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Glacial Lake Wisconsin was a large proglacial lake that formed along the southern margin of the Laurentide Ice Sheet during the Wisconsin glaciation. It was formed when ice of the Green Bay Lobe came into contact with the Baraboo Hills in southwestern Wisconsin and blocked the south-flowing Wisconsin River. During early glacial recession, the ice dam failed catastrophically and the lake drained in about a week. Despite early recognition of the former lake and the likelihood that it failed catastrophically, outflow rates during the failure have not been previously evaluated. Estimates based on step-backwater modeling indicate that peak discharge was between 3.6 and 5.3 × 104 m3/s in the lower Wisconsin River. As an alternate method, we used a previously derived empirical relationship between lake volume and peak discharge for dam-break events. From a digital elevation model altered to incorporate isostatic depression, we estimated the lake volume to be 87 km3 just prior to dam breach, suggesting that the flooding magnitude was as high as 1.5 × 105 m3/s at the outlet. Adjusting these results for downstream flood wave attenuation gives a discharge of around 4.4 × 104 m3/s in the lower reach, which closely matches the results of the step-backwater modeling. These estimates of discharge from the catastrophic failure of ice-marginal lakes improve our understanding of the processes that have produced the morphology and behavior of present-day upper Midwest river systems.  相似文献   

2.
The evolution of the early Great Lakes was driven by changing ice sheet geometry, meltwater influx, variable climate, and isostatic rebound. Unfortunately none of these factors are fully understood. Sediment cores from Fenton Lake and other sites in the Lake Superior basin have been used to document constantly falling water levels in glacial Lake Minong between 9,000 and 10,600 cal (8.1–9.5 ka) BP. Over three meters of previously unrecovered sediment from Fenton Lake detail a more complex lake level history than formerly realized, and consists of an early regression, transgression, and final regression. The initial regression is documented by a transition from gray, clayey silt to black sapropelic silt. The transgression is recorded by an abrupt return to gray sand and silt, and dates between 9,000 and 9,500 cal (8.1–8.6 ka) BP. The transgression could be the result of increased discharge from Lake Agassiz overflow or the Laurentide Ice Sheet, and hydraulic damming at the Lake Minong outlet. Alternatively ice advance in northern Ontario may have blocked an unrecognized low level northern outlet to glacial Lake Ojibway, which switched Lake Minong overflow back to the Lake Huron basin and raised lake levels. Multiple sites in the Lake Huron and Michigan basins suggest increased meltwater discharges occurred around the time of the transgression in Lake Minong, suggesting a possible linkage. The final regression in Fenton Lake is documented by a return to black sapropelic silt, which coincides with varve cessation in the Superior basin when Lake Agassiz overflow and glacial meltwater was diverted to glacial Lake Ojibway in northern Ontario.  相似文献   

3.
Glacial Lake Hind was a 4000 km2 ice-marginal lake which formed in southwestern Manitoba during the last deglaciation. It received meltwater from western Manitoba, Saskatchewan, and North Dakota via at least 10 channels, and discharged into glacial Lake Agassiz through the Pembina Spillway. During the early stage of deglaciation in southwestern Manitoba, part of the glacial Lake Hind basin was occupied by glacial Lake Souris which extended into the area from North Dakota. Sediments in the Lake Hind basin consist of deltaic gravels, lacustrine sand, and clayey silt. Much of the uppermost lacustrine sand in the central part of the basin has been reworked into aeolian dunes. No beaches have been recognized in the basin. Around the margins, clayey silt occurs up to a modern elevation of 457 m, and fluvio-deltaic gravels occur at 434–462 m. There are a total of 12 deltas, which can be divided into 3 groups based on elevation of their surfaces: (1) above 450 m along the eastern edge of the basin and in the narrow southern end; (2) between 450 and 442 m at the western edge of the basin; and (3) below 442 m. The earliest stage of glacial Lake Hind began shortly after 12 ka, as a small lake formed between the Souris and Red River lobes in southwestern Manitoba. Two deltas at an elevation of 450 were formed in this lake. At the same time, the Souris Lobe retreated far enough to allow glacial Lake Souris to expand farther north along the western side of the basin from North Dakota into what was to become glacial Lake Hind. Three deltas were built at an elevation above 460 m in the Canadian part of this proglacial lake. Continued ice retreat allowed the merger of glacial Lake Souris with the interlobate glacial Lake Hind to the east. Subsequent erosion of the outlet to the Pembina Spillway allowed waters in the glacial Lake Hind basin to become isolated from glacial Lake Souris, and a new level of glacial Lake Hind was established at 442 m, with 5 deltas built at this level by meltwater runoff from the west. Next, a catastrophic flood from the Moose Mountain uplands in southeastern Saskatchewan flowed through the Souris River valley to glacial Lake Souris, spilling into Lake Hind and depositing another delta. This resulted in further incision of the outlet (Pembina Spillway). A second flood through the Souris Spillway from glacial Lake Regina further eroded the outlet; most of glacial Lake Hind was drained at this time except for the deeper northern part. Coarse gravel was deposited by this flood, which differs from previous flood gravel because it is massive and contains less shale.  相似文献   

4.
Two distinct episodes of increased water flux imposed on the Great Lakes system by discharge from upstream proglacial lakes during the period from about 11.5 to 8 ka resulted in expanded outflows, raised lake levels and associated climate changes. The interpretation of these major hydrological and climatic effects, previously unrecognized, is mainly based on the evidence of former shorelines, radiocarbon-dated shallow-water sediment sequences, paleohydraulic estimates of discharge, and pollen diagrams of vegetation change within the basins of the present Lakes Superior, Michigan, Huron, Erie and Nipissing. The concept of inflow from glacial Lake Agassiz adjacent to the retreating Laurentide Ice Sheet about 11–10 and 9.5–8.5 ka is generally supported, with inflow possibly augmented during the second period by backflooding of discharge from glacial Lake Barlow-Ojibway.Although greater dating control is needed, six distinct phases can be recognized which characterize the hydrological history of the Upper Great Lakes from about 12 to 5 ka; 1) an early ice-dammed Kirkfield phase until 11.0 ka which drained directly to Ontario basin; 2) an ice-dammed Main Algonquin phase (11.0–10.5 ka) of relatively colder surface temperature with an associated climate reversal caused by greater water flux from glacial Lake Agassiz; 3) a short Post Algonquin phase (about 10.5–10.1 ka) encompassing ice retreat and drawdown of Lake Algonquin; 4) an Ottawa-Marquette low phase (about 10.1–9.6 ka) characterized by drainage via the then isostatically depressed Mattawa-Ottawa Valley and by reduction in Agassiz inflow by the Marquette glacial advance in Superior basin; 5) a Mattawa phase of high and variable levels (about 9.6–8.3 ka) which induced a second climatic cooling in the Upper Great Lakes area. Lakes of the Mattawa phase were supported by large inflows from both Lakes Agassiz and Barlow-Ojibway and were controlled by hydraulic resistance at a common outlet — the Rankin Constriction in Ottawa Valley — with an estimated base-flow discharge in the order of 200000 m3s–1. 6) Lakes of the Nipissing phase (about 8.3–4.7 ka) existed below the base elevation of the previous Lake Mattawa, were nourished by local precipitation and runoff only, and drained by the classic North Bay outlet to Ottawa Valley.Geological Survey of Canada Contribution 42488.This is the twelfth of a series of papers to be published by this journal that was presented in the paleolimnology sessions organized by R. B. Davis and H. Löffler for the XIIth Congress of the International Union for Quaternary Research (INQUA), which took place in Ottawa, Canada in August 1987. Dr. Davis is serving as guest editor of this series.  相似文献   

5.
We use high-resolution reflection seismic data and detailed grain-size analysis of a drill core (KDP-01) from Lake Khubsugul (northern Mongolia) to provide an improved reconstruction of the glacial history of the area for the last 450 ka. Grain-size analysis of suspended sediment load in modern rivers draining into the lake and of moraine material from the northern part of the catchment shows that the silt fraction is transported to the central part of the lake mainly by river suspension, whereas the clay fraction is mainly transported by glacial meltwater during deglaciation. The changes in of the clay/silt ratio in Lake Khubsugul sediments correlates well with the standard global paleoclimate records: low clay/silt ratios indicate warm climates, while a high clay/silt ratio reflects glacial erosion and cold climates. Pulses of clay input into the lake occur at the final stages of glacial periods (i.e., glacial maxima and subsequent onsets of deglaciation). The periodicity in glacial clay input in Lake Khubsugul is in tune with global periods of deglaciation, but there are differences in the intensity of the deglacial events for MIS-12 and MIS-2. These differences are attributed to specific conditions in regional distribution of moisture during glaciation, glacial ice volumes, and solar insolation intensity at the onset of deglaciation. Deglaciation of the Khubsugul glaciers occurred in response to an increase in summer solar insolation above a threshold value of 490 W/m2. Two types of deglaciation can be distinguished: (1) slow melting during several tens of 1,000 years during weak increases in summer insolation, and (2) short and fast melting during several thousands of years in response to strong increases in summer insolation. The maximum ice volume in the area of Lake Khubsugul during the past 450 ka occurred during the period of 373–350 ka BP (MIS 11a-10) and was caused by high levels of moisture in the region, whereas the MIS-2 and MIS-12 glacial periods were characterized by minima in ice volume, due to the strong aridity in the region.  相似文献   

6.
The Kanas River originates on the southern slope of Youyi Peak, the largest center of modern glaciers in Altai Mountains, China. Three sets of moraines and associated glacial sediments are well preserved near the Kanas Lake outlet, recording a complex history and landscape evolution during the Last Glacial. Dating the moraines allows the temporal and spatial glacier shift and climate during the Last Glacial to be determined, and then constrains when and how the Kanas Lake basin was formed. Dating of the glacial tills was undertaken by utilizing the optically stimulated luminescence (OSL) method. Results date four samples from the three sets of moraines to 28.0, 34.4, 38.1, and 49.9 ka and one sample from outwash sediment to 6.8 ka. The Kanas Lake basin is a downfaulted basin and was eroded by glacier before 28.0 ka, and the glacial moraines blocked the glacier-melt water after the glacier retreat, which made the present-day Kanas Lake eventually form at least before 6.8 ka BP. In Altai Mountains, the glacier advance was more extensive in Marine Isotope Stage (MIS) 3 than MIS 2, probably because the mid-latitude westerlies shifted northward and/or intensified during the MIS 3, resulting in a more positive glacier mass balance. Nevertheless, the Siberian High dominated the Altai Mountains in MIS 2, resulting in a relative decrease in precipitation.  相似文献   

7.
Sedimentological parameters and stable O- and C-isotopic composition of marl and ostracode calcite selected from a 17.7-m-long core from the 8-m-deep center of Pickerel Lake, northeastern South Dakota, provide one of the longest (ca. 12ky) paleoenvironmental records from the northern Great Plains. The late Glacial to early Holocene climate in the northern Great Plains was characterized by changes from cold and wet to cold and dry, and back to cold and wet conditions. These climatic changes were controlled by fluctuations in the positions of the Laurentide ice sheet and the extent of glacial Lake Agassiz. We speculate that the cold and dry phase may correspond to the Younger Dryas event. A salinity maximum was reached between 10.3 and 9.5 ka, after which Pickerel Lake shifted from a system controlled by atmospheric changes to a system controlled by groundwater seepage that might have been initiated by the final withdrawal of Glacial Lake Agassiz. A prairie lake was established at approximately 8.7 ka, and lasted until about 2.2 ka. During this mid-Holocene prairie period, drier conditions than today prevailed, interrupted by periods of increased moisture at about 8, 4, and 2.2 ka. Prairie conditions were more likely dry and cool rather than dry and warm. The last 2.2 ka are characterized by higher climatic variability with 400-yr aridity cycles including the Medieval Warm Period and the Little Ice Age.Although the signal of changing atmospheric circulation is overprinted by fluctuations in the positions of the ice sheet and glacial Lake Agassiz during the late Glacial-Holocene transition, a combination of strong zonal circulation and strong monsoons induced by the presence of the ice sheet and high insolation may have provided mechanisms for increased precipitation. Zonal flow introducing dry Pacific air became more important during the prairie period but seems to have been interrupted by short periods of stronger meridional circulation with intrusions of moist air from the Gulf of Mexico. More frequent switching between periods of zonal and meridional circulation seem to be responsible for increased climatic variability during the last 2.2 ka.  相似文献   

8.
Patrick Lajeunesse   《Geomorphology》2008,99(1-4):341-352
The final stage of deglaciation of Hudson Bay was a major Holocene catastrophic event marked by the drainage of Lake Agassiz/Ojibway at ~ 8.47 ka cal BP and the rapid collapse of the Laurentide Ice Sheet. Previous work undertaken in the Nastapoka River area (eastern Hudson Bay) demonstrated that during the relative sea level highstand that shortly followed the drainage of the lake, the western margin of the Québec–Labrador ice sector rapidly retreated eastward to reach a stillstand position in a coastal hill range. In this study, an analysis of Landsat 7TM images has allowed a mapping of large-scale glacial landforms (outwash deposits, eskers, flutings, and De Geer and Rogen moraines) between Kuujjuaraapik (SE Hudson Bay) and Puvirnituq (NE Hudson Bay). The key results from this mapping are: i) ice-contact outwash deposits mapped along the entire arc-shaped coastline of the eastern Hudson Bay outline a major ice stillstand phase in the coastal hills that extended at least from Kuujjuaraapik to Inukjuak. The presence of these hills allowed a stabilisation of the ice margin that led to the accumulation of thick and extensive ice-contact submarine fans. ii) The position of these deposits on the down ice side (west) of large sets of flutings indicates an important phase of sediment delivery by a rapid ice flow phase toward a marine-based ice margin. iii) A second system of outwash deposits observed farther inland indicates a subsequent phase of stabilisation of the ice margin during its retreat toward central Québec–Labrador.  相似文献   

9.
Sub-bottom profiling and coring were undertaken at eight sub-basins along the lower French River and at five small lakes near North Bay, Ontario, to collect stratigraphical and chronological evidence to investigate whether lakes occupying the Huron–Georgian basins during the early- to mid-Holocene became hydrologically closed. All of the coring sites are located within the route of the North Bay outlet that carried outflow from the upper Great Lakes during this period. Sand beds containing organic detritus are present within five cores from Muskrat, Crombie and Deep bays that otherwise are composed of glaciolacustrine rhythmites or fine-grained lacustrine deposits. These sand beds are interpreted to represent intervals when water levels within the sub-basins were lower than present, based on chronology, sediment texture, and macrofossil assemblages. It is inferred that the water surface in the Huron–Georgian basins fell below the level of the Dalles Rapids sill isolating the lower French River sub-basins from the large lake. A core from Depensier Lake, North Bay, contains an organic-rich sand interval within a thicker sand unit barren of organic materials. Macrofossils within this organic-rich interval are interpreted to be evidence of substantially diminished flow through the North Bay outlet channel. Radiocarbon dates of terrestrial macrofossils provide correlation of the sand beds between the French River cores as well as with the organic-rich sand in the Depensier Lake core. The possibility that the sand beds in the French River cores represent flood deposits rather than evidence of hydrologically closed conditions is considered, but rejected, based on the occurrence of multiple peaty layers and the record of shallow water conditions inferred from macrofossils within the upper sand bed of core MUS1, Muskrat Bay, in combination with the evidence of quiescent depositional conditions from similarly aged macrofossils in the core from Depensier Lake. Eight radiocarbon dates from the French River cores are incorporated into an elevation-age plot of paleo-indicators of water levels in the Huron–Georgian basins, using additional data from the literature. This plot and stratigraphic evidence from the Muskrat Bay cores indicates that separate closed-basin intervals occurred between 9.0 and 8.4, and 9.5 and 9.3 ka cal BP (~ 8.1 and 7.6, and ~ 8.5 and 8.3 ka BP). The occurrence of these two closed-basin intervals between 9.6 and 8.4 ka cal BP (~ 8.7 and 7.6 ka BP) implies that run-off derived exclusively from precipitation within the non-glaciated portions of the upper Great Lakes drainage basins was likely insufficient at this time to support an open-basin lake hydrology during the contemporary climate, which was colder and drier than present, without being supplemented from glacial Lake Agassiz overflow and/or Laurentide Ice Sheet meltwater.  相似文献   

10.
The Bunger Hills in East Antarctica occupy a land area of approximately 400 km2. They have been exposed by Holocene retreat of the Antarctic ice sheet and its outlet glaciers. The accompanying sea level rise flooded the marine inlets that now separate the northern islands and peninsulas from the major part of the hills. During deglaciation the continental ice sheet margin retreated south‐eastwards with several temporary halts, during which ice‐dammed lakes were formed in some valleys. These lakes were maintained long enough to permit formation of beaches of sand and gravel, and for the erosion of shore platforms and low cliffs in bedrock. Around the western end of Fish Tail Bay impressive shoreline features 20 m above sea level define a former ice‐dammed lake that was 5.5 km long. A similar 7 km long former ice‐dammed lake was formed at Lake Dolgoe. The more extensive and deeper glacial lake is revealed by well‐developed and preserved shoreline features cut at 29 m which is 16 m above present lake level. In addition, several small ice‐dammed lakes existed temporarily near Lake Shchel and in the valley to the west. Lake Fish Tail existed more than 6,900 14C years ago and Lake Shchel probably more than 6,680 14C years ago. It is inferred that the shore platforms and beaches were formed by lake ice and wave action over considerable periods when the lakes were impounded by steep cold ice margins. There appears to have been a balance between meltwater input and evaporative loss from the lakes in the cold dry continental climate. There is no evidence for rapid lake level fluctuations, and there was very little input of clastic sediment. This resulted in poor development of deltaic and rhythmically laminated lake floor deposits. It is suggested that such deposits are more characteristic of ice‐dammed lakes formed in association with wet‐based temperate ice than those associated with dry‐based polar ice.  相似文献   

11.
天山阿特奥依纳克河流域冰川沉积序列   总被引:1,自引:0,他引:1  
阿特奥依纳克河位于我国天山的最西段,最大现代冰川作用中心托木尔峰的南麓。在第四纪冰期与间冰期的气候旋回中,该处留下了形态较为完整的6套冰川沉积。应用ESR测年技术 (辅以OSL测年技术) 对冰碛物及其相应的冰水沉积物进行了定年,测得6套冰碛年龄分别为7.3±0.8ka BP (OSL,冰水沙);12.3±1.2ka BP (OSL) 与15~29ka BP;46~54ka BP;56~65ka BP;155.8±15.6ka BP与234.8±23.5ka BP;453.0±45.3ka BP,测年结果表明它们分别形成于新冰期、海洋同位素阶段(MIS)2、3b、4、6、12。第三套冰碛测年结果表明该处MIS3b冰进规模较大,其规模基本上与末次盛冰期 (MIS2) 的规模相当。此处最老冰碛测年结果与我国中段天山乌鲁木齐河源高望峰冰碛的测年结果 (459.7±46ka BP与477.1ka BP) 遥相呼应,老冰碛的年龄显示我国天山西段与中段至少于MIS12进入了冰冻圈,开始发育冰川。  相似文献   

12.
鄱阳湖湖滨地区广泛分布着晚第四纪风沙沉积序列。在星子县沙岭沙山进行野外调查后选择蓼花剖面开展工作,测试了地质时代和粒度,对粒度结果使用端元分析模型进行研究,探讨该区域末次冰期中晚期的气候变化规律。结果显示:该剖面由湖相-古土壤-沙丘砂等沉积相叠覆堆积组成,形成于末次冰期中晚期(48.8—17.1 ka)。端元分析模型将粒度数据分解出3个不同的粒度端元,不同端元组分在垂向上呈峰谷交替的旋回变化,EM1代表粉砂端元组分,峰值对应湖相和古土壤发育时期;EM2和EM3代表中砂—粗砂端元组分,峰值对应沙丘砂发育期,这些峰谷交替变化的规律指示了末次冰期的季风演变以及气候波动变化,万年尺度上表现为LH10 (48.8—39.9 ka)和LH3~LH5 (28.1—17.1 ka)的冬季风强盛期,分别对应深海氧同位素的MIS3b和MIS2阶段。LH6~LH9 (39.9—28.1 ka)为温暖的夏季风时期,对应深海氧同位素的MIS3a阶段。这些变化与YZ洞石笋氧同位素以及格陵兰冰心有良好的对应,与全球气候变化基本一致。  相似文献   

13.
Relative sea level curves from glaciated North America reveal coherent spatial patterns of response times. In the Laurentide Ice Sheet area, curve half-lives range from 1.2–1.4 ka at the uplift centre to 1.7–2 ka in a ridge of high values inboard of the glacial limit. Half-lives decline from this ridge to less than 1 ka along the margin. In the Innuitian Ice Sheet area, half-lives are about 2 ka at the uplift centre and decline to less than 1 ka at the margin. The central Laurentide response times are about half those of central Fennoscandia. This accords with the theoretical expectation that central response times are inversely proportional to ice sheet radius for ice loads large enough that rebound at the centre is insensitive to lithospheric thickness. The Innuitian central response time indicates that rebound at the centre of this ice sheet, which is much smaller than the Fennoscandian Ice Sheet, remains sensitive to lithospheric thickness. Radial gradients in response times reflect the increasing influence of the lithosphere at sites increasingly closer to the margin. Along this gradient, rebound progresses as though at the centres of smaller and smaller ice sheets. That is, the effective spatial scale of the ice load decreases toward the margin. Near the glacial limit, postglacial isostatic adjustment is complicated by forebulge migration and collapse. This is seen most strongly in the relative sea level record of Atlantic Canada, which has subsided during the Holocene more than 20 m more than the adjacent American seaboard. The relative sea level history of some areas, notably the St. Lawrence Estuary, is complicated by tectonic processes.  相似文献   

14.
《自然地理学》2013,34(6):507-530
The advance of saltcedar from the American southwest to Montana between the mid-19th and mid-20th centuries crossed the Continental Divide—a major topographic and climatic barrier to natural dispersal by southern plants. Interviews, archival information, and field observations are used to explain this advance. According to archival documents, saltcedar was planted in communities adjacent to the Bighorn River in central Wyoming as part of urban beautification projects in 1936. Bureau of Reclamation reports describe tree plantings for erosion control between 1940 and 1953 within the Riverton Irrigation Project in the Wind-Bighorn River watershed. These introductions were followed by rapid natural dispersal northward by water and wind through the Wind/Bighorn system and into the Yellowstone and Missouri rivers in Montana before closure of Boysen and Bighorn dams in 1951 and 1967. Construction equipment and ornamental plantings further transported saltcedar to the Fort Peck Reservoir and the Musselshell River. We conclude that, without control at its advancing fronts, a complete ban of its sale, and removal of existing ornamental and erosion control trees, saltcedar will invade most suitable sites in the Missouri watershed and disperse northwards into western Canada.  相似文献   

15.
新疆阿尔泰山东段冰碛物光释光测年研究   总被引:3,自引:0,他引:3  
贾彬彬  周亚利  赵军 《地理学报》2018,73(5):957-972
冰川是塑造地表形态最积极的外营力之一,对冰川地貌的年代学研究是重建古冰川发展史的关键,也是研究气候变化的重要途径。冰碛物是冰川作用的直接产物,代表过去发生的冰川事件,对冰碛物进行准确测年能够为重建古冰川的进退、理解区域古气候变化提供年代学支撑。本文在新疆阿尔泰山东段采集了8个冰碛物样品以进行光释光测年,利用单片再生剂量法对90~125 μm的石英颗粒进行等效剂量的测定。通过等效剂量值频率分布特征及De(t)坪区图分析得出大部分冰碛物的光释光信号晒退不彻底,所以利用一阶动力学公式对持续激发的光释光信号晒退曲线(CW-OSL)进行多组分拟合拆分,得到快速、中速、慢速3种组分,依据分离出的快速组分确定等效剂量值。研究结果显示,距今32 ka以来阿尔泰山东段区域在MIS3阶段、MIS2阶段、8.2 ka左右、全新世大暖期及新冰期等5个时段有冰川发育,冰川发育与气候变化密切相关。  相似文献   

16.
The easternmost extremity of the ice cap that developed in the Tasmanian Central Highlands during the time of most extensive Late Cainozoic glaciation lay on the doleritecapped Central Plateau east and north-east of Lake St Clair. During the Last Glacial Maximum (LGM), the more restricted ice cover included a small discrete ice cap (probably less than 250-300 m thick) that formed on the Central Plateau. The LGM ice limits on the southern part of the Central Plateau, including all five southern outlet valleys, are reported here. Earlier ice limits have been identified in two of these valleys, but on the plateau proper earlier glacial deposits have been generally extensively reworked beyond the LGM limit, such that confirmation of a glacial origin for diamictons on slopes is difficult. South of the plateau, the oldest deposits flooring lower reaches of two outlet valleys indicate that ice flowed southwards directly from the plateau, but later deposits indicate diffluent flow from the Derwent Glacier.  相似文献   

17.
The Aragón Valley glacier (Central Western Pyrenees) has been studied since the late nineteenth century and has become one of the best areas in the Pyrenees to study the occurrence of Pleistocene glaciations and the relationships between moraines and fluvial terraces. New morphological studies and absolute ages for moraines and fluvial terraces in the Aragón Valley allow a correlation with other Pyrenean glaciers and provide solid chronologies about the asynchroneity between global last glacial maximum (LGM) and the maximum ice extent (MIE). Six frontal arcs and three lateral morainic ridges were identified in the Villanúa basin terminal glacial complex. The main moraines (M1 and M2) correspond to two glacial stages (oxygen isotopic stages MIS 6 and MIS 4), dated at 171 ± 22 ka and 68 ± 7 ka, respectively. From a topographical point of view, moraine M1 appears to be linked to the 60 m fluvioglacial terrace, dated in a tributary of the Aragón River at 263 ± 21 ka. The difference in age between M1 moraine and the 60 m fluvioglacial terrace suggests that the latter belongs to an earlier glacial stage (MIS 8). Moraine M2 was clearly linked to the fluvioglacial 20 m terrace. Other minor internal moraines were related to the 7–8 m terrace. The dates obtained for the last glacial cycle (20–18 ka) are similar to other chronologies for Mediterranean mountains, and confirm the occurrence of an early MIE in the Central Pyrenees that does not coincide with the global LGM.  相似文献   

18.
Wisconsin's Central Sand Plain east of the Wisconsin River is composed of eolian sand forming high-relief dunes surrounded by sand sheets and scattered low-relief dunes. To establish a maximum age for dune formation, three samples for optical dating were taken from glacial Lake Wisconsin lacustrine sediment that underlies eolian sand. These age estimates range from 19.3 to 13.6ka. Age estimates taken from within or at the base of the dunes range from 14.0 to 10.6ka. Samples taken from < 2m of the ground surface were slightly younger, indicating dunes were stabilized between 11.8 and 5.5ka. The younger ages near the surface of some dunes were most likely the result of pedoturbation or localized problems with applying the optical dating method. The majority of the optical age estimates from dunes (18 of 21) indicated that most of the dunes were active between 14 and 10ka and that most dune activity ended by 10ka. These ages suggest that localized activity on dune crests may have occurred in the Holocene but would have been limited to < 1m of sand accumulation. The timing of dune activity and the lack of any significant Holocene reactivation suggest that dune activation in this setting cannot be attributed solely to changes in aridity. Instead, we attribute dune formation to changes in sediment availability from either sand inputs from the Wisconsin River or the melting of permafrost.  相似文献   

19.
通过分析河西走廊花海古湖泊沉积物中的盐类矿物组成,结合年代序列,重建了花海晚冰期以来湖泊演化过程及其对气候变化的响应。结果表明:晚冰期及新仙女木时期,花海湖泊以芒硝沉积为主,属硫酸盐型湖泊,湖水的盐度较高且周期性波动频繁;全新世早期(10.47 cal ka BP以前),湖泊以洪泛堆积和风成沉积为主,揭示了湖泊萎缩、甚至干涸;全新世早期至全新世中期(10.47~8.87 cal ka BP)盐类矿物以碳酸盐沉积为主,为碳酸盐型湖泊,湖水淡化,湖泊水位开始逐渐回升;全新世中期(8.87~5.50 cal ka BP)盐类矿物呈现一定的波动变化,其中,8.8 cal ka BP 时期盐类矿物以硫酸盐沉积为主,湖泊由碳酸盐型转化为硫酸盐型,湖水咸化,盐度升高;随后盐类矿物以碳酸盐沉积为主,湖泊由硫酸盐型转化为碳酸盐型,湖水盐度降低、湖泊扩张;全新世中晚期(5.50 cal ka BP以来)出现沉积间断,表明中晚全新世时期湖泊逐渐萎缩。在全新世期间,花海湖泊千年尺度演化过程揭示了该区域气候干湿状况受亚洲季风和西风共同控制的影响。  相似文献   

20.
依据对珠江口伶仃洋海域ZK19孔岩芯材料的沉积学、年代学和沉积地球化学研究,探讨了该海域古环境演变特征。该孔以末次盛冰期风化层为界,存在2个沉积旋回和2次海侵事件。微量元素质量分数、主量元素(Al2O3/Na2O值、MgO/Al2O3值、Sr/Ba值及V/Cr值等),化学蚀变指数(CIA)和化学风化指数(CIW)的变化特征,反映了MIS4晚期至MIS3初期,该地由陆相向滨海相过渡,气候从偏冷逐渐升温,海平面逐渐上升,但速度较慢;MIS3该地为河口湾相,气候进一步转暖,海平面以较大幅度上升;MIS2阶段(末次盛冰期)海平面大幅下降,气候变冷;MIS1的8―12 cal. ka B.P.气候逐渐转暖,海平面快速上升,为河流相―滨海潮滩相―河口湾浅滩相―河口湾相;中全新世大暖期,受水下滩槽地貌侧向迁移影响,该孔地层遭剥蚀;晚全新世3 cal. ka B.P.以来,气候整体相对稳定,较早全新世温暖,沉积环境依次为河口湾相―三角洲前缘斜坡相―三角洲前缘浅滩相。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号