首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The X‐ray spectra of Active Galactic Nuclei (AGN) are complex and vary rapidly in time as seen in recent observations. Magnetic flares above the accretion disk can account for the extreme variability of AGN. They also explain the observed iron Kα fluorescence lines. We present radiative transfer modeling of the X‐ray reflection due to emission from magnetic flares close to the marginally stable orbit. The hard X‐ray primary radiation coming from the flare source illuminates the accretion disk. A Compton reflection/reprocessed component coming from the disk surface is computed for different emission directions. We assume that the density structure remains adjusted to the hydrostatic equilibrium without external illumination because the flare duration is only a quarter‐orbit. The model takes into account the variations of the incident radiation across the hot spot underneath the flare source. The integrated spectrum seen by a distant observer is computed for flares at different orbital phases close to the marginally stable orbit of a Schwarzschild black hole and of a maximally rotating Kerr black hole. The calculations include relativistic and Doppler corrections of the spectra using a ray tracing technique. We explore the practical possibilities to map out the azimuthal irradiation pattern of the inner accretion disks and conclude that the next generation of X‐ray satellites should reveal this structure from iron Kα line profiles and X‐ray lightcurves. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
The inner parts of black‐hole accretion discs shine in X‐rays which can be monitored and the observed spectra can be used to trace strong gravitational fields in the place of emission and along paths of light rays. This paper summarizes several aspects of how the spectral features are influenced by relativistic effects. We focus our attention onto variable and broad emission lines, origin of which can be attributed to the presence of orbiting patterns – spots and spiral waves in the disc. We point out that the observed spectrum can determine parameters of the central black hole provided the intrinsic local emissivity is constrained by theoretical models. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Iron line emission is common in the X‐ray spectra of accreting black holes. When the line emission is broad or variable then it is likely to originate from close to the black hole. X‐ray irradiation of the accretion flow by the power‐law X‐ray continuum produces the X‐ray ‘reflection’ spectrum which includes the iron line. The shape and variability of the iron lines and reflection can be used as a diagnostic of the radius, velocity and nature of the flow. The inner radius of the dense flow corresponds to the innermost stable circular orbit and thus can be used to determine the spin of the black hole. Studies of broad iron lines and reflection spectra offer much promise for understanding how the inner parts of accretion flows (and outflows) around black holes operate. There remains great potential for XMM‐Newton to continue to make significant progress in this work. The need for high quality spectra and thus for long exposure times is paramount. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Over the last few years X-ray observations of broad-line radio galaxies (BLRGs) by ASCA , RXTE and BeppoSAX have shown that these objects seem to exhibit weaker X-ray reflection features (such as the iron K α line) than radio-quiet Seyferts. This has lead to speculation that the optically thick accretion disc in radio-loud active galactic nuclei (AGN) may be truncated to an optically thin flow in the inner regions of the source. Here, we propose that the weak reflection features are a result of reprocessing in an ionized accretion disc. This would alleviate the need for a change in accretion geometry in these sources. Calculations of reflection spectra from an ionized disc for situations expected in radio-loud AGN (high accretion rate, moderate-to-high black hole mass) predict weak reprocessing features. This idea was tested by fitting the ASCA spectrum of the bright BLRG 3C 120 with the constant density ionized disc models of Ross & Fabian. A good fit was found with an ionization parameter of   ξ ∼4000 erg cm s-1  and the reflection fraction fixed at unity. If observations of BLRGs by XMM-Newton show evidence for ionized reflection then this would support the idea that a high accretion rate is likely required to launch powerful radio jets.  相似文献   

5.
Initial results on the iron K‐shell line and reflection component in several AGN observed as part of the Suzaku Guaranteed Time program are reviewed. This paper discusses a small sample of Compton‐thin Seyferts observed to date with Suzaku; namely MCG‐5‐23‐16, MCG‐6‐30‐15, NGC4051, NGC3516, NGC2110, 3C 120 and NGC2992. The broad iron Kα emission line appears to be present in all but one of these Seyfert galaxies, while the narrow core of the line from distant matter is ubiquitous in all the observations. The iron line in MCG‐6‐30‐15 shows the most extreme relativistic blurring of all the objects, the red‐wing of the line requires the inner accretion disk to extend inwards to within 2.2R g of the black hole, in agreement with the XMM‐Newton observations. Strong excess emission in the Hard X‐ray Detector (HXD) above 10 keV is observed in many of these Seyfert galaxies, consistent with the presence of a reflection component from reprocessing in Compton‐thick matter (e.g. the accretion disk). Only one Seyfert galaxy (NGC 2110) shows neither a broad iron line nor a reflection component. The spectral variability of MCG‐6‐30‐15, MCG‐5‐23‐16 and NGC 4051 is also discussed. In all 3 cases, the spectra appear harder when the source is fainter, while there is little variability of the iron line or reflection component with source flux. This agrees with a simple two component spectral model, whereby the variable emission is the primary power‐law, while the iron line and reflection component remain relatively constant. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
The accretion disc in active galactic nucleus (AGN) is expected to produce strong outflows, in particular an ultraviolet (UV)-line-driven wind. Several observed spectral features, including the soft X-ray excess, have been associated with the accretion disc wind. However, current spectral models of the X-ray spectrum of AGN observed through an accretion disc wind, known to provide a good fit to the observed X-ray data, are ad hoc in their treatment of the outflow velocity and density of the wind material. In order to address these limitations we adopt a numerical computational method that links a series of radiative transfer calculations, incorporating the effect of a global velocity field in a self-consistent manner { xstar Simulation Chain for Outflows with Radiative Transfer ( xscort )}. We present a series of example spectra from the xscort code that allow us to examine the shape of AGN X-ray spectra seen through a smooth wind with terminal velocity of 0.3 c , as appropriate for a UV-line-driven wind. We calculate spectra for a range of different acceleration laws, density distributions, total column densities and ionization parameters, but all these have sharp features that contrast strongly with both the previous 'smeared absorption' models, and with the observed smoothness of the soft X-ray excess. This rules out absorption in a radiatively driven accretion disc wind as the origin of the soft X-ray excess, though a larger terminal velocity, possibly associated with material in a magnetically driven outflow/jet, may allow outflow models to recover a smooth excess.  相似文献   

7.
The X-ray spectra of accreting stellar-mass black hole systems exhibit spectral features due to reflection, especially broad iron Kα emission lines. We investigate the reflection by the accretion disc that can be expected in the high/soft state of such a system. First, we perform a self-consistent calculation of the reflection that results from illumination of a hot, inner portion of the disc with its atmosphere in hydrostatic equilibrium. Then, we present reflection spectra for a range of illumination strengths and disc temperatures under the assumption of a constant-density atmosphere. Reflection by a hot accretion disc differs in important ways from that of a much cooler disc, such as that expected in an active galactic nucleus.  相似文献   

8.
We constructed a grid of relativistic models for standard high-relative-luminosity accretion α-disks around supermassive Kerr black holes (BHs) and computed X-ray spectra for their hot, effectively optically thin inner parts by taking into account general-relativity effects. They are known to be heated to high (~106–109 K) temperatures and to cool down through the Comptonization of intrinsic thermal radiation. Their spectra are power laws with an exponential cutoff at high energies; i.e., they have the same shape as those observed in active galactic nuclei (AGNs). Fitting the observed X-ray spectra of AGNs with computed spectra allowed us to estimate the fundamental parameters of BHs (their mass and Kerr parameter) and accretion disks (luminosity and inclination to the line of sight) in 28 AGNs. We show that the Kerr parameter for BHs in AGNs is close to unity and that the disk inclination correlates with the Seyfert type of AGN, in accordance with the unification model of activity. The estimated BH masses Mx are compared with the masses Mrev determined by the reverberation mapping technique. For AGNs with luminosities close to the Eddington limit, these masses agree and the model under consideration may be valid for them. For low-relative-luminosity AGNs, the differences in masses increase with decreasing relative luminosity and their X-ray emission cannot be explained by this model.  相似文献   

9.
An explanation for the soft X-ray excess in active galactic nuclei   总被引:1,自引:0,他引:1  
We present a large sample of type 1 active galactic nuclei (AGN) spectra taken with XMM–Newton , and fit them with both the conventional model (a power law and blackbody) and the relativistically blurred photoionized disc reflection model of Ross & Fabian. We find that the disc reflection model is a better fit. The disc reflection model successfully reproduces the continuum shape, including the soft excess, of all the sources. The model also reproduces many features that would conventionally be interpreted as absorption edges. We are able to use the model to infer the properties of the sources, specifically that the majority of black holes in the sample are strongly rotating, and that there is a deficit in sources with an inclination >70°. We conclude that the disc reflection model is an important tool in the study of AGN X-ray spectra.  相似文献   

10.
In this contribution, I briefly review recent progress in detecting and measuring the properties of relativistic iron lines observed in stellar‐mass black hole systems, and the aspects of these lines that are most relevant to studies of similar lines in Seyfert‐1 AGN. In particular, the lines observed in stellar‐mass black holes are not complicated by complex low‐energy absorption or partial‐covering of the central engine, and strong lines are largely independent of the model used to fit the underlying broad‐band continuum flux. Indeed, relativistic iron lines are the most robust diagnostic of black hole spin that is presently available to observers, with specific advantages over the systematics–plagued disk continuum. If accretion onto stellar‐mass black holes simply scales with mass, then the widespread nature of lines in stellar‐mass black holes may indicate that lines should be common in Seyfert‐1 AGN, though perhaps harder to detect. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
We performed detailed calculations of the relativistic effects acting on both the reflection continuum and the iron line from accretion discs around rotating black holes. Fully relativistic transfer of both illuminating and reprocessed photons has been considered in Kerr space–time. We calculated overall spectra, line profiles and integral quantities, and present their dependences on the black hole angular momentum. We show that the observed EW of the lines is substantially enlarged when the black hole rotates rapidly and/or the source of illumination is near above the hole. Therefore, such calculations provide a way to distinguish between different models of the central source.  相似文献   

12.
Fluorescent iron line profiles currently provide the best diagnostic for engine geometries of active galactic nuclei (AGN). Here we construct a method for calculating the relativistic iron line profile from an arbitrarily warped accretion disc, illuminated from above and below by hard X-ray sources. This substantially generalizes previous calculations of reprocessing by accretion discs by including non-axisymmetric effects. We include a relativistic treatment of shadowing by ray-tracing photon paths along Schwarzschild geodesics. We apply this method to two classes of warped discs, and generate a selection of resulting line profiles. New profile features include a time-varying line profile if the warp precesses about the disc, profile differences between 'twisted' and 'twist-free' warps and the possibility of steeper red and softer blue fall-offs than for flat discs. We discuss some qualitative implications of the line profiles in the context of Type I and II Seyfert AGN and other sources.  相似文献   

13.
We present a general relativistic accretion disc model and its application to the soft-state X-ray spectra of black hole binaries. The model assumes a flat, optically thick disc around a rotating Kerr black hole. The disc locally radiates away the dissipated energy as a blackbody. Special and general relativistic effects influencing photons emitted by the disc are taken into account. The emerging spectrum, as seen by a distant observer, is parametrized by the black hole mass and spin, the accretion rate, the disc inclination angle and the inner disc radius.
We fit the ASCA soft-state X-ray spectra of LMC X-1 and GRO J1655-40 by this model. We find that, having additional limits on the black hole mass and inclination angle from optical/UV observations, we can constrain the black hole spin from X-ray data. In LMC X-1 the constraint is weak, and we can only rule out the maximally rotating black hole. In GRO J1655-40 we can limit the spin much better, and we find 0.68 a 0.88 . Accretion discs in both sources are radiation-pressure dominated. We do not find Compton reflection features in the spectra of any of these objects.  相似文献   

14.
We find a significant anticorrelation between the hard X-ray photon index Γ and the Eddington ratio   L bol/ L Edd  for a sample of low-ionization nuclear emission-line regions and local Seyfert galaxies, compiled from literature with Chandra or XMM–Newton observations. This result is in contrast with the positive correlation found in luminous active galactic nuclei (AGN), while it is similar to that of X-ray binaries (XRBs) in the low/hard state. Our result is qualitatively consistent with the spectra produced from advection-dominated accretion flows (ADAFs). It implies that the X-ray emission of low-luminosity active galactic nuclei (LLAGN) may originate from the Comptonization process in ADAF, and the accretion process in LLAGN may be similar to that of XRBs in the low/hard state, which is different from that in luminous AGN.  相似文献   

15.
In this paper, we consider the process of alignment of a spinning black hole and a surrounding misaligned accretion disc. We use a simplified set of equations, that describe the evolution of the system in the case where the propagation of warping disturbances in the accretion disc occurs diffusively, a situation likely to be common in the thin discs in active galactic nuclei (AGN). We also allow the direction of the hole spin to move under the action of the disc torques. In such a way, the evolution of the hole–disc system is computed self-consistently. We consider a number of different situations and we explore the relevant parameter range, by varying the location of the warp radius R w and the propagation speed of the warp. We find that the dissipation associated with the twisting of the disc results in a large increase in the accretion rate through the disc, so that AGN accreting from a misaligned disc are likely to be significantly more luminous than those accreting from a flat disc. We compute explicitly the time-scales for the warping of the disc and for the alignment process and compare our results with earlier estimates based on simplified steady-state solutions. We also confirm earlier predictions that, under appropriate circumstances, accretion can proceed in a counter-aligned fashion, so that the accreted material will spin-down the hole, rather than spinning it up. Our results have implication in a number of different observational features of AGN such as the orientation and shape of jets, the shape of X-ray iron lines and the possibility of obscuration and absorption of X-ray by the outer disc as well as the general issue of the spin history of black holes during their growth.  相似文献   

16.
X-ray spectroscopy offers an opportunity to study the complex mixture of emitting and absorbing components in the circumnuclear regions of active galactic nuclei (AGN), and to learn about the accretion process that fuels AGN and the feedback of material to their host galaxies. We describe the spectral signatures that may be studied and review the X-ray spectra and spectral variability of active galaxies, concentrating on progress from recent Chandra, XMM-Newton and Suzaku data for local type 1 AGN. We describe the evidence for absorption covering a wide range of column densities, ionization and dynamics, and discuss the growing evidence for partial-covering absorption from data at energies ≳ 10 keV. Such absorption can also explain the observed X-ray spectral curvature and variability in AGN at lower energies and is likely an important factor in shaping the observed properties of this class of source. Consideration of self-consistent models for local AGN indicates that X-ray spectra likely comprise a combination of absorption and reflection effects from material originating within a few light days of the black hole as well as on larger scales. It is likely that AGN X-ray spectra may be strongly affected by the presence of disk-wind outflows that are expected in systems with high accretion rates, and we describe models that attempt to predict the effects of radiative transfer through such winds, and discuss the prospects for new data to test and address these ideas.  相似文献   

17.
18.
We study and quantify gravitational redshift by means of relativistic ray tracing simulations of emission lines. The emitter model is based on thin, Keplerian rotating rings in the equatorial plane of a rotating black hole. Emission lines are characterised by a generalized fully relativistic Doppler factor or redshift associated with the line core. Two modes of gravitational redshift, shift and distortion, become stronger with the emitting region closer to the Kerr black hole. Shifts of the line cores reveal an effect at levels of 0.0015 to 60% at gravitational radii ranging from 105 to 2. The corresponding Doppler factors range from 0.999985 to 0.4048. Line shape distortion by strong gravity, i.e. very skewed and asymmetric lines occur at radii smaller than roughly ten gravitational radii. Gravitational redshift decreases with distance to the black hole but remains finite due to the asymptotical flatness of black hole space–time. The onset of gravitational redshift can be tested observationally with sufficient spectral resolution. Assuming a resolving power of ∼100000, yielding a resolution of ≈0.1 Å for optical and near‐infrared broad emission lines, the gravitational redshift can be probed out to approximately 75000 gravitational radii. In general, gravitational redshift is an indicator of black hole mass and spin as well as for the inclination angle of the emitter, e.g. an accretion disk. We suggest to do multi‐wavelength observations because all redshifted features should point towards the same central mass. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
We investigate the process of synchrotron radiation from thermal electrons at semirelativistic and relativistic temperatures. We find an analytic expression for the emission coefficient for random magnetic fields with an accuracy significantly higher than those derived previously. We also present analytic approximations to the synchrotron turnover frequency, treat Comptonization of self-absorbed synchrotron radiation, and give simple expressions for the spectral shape and the emitted power. We also consider modifications of the above results by bremsstrahlung.
We then study the importance of Comptonization of thermal synchrotron radiation in compact X-ray sources. We first consider emission from hot accretion flows and active coronae above optically thick accretion discs in black hole binaries and active galactic nuclei (AGNs). We find that for plausible values of the magnetic field strength, this radiative process is negligible in luminous sources, except for those with hardest X-ray spectra and stellar masses. Increasing the black hole mass results in a further reduction of the maximum Eddington ratio from this process. Then, X-ray spectra of intermediate-luminosity sources, e.g. low-luminosity AGNs, can be explained by synchrotron Comptonization only if they come from hot accretion flows, and X-ray spectra of very weak sources are always dominated by bremsstrahlung. On the other hand, synchrotron Comptonization can account for power-law X-ray spectra observed in the low states of sources around weakly magnetized neutron stars.  相似文献   

20.
We present XMM-Newton European Photon Imaging Camera (EPIC) observations of the bright Seyfert 1 galaxy MCG–6-30-15, focusing on the broad Fe K α line at ∼6 keV and the associated reflection continuum, which is believed to originate from the inner accretion disc. We find these reflection features to be extremely broad and redshifted, indicating an origin in the very central regions of the accretion disc. It seems likely that we have caught this source in the 'deep minimum' state first observed by Iwasawa et al. The implied central concentration of X-ray illumination is difficult to understand in any pure accretion disc model. We suggest that we are witnessing the extraction and dissipation of rotational energy from a spinning black hole by magnetic fields connecting the black hole or plunging region to the disc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号