首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In 2007, intense swarms of deep, tectonic earthquakes, amounting to at least 5 300 epicentres, were detected near to Mount Upptyppingar, which forms part of the Kverkfjöll volcano system in Iceland’s Northern Volcanic Zone. Although micro-seismicity is common within such volcanic regions, the Upptyppingar swarms have been more intensive and persistent than any other deep-seated seismicity observed in Iceland. Here we outline the spatial and temporal changes in ongoing seismicity that began in February 2007; in addition, we document enhanced levels of GPS-derived crustal deformation, recorded within 25 km of the area of swarming. Besides displaying spatial clustering, the Upptyppingar micro-earthquakes are noteworthy because: (i) they concentrate at focal depths of 14–22 km; (ii) the swarms comprise brittle-type earthquakes < 2 in magnitude, yielding a b-value of 2.1; and (iii) several of the swarms originate at focal depths exceeding 18 km. Additionally, different parts of the affected region have exhibited seismicity at different times, with swarm sites alternating between distinct areas. The activity moved with time towards east-north-east and to shallower depths. Linear regression approximates the seismicity on a southward-dipping, ~41° plane. Alongside sustained earthquake activity, significant horizontal displacement was registered at two permanent GPS stations in the region. High strain rates are required to explain brittle fracturing under visco-elastic conditions within the Earth’s crust; similarly, intense, localised deformation at considerable depth is necessary to reconcile the measured surface deformation. Such remarkable seismicity and localised deformation suggests that magma is ascending into the base of the crust.  相似文献   

2.
Greater Cairo and the Nile Delta are considered very important, high-density population areas. The subject of the research work is dealing with recent crustal movements and its relation to seismicity and tectonics setting. A Global Positioning System (GPS) network consisting of 11 benchmarks covering Greater Cairo and the southern part of the Nile Delta was established in 1996. Different campaigns surveyed the network. In this study, we used ten measurements collected during the period from 2004 to 2010. The data were processed using Bernese 5.0 software to derive velocity vectors and principal components of crustal strains. The horizontal velocity varies in average between 3 and 6 mm per year across the network. Rate of the accumulated strains in the southern part of Greater Cairo varies from low to moderate. The low strain rates and low level of earthquakes occurrence in the present interval in the Nile Delta area indicated that the rate of the deformation in this area is small. The result from coupling GPS and seismic data indicates that the southern part of the area is seismo-active area when compared with the other parts in the network areas. The paper gives information about the present state of the recent crustal movements within Greater Cairo area to understand the geodynamics of that area. This study is an attempt to build a basis for further development of seismic catastrophic risk management models to reduce a risk of large catastrophic losses within the important area.  相似文献   

3.
利用多种地震学参数研究中国大陆地壳应变场   总被引:14,自引:0,他引:14  
地壳应变场研究是地球动力学研究的一个基础性领域, 以往文献的探索大多集中在地壳形变的测量和研究上, 包括大面积水准测量和GPS观测等。 文中利用多种地震学参数研究中国大陆地壳应变场, 利用哈佛CMT目录和现代中国地震目录得到了中国大陆不同区域面波震级与标量地震矩的统计关系, 进而采用中国大陆历史地震资料研究中国大陆地壳应变场, 给出地震最大剪切应变率场的分布。 研究结果显示, 青藏高原及其周边地区是最大剪切应变率的高值区, 帕米尔和阿萨姆地区的应变率值最大。 与GPS得到的应变场结果进行比较, 两者的结果存在一致趋势。 利用NEIC宽频带地震辐射能量目录研究了中国大陆的地震视应变分布, 显示地震的视应变分布与地壳应变水平存在一定相关关系, 且发生在青藏高原周边地区地震的视应变水平较高。 这些研究结果为地球动力学研究的进一步深入探讨提供了新的科学资料。  相似文献   

4.
基于2007-2009年江苏南部GPS资料,借助多面函数法及位移-应变模型求取了研究区的速度场及应变特征参数,结合地质构造背景及地震活动性对该区地壳形变特征进行分析.研究结果表明:(1)江苏南部现今地壳整体朝南东向运动,临海地区与内陆地区速度差异较大,量值在5~10 mm/a;(2)研究区域呈现面应变正负交替出现的规律,在泰州、南通、嘉定出现面膨胀、剪切应变高值区,未来发生中强地震的可能性较大;(3)江苏南部地区地壳运动受太平洋板块、菲律宾海板块和欧亚板块的共同作用,构造机理复杂.  相似文献   

5.
Studyonthepatternandmodeofverticalcrustaldeformationduringtheseismogenicprocessofintraplatestrongearthquakes杨国华,桂昆长,巩曰沐,杨春花,韩...  相似文献   

6.
我国地震的现今地球动力学研究的进展与方向   总被引:2,自引:0,他引:2  
本文从活动构造、大陆地壳形变与现代地壳运动、地震活动区与大震震源区的深部探测及动力学、大陆强震区的地壳介质结构与地震成因、构造的物理及数值模拟、大陆岩石圈动力学以及地球动力学模型研究七个方面扼要介绍了近年来我国开展的与地震有关的现今地球动力学研究进展和取得的一系列新认识以及研究动向。在此基础上提出了微动态地球动力学,上地幔的非均匀性、深浅部构造关系及其动力学和地球动力学模型的理论研究三个应该优先发展的研究领域。  相似文献   

7.
In this study, we systematically analyzed the relationship between regional gravity changes, 3D crustal deformation, regional tectonic environment and strong earthquakes based on the relative gravity measurements(2011-2014), GPS data and the background vertical deformation from the leveling measurements conducted from 1970 to 2011. Subsequently, we further characterized the temporal-spatial patterns and discussed the mechanism of regional gravity changes and the crustal deformation. The results can be summarized as follows:1)The regional gravity changes, the GPS-derived horizontal deformation and the vertical deformational obtained from leveling data showed a close spatial relationship:The gravity increased along with the direction of horizontal movement, and the gravity decreased with the crustal uplift and vice versa, which reflects the inherited characteristics of neotectonic activities. 2)The crustal deformation was closely related to the active faults. The contour lines of gravity changes and vertical deformation were generally along with the Qilian-Haiyuan Fault(the strike is NWW), and the crustal horizontal deformation showed left-lateral strike slip motion near the Qilian-Haiyuan Fault. 3)The strong earthquakes usually occur in the active faults where intensive gravity change and vertical and/or horizontal deformation occurred. The extrusion deformation, surface compression rate and gravity changes were obvious near the epicenter of 2016 Menyuan earthquake. The 2013 Minxian-Zhangxian MS6.6 earthquake occurred in the direction-turning area of intense gravity gradient zone and the transitional area of surface compression and vertical deformation. The first author of this paper has made a medium-term forecast before the Minxian and Menyuan earthquakes, especially the location of the earthquake. Based on the above understandings, we emphasized that:there are still possibilities of strong or huge earthquakes within medium-long term in the areas of crustal deformation anomalies in the study region.  相似文献   

8.
    
By studying the seismicity pattern before 37 earthquakes withM⩾6.0 in North China and the pattern of crustal deformation in the Capital Area from 1954 to 1992, some abnormal characteristics of these patterns before strong earthquakes have been extracted. A comparison has been made between the anomalies of these two kinds of patterns. From the results we can know the following. (1) Before a strong earthquake, the seismicity will strengthen and the crustal deformation rate will increase. (2) Several years before a strong earthquake, there will be seismic gaps and deformation gaps around the epicenter of the quake. (3) The dynamic parameters of patterns all show a decrease in information dimension. This means that the crustal deformation has become more and more localized with time and it gives an important indication showing that a strong earthquake is in preparation. At the end of the paper, the physical mechanisms of the abnormal patterns of seismicity and crustal deformation have been explained in a unified way in terms of the earthquake-generating model of a inhomogeneous strongbody in inhomogeneous media.  相似文献   

9.
Based on previous research results, present-day crustal deformation and gravity fields in the Chinese mainland are analyzed using the GPS data, leveling, gravity and cross-fault deformations. We analyzed strain accumulation of the major faults, and identified locked or high strain accumulation segments. Combining the effects of large earthquakes in the study area, the long-term (decade) probability of large earthquakes in the Chinese mainland is estimated.  相似文献   

10.
Egypt is recognized as a moderate seismicity region where earthquakes are distributed within several active regions. Owing to sparse distribution of both seismicity and seismic stations, mostly moderate-size Egyptian earthquakes were recorded by regional stations. One of such cases is the moderate-size earthquakes of moment magnitudes greater than 4.0 which struck the Western Desert of Egypt in 1998 and 1999. These events are the first instrumentally recorded earthquakes occurring in the area. In the present study, the source mechanism for these earthquakes was estimated using the waveform data recorded from one of the very broadband MedNet seismograph stations and polarities from the national short-period seismographs. An iterative technique was applied to find the best-fit double-couple mechanism by a grid search over strike, dip and rake. Regional synthetic seismograms were calculated by using fk integration in the frequency range of 0.03–0.1 Hz. A crustal structure fitted to surface wave dispersion curves was used to compute Green’s function. Focal depths were determined through the grid search method for a range of source depths. Our results show a normal faulting mechanism with minor strike-slip component. The NNW trend has been chosen as a preferred rupture plane in consistence with surface and subsurface faults and microearthquake seismicity in the epicenteral area as well.  相似文献   

11.
天山造山带构造环境复杂,活动断裂带和强震分布广泛,且主要分布于阿尔泰山、天山、西昆仑—帕米尔弧形构造带上,尤以天山地区最为集中.迄今为止,天山造山带地区的主要断裂带的活动特征与孕震应力场特征之间的动力学机理尚未有清晰的认识.本文以GPS等实际观测数据为约束,建立有限元数值模型,计算了研究区域地壳形变、应力/应变积累速率、弹性应变能密度以及库仑应力变化率等关键因素.模拟计算结果显示地表速度场与研究区域实际GPS观测值基本一致,且主要断裂带上弹性应变能密度分布与实际地震活动性也基本吻合,验证了数值模型和结果的可靠性.结合最新的观测和数值模拟结果分析发现,研究区的断层和地震活动性主要受控于近南北向的主压应力,与主要观测特征相一致.同时,帕米尔高原北部边界带—塔什库尔干断裂(TKF)、天山造山带南边界的东侧—迈丹断裂(MDF)、兴地断裂(XDF)库仑应力增大明显,在未来强震发生的可能性较高,应予密切关注.  相似文献   

12.
Northwest Guangxi is located in the Youjiang fold belt and the Hunan-Guangxi fold belt of secondary structure unit of South China fold system. The South China fold was miogeosyncline in the early Paleozoic, the Caledonian fold returned and transformed into the standard platform, and the Indosinian movement ended the Marine sedimentary history, which laid the basic structural framework of this area. Since the neotectonic period, large areas have been uplifted intermittently in the region and Quaternary denudation and planation planes and some faulted basins have been developed. Affected by the strong uplift of Yunnan-Guizhou plateau, the topography of the region subsides from northwest to southeast, with strong terrain cutting and deep valley incision. Paleozoic carbonate rocks and Mesozoic clastic rocks are mainly exposed on the earth's surface, and its geomorphology is dominated by corrosion and erosion landforms. The dating results show that most of the structures in northwest Guangxi are middle Pleistocene active faults, and the movement mode is mainly stick-slip. According to the seismogeological research results of the eastern part of the Chinese mainland, the active faults of the middle Pleistocene have the structural conditions for generating earthquakes of about magnitude 6. In the northwest Guangxi, the crustal dynamic environment and geological structure are closely related to Sichuan and Yunnan regions. Under the situation that magnitude 6 earthquakes occurred successively in Sichuan and Yunnan region and magnitude 7 earthquakes are poised to happen, the risk of moderately strong earthquakes in the northwest Guangxi region cannot be ignored. Based on the analysis of deep structure and geophysical field characteristics, it is concluded that the Tian'e-Nandan-Huanjiang area in the northwestern Guangxi is not only the area with strong variation of the Moho surface isobath, but also the ML3.0 seismic gap since September 2015, and the abnormal low b value area along the main fault. Regions with these deep structural features often have the conditions for moderately strong earthquakes. The paper systematically analyzes the spatial and temporal distribution features and mechanism of regional gravitational field and horizontal crust movement and further studies and discusses the changes of regional gravitational field, crustal horizontal deformation and interaction between geologic structure and seismic activity based on 2014-2018 mobile gravity measurements and 2015-2017 GPS observation data in the northwestern Guangxi. The results show that:1)On July 15, 2017, a MS4.0 earthquake in Nandan happened near the center of four quadrants of changes of gravity difference, and the center of abnormal area is located at the intersection of the Mulun-Donglang-Luolou Fault, the Hechi-Nandan Fault and the Hechi-Yizhou Fault. The dynamic graph of differential scale gravitational field reflects the gravity changes at the epicenter before and after the Nandan earthquake, which is a process of system evolution of "local gravity anomaly to abnormal four-quadrant distribution features → to earthquake occurring at the turning point of gravity gradient zone and the zero line to backward recovery variation after earthquake". Meanwhile, according to the interpretation of focal mechanism of the Nandan earthquake, seismogram and analysis of seismic survey results, the paper thinks that the four-quadrant distribution of positive and negative gravity, which is consistent with the effect of strike-slip type seismogenic fault before Nandan earthquake, demonstrates the existence of dextral strike-slip faulting; 2)The pattern of spatial distribution of gravitational field change in northwestern Guangxi is closely related to active fault. The isoline of cumulative gravity generally distributes along Nandan-Hechi Fault and Hechi-Yizhou Fault. The gravity on both sides of the fault zone is different greatly, and gradient zone has influences on a broad area; the spatial distribution of deformation field is generally featured by horizontal nonuniformity. Tian'e-Nandan-Huanjiang area is located at the high gradient zone of gravity changes and the horizontal deformation surface compressional transition zone, as well as near the intersection of Hechi-Yizhou Fault, Hechi-Nandan Fault and Du'an-Mashan Fault; 3)The geometric shape of gravitational field in northwestern Guangxi corresponds to the spatial distribution of horizontal crustal movement, which proves the exchange and dynamic action of material and energy in the region that cause the change and structural deformation of fault materials and the corresponding gravity change on earth's surface. The recent analysis of abnormal crustal deformation in northwestern Guangxi shows that Tian'e-Nandan-Huanjiang is a gradient zone of abnormal gravity change and also a horizontal deformation surface compressional transition zone. It locates at the section of significant change of Moho isobaths, the seismicity gap formed by ML3.0 earthquakes and the abnormal low b-value zone. According to comprehensive analysis, the region has the risk of moderately strong earthquake.  相似文献   

13.
Li  Wei  Chen  Yun  Tan  Ping  Yuan  Xiaohui 《中国科学:地球科学(英文版)》2020,63(5):649-661
The Pamir plateau, located north of the western syntaxis of the India-Eurasia collision system, is regarded as one of the most possible places of the ongoing continental deep subduction. Based on a N-S trending linear seismic array across the Pamir plateau, we use the methods of the harmonic analysis of receiver functions and the cubic spline interpolation of surface wave dispersions to coordinate their resolutions, and perform a joint inversion of these datasets to construct a 2-D S-wave velocity model of the crust and uppermost mantle there. A spatial configuration among the intermediate-depth seismicity, Moho topography, and low-velocity anomalies within the crust and upper mantle is revealed, which provides new seismological constraints on the geodynamic processes of the continental subduction. These results not only further confirm the deep subduction of the Asian continental lower crust beneath the Pamir plateau, but also indicate the importance of the metamorphic dehydration of the subducting continental crustal material in the genesis of the intermediate-depth seismicity and the crustal deformation.  相似文献   

14.
In the paper, the establishment, measurement, data-processing program and monitoring accuracy of the GPS seismic monitoring network in North China, especially in the Capital-Circle area, have been presented briefly. The relation of horizontal crustal deformation to tectonic movement, stress-field variation and seismicity has been analyzed in detail. The results indicate that the accuracy of GPS measurement has reached the order of 10-9 and the annual rate of horizontal crustal deformation in North China is about 4 ~5 mm. Horizontal crustal movement is a direct indication of the regional stress field. Therefore, by monitoring the time-sequence variation of horizontal crustal motion, it would be possible to investigate the change in the stress field, to analyze the tendency of seismicity and to determine the seismogenic zones.  相似文献   

15.
地壳介质非均匀性对华北地区强震活动的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
吴晶  王辉  曹建玲  高原  王琼 《地球物理学报》2011,54(8):2023-2033
华北地区是我国地震灾害最频繁的地区之一,该区域的强震空间分布可能与地壳介质的不均匀性有关.本文建立了华北地区岩石圈三维Maxwell模型,并尝试采用剪切波分裂参数为新的约束条件,对区域地壳运动场和应力应变场进行了模拟,探讨地壳介质不均匀性与区域地震活动的关系.研究结果表明:外部动力源控制了华北地区整体的地壳运动方式,地...  相似文献   

16.
The key questions concerning the modern methodical tasks and accuracy of GPS measurements of crustal motion spanning are discussed for a full cycle of the survey from the organization of the field operations to the interpretation of the final results. The presented data rely on the 20-year experience of the geophysicists of the Research Station of the Russian Academy of Sciences in Bishkek (RS RAS) in GPS monitoring at the Geodynamic Proving Ground in Bishkek (GPGB) and in a large part of Central Asia. The comparative characteristics of the constellations of visible GPS and GLONASS satellites are analyzed from the standpoint of their practical application for precise scientific observations of crustal motions. The studies of the contemporary movements of the Earth’s crust by the methods of satellite geodesy generally comprise three stages: (1) organization of the measurement networks and acquisition of the data; (2) data processing; and (3) interpretation of the results. Each stage is associated with its own block of the tasks and problems, and neither is guaranteed against uncertainties and errors which may affect the results, conclusions, and reconstructions.  相似文献   

17.
地壳形变与地震前兆探索回顾和展望   总被引:2,自引:0,他引:2  
顾国华 《地震》2012,32(2):22-30
本文回顾了我国地震预报中地壳形变观测技术、 数据处理方法和软件及地壳形变前兆观测研究进展。 1966年邢台地震后, 我国地震预报工作经历了难得的成功、 更多惨痛失败和“地震不可预报论”等干扰, 发展曲折。 尽管2008年汶川和2011年东日本大地震预报失败,但这两次和其他大地震前后GPS和其他观测得到的地壳形变表明, 大地震是有前兆的, 是可以预报的。 比较了我国地震预报所采用的主要的地形变观测技术和分析方法, 讨论了观测和数据处理方法的特点, 简要介绍了地壳形变地震前兆新近的研究结果, 重点阐述了GPS观测技术多方面的优势。 事实证明, GPS观测得到的汶川大地震前的形变异常或前兆, 是我国地壳形变观测与地震前兆探索最突出的成果。  相似文献   

18.
为了清晰认识发生于青藏高原西北部2008年与2014年的两次于田MS7.3地震发震构造环境与构造地貌特征,本文利用DEM(数字高程模型)数据分析"喀喇昆仑—西昆仑—康西瓦地区"的地形地貌特征,结合区域活动断裂研究资料、相对于塔里木盆地的两期GPS速度场资料和区域运动学特征等讨论两次MS7.3地震所处的青藏高原西北部区域构造环境和地壳运动学特征,分析喀喇昆仑断裂、阿尔金断裂康西瓦段、龙木错-邦达错断裂及贡嘎错断裂所围限的西昆仑地块的地质构造背景、阿尔金断裂西南端发震断裂活动性及孕震环境等发震构造基本条件;进而利用"地形剖面"方法及断裂分布特征分析震源区的地形地貌特征,给出晚第四纪以来的地貌形态与发震构造的关系,从区域构造地貌学和GPS地壳运动学的角度探讨中上地壳变形特征及孕震过程;最后讨论区域孕震构造、克尔牙张性裂谷演化过程和地球动力学背景等。通过地形剖面及区域地貌综合分析新疆于田2008年MS7.3拉张型发震构造和2014年MS7.3走滑拉张型地震的发震构造特点的区别,认为2014年发生的地震可能与2008年MS7.3地震同震库伦应力变化、触发过程及震后变形过程密切相关,并且青藏高原西北部地区存在明显的东西向拉张性构造单元,可能与青藏高原10~15 Ma以来的地壳减薄过程有关。  相似文献   

19.
Tectonic activity is intense and destructive earthquakes occur frequently in the northern section of the North-South Seismic Belt(NSSB). After the May 12, 2008 Wenchuan earthquake, the North-South Seismic Belt enters a new period of high seismicity. On July 22, 2013, the Minxian-Zhangxian earthquake occurred, which broke the 10-years seismic quiescence of magnitude 6 of the area, indicating an increasing trend of strong earthquakes in the region. Earthquake is the product of crustal movement. Understanding the dynamics of the process of crustal movement may provide basis for earthquake prediction. GPS measurement can provide high-precision, large-scale, quasi-real-time quantitative crustal movement data, that allows us to explore the evolution of crustal movement and its relationship with earthquake, thus providing the basis for determining the seismic situation. Since 2009, the density of mobile GPS measurement stations has significantly improved in the Chinese mainland, and moreover, the Wenchuan earthquake has brought about adjustment of the regional crustal deformation regime. So the introduction of the latest repeat GPS data is important for understanding the features of crustal movement in the northern section of the North-South Seismic Belt. In this paper, we obtained the GPS velocity field, fault profile and baseline time series and analyzed the dynamics of recent crustal movement in the northern section of the North-South Seismic Belt using the 1999a-2014a GPS data of mobile and continuous GPS measurement stations. The results show that: the Qilianshan Fault has a high strain accumulation background. There are locked portions on the Liupanshan Fault, especially in the region of Jingning, Pingling, Dingxi, Longxi. In 2004-2009a, the degree of locking of the Liupanshan Fault got higher. In 2009—2013a, crustal movement on the northern section of the North-South Seismic Belt weakened compared with 1999-2004, 2004-2009, and showed some features as follows: ① The velocity field weakened more markedly near the Qilian-Haiyuan-Liupanshan faults; ②The velocity decreased more significantly in the region north of Qilianshan-Haiyuan Fault than that of the south, resulting in enhanced thrust deformation on the Qilianshan Fault in 2009-2013a and the decreased sinistral shear deformation on the Qilianshan Fault and Haiyuan Fault; ③the velocity field decreased more remarkably at 50km west of Liupanshan Fault, compared to the east region, which led to the locked range on the Liupanshan Fault extending to the range of 100km near the fault zone during 2009-2013 from the previous locked range of 50km near the fault. The GPS baseline time series analysis also reveals a number of structural features in the region: Yinchuan Graben is continuing extending, and the extension in the west is stronger than that in the east. On the southern end of Yinchuan Graben, the deformation is very small.  相似文献   

20.
We discuss seismicity characteristics in the source zones of two great earthquakes: the December 26, 2004 Sumatra (Mw = 9.0) and the November 14, 2001 Kunlun (Mw = 7.8) events. Ring structures of low magnitude seismicity have been forming prior to these earthquakes for several decades. We studied the short period shear-wave attenuation field in the area of these ring structures. The method we used is based on the analysis of the rate of attenuation for the early Sn and Lg codas to detect attenuation inhomogeneities in the uppermost mantle. We show that the ring structures have comparatively high attenuation of shear waves compared with the crustal volumes inside the rings. The fact that there is no recent volcanism in the area of the seismicity rings shows that this effect is due to a high content of free fluids in the uppermost mantle. Proceeding by analogy with our results, we identified a zone in northern Tien Shan that is anomalous for these parameters; the zone may be related to the precursory process of a large earthquake. We discuss the geodynamic mechanisms that may be responsible for fluid concentration in the seismicity rings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号