首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Eudialyte is a group of hydrated silicate minerals essentially consisting of Na and Zr with a very complex crystal structure, and generally associated with alkaline rocks. The complexity of the eudialyte structure can be understood from the fact that Na alone exist in five distinct sites and extensive solid solubility can occur in almost all cation sites, sometimes one element occupying multiple sites to the extent of exclusion of other elements. Structurally, eudialyte can be represented as Na15[M 1 ]6[M 2]3Zr3[M 3 ](Si25O73)(O,OH,H2O)3X2 (Johnsen and Grice, 1999), where M 1 and M 2 sites are occupied by Ca, Mn and Fe, M 3 by Nb and X by OH, Cl and F. In addition, cations like Al, Hf, W, Ta, Sr, Ba and various REEs get incorporated into the eudialyte structure by substitution, and additional site vacancies even may develop in order to maintain electrical neutrality. Eudialyte, approximately of the composition Na9Ca8Mn3Nb(Zr,Ce)3Si25O73(OH)2, has hydrothermally replaced albite in the nepheline syenite gneiss exposed south of the Sushina hill of Purulia district, West Bengal. The eudialyte contains ≈2.25 atom% Zr and 0.75 atom% Nb. In addition to eudialyte in nepheline syenite, an unknown Na-Zr silicate (NZS) has also replaced the albite crystals. The NZS contains ≈ 7 atom% Zr with a possible empirical formula of Na12Zr11Si36O95(OH)10. Surface exposures of these rocks are limited at Sushina hill, yet a detailed and systematic investigation on this enigmatic rock is warranted for they may turn out to be a resource for Zr.  相似文献   

2.
Sushina nepheline syenite gneisses of Early Proterozoic North Singhbhum Mobile Belt (NSMB), eastern India suffered regional metamorphism under greenschist-amphibolite transitional facies condition. The Agpaitic Sushina nepheline syenite gneisses consist of albite, K-feldspar, nepheline (close to Morozewicz-Buerger composition), aegirine, biotite, epidote, piemontite, sodalite, cancrinite, natrolite and local alkali amphibole. Accessory phases include zircon, hematite, magnetite, rare pyrochlore and occasional eudialyte and manganoan calcic zirconosilicates. Mineral chemistry of albite, K-feldspar, nepheline, aegirine, alkali amphibole, natrolite and zirconium silicate minerals are described. The detailed textural features together with chemical data of some minerals indicate metamorphic overprint of these rocks. A new reaction is given for the genesis of metamorphic epidote. Metamorphic piemontite suggests greenschist facies metamorphism under high fO2 (Hematite-Magnetite buffer). Up to 15.34 mol% of jadeite component in aegirine suggests that the metamorphic grade of the nepheline syenite gneiss reached at least to greenschist-amphibolite transitional facies or higher. Nepheline geothermometry suggests temperature of metamorphism <500 °C, which is consistent with greenschist facies metamorphism of surrounding chlorite-biotite-garnet phyllite country rock.  相似文献   

3.
At Gordon Butte (Crazy Mountains, Montana), agpaitic nepheline-syenite pegmatites intrude potassic alkaline rocks (principally, malignites and nepheline microsyenites). All pegmatite veins are composed predominantly of potassium feldspar, nepheline, prismatic aegirine, barytolamprophyllite, wadeite, eudialyte, loparite-(Ce) and altered rinkite ("vudyavrite") embedded in spherulitic and fibrous aegirine. Well-differentiated veins contain "pockets" filled with calcite, fluorapatite, mangan-neptunite, Mn-Ti-enriched prismatic aegirine, calcium catapleiite, and an unidentified Ca-Ti silicate. The potassium feldspar corresponds to Ba-rich sanidine with relatively low Na contents. The nepheline contains low levels of SiO2 and elevated Fe contents. The compositions of nepheline cluster in the lower portion of the Morozewicz-Buerger convergence field, indicating low-temperature crystallization and/or chemical re-equilibration of this mineral. The association of sanidine with nearly stoichiometric nepheline is unusual for agpaitic rocks and probably reflects inhibition of Al/Si ordering in the feldspar by Ba. At least four types of clinopyroxene can be distinguished on the basis of their morphology and composition. All these types correspond to Al- and Ca-poor aegirine (typically <0.6 and 2.6 wt% Al2O3 and CaO, respectively). The overall evolutionary trend of clinopyroxene in the Gordon Butte rocks is from Fe-poor diopside to aegirine-augite in the malignites and nepheline microsyenites, and culminates with the pegmatitic aegirine. This trend is characteristic for potassic alkaline complexes and results from preferential partitioning of Fe2+ into biotite during the magmatic crystallization. Barytolamprophyllite in the pegmatites is primary (as opposed to deuteric); only a few crystals contain a core composed of lamprophyllite. The evolutionary history of the Gordon Butte pegmatites can be subdivided into primary, agpaitic, and deuteric stages. The earliest paragenesis to crystallize included accessory zircon and thorite. Sr-rich loparite also precipitated relatively early serving as a major repository for Sr, REE, and Nb. During the agpaitic stage, diverse titano- and zircono-silicates (barytolamprophyllite, eudialyte, wadeite, and rinkite, among others) consumed most of the Ba, Sr, Ti, Zr, and Nb still remaining in the melt. The final stage in the evolution of the pegmatites involved interaction of the earlier-formed mineral assemblages with deuteric fluids. In common with the Rocky Boy pegmatites, Sr-REE-Na-rich fluorapatite, Ba-Fe titanates and REE-bearing carbonates (ancylite, calcio-ancylite, and bastnäsite-parisite series) are chief products of the deuteric stage. The alteration of the primary mineral assemblages by deuteric fluids also produced muscovite-zeolite pseudomorphs after nepheline, replacement of wadeite and eudialyte by catapleiite-group minerals, re-deposition of Ba in the form of hyalophane, baotite, and benitoite, and cation leaching from rinkite, eudialyte, and loparite. The mineralogy of the pegmatites from Gordon Butte, other potassic complexes, and sodic agpaitic occurrences is compared in detail.  相似文献   

4.
The 1.15-Ga-old Ilimaussaq intrusive complex in South Greenland shows an extensive fractionation trend from alkaline augite syenite to various varieties of strongly peralkaline, agpaitic nepheline syenites. The peralkaline nepheline-bearing syenites crystallized between ca. 900 and 450 °C at 1 kbar and they are cut by late-magmatic hydrothermal veins with nepheline-absent assemblages of albite + aegirine + analcime - sodalite - Na-Be-silicates (tugtupite, chkalovite, sørensenite) - ussingite (NaAlSi3O8*NaOH). Based on fluid inclusions and phase equilibria, these veins crystallized between 300 and 500 °C at 1 kbar. Textures indicate that the hydrothermal veins at least partly replaced earlier Ilimaussaq rocks. The occurrence of ussingite and tugtupite suggests that the late-magmatic fluids had strongly basic pH values. Speciation calculations show that the pH in fluids of the system Na-Al-Si-O-H-Cl mainly depends on the Na/Cl ratio and, to a lesser degree, on salinity and temperature. If the Na/Cl ratio is greater than 1, pH (at 400 °C and 1 kbar, where neutrality is about at pH 5) lies between 7 and 12. Because Na/Cl tends to decrease in the final stages of magmatism and during crystallization of the vein assemblage, pH of late-magmatic fluids generally should become more acidic, and only two processes can increase Na/Cl and, thus, pH: dissolution of a Cl-poor or Cl-free Na silicate or unmixing of an HCl-enriched vapour phase. Field observations and microtextures suggest that replacement reactions are responsible for the change to basic pH at least in some alteration assemblages. While replacement of 1 mol nepheline by 1 mol analcime would not alter the pH, the volume-conserving reaction 1.85  Ne + 2.3  H2 O + 0.19  H4 SiO4 = 1.02  Anl + 0.83   Na+ + 0.83  Al(OH)4-1.85\;{\rm Ne} + 2.3\;{\rm H}_{\rm 2} {\rm O} + 0.19\;{\rm H}_{\rm 4} {\rm SiO}_4 = 1.02\;{\rm Anl} + 0.83\,\;{\rm Na}^ + + 0.83\;{\rm Al(OH)}_4^ - can be used to model the replacement process quantitatively, provided it occurred in a more or less closed system. Progress of this reaction leads to successively increasing pH of the fluid during fluid-rock interaction and stabilizes minerals such as ussingite and tugtupite. Transferring the two processes to a larger scale, it is proposed that the extreme 'hyper-agpaitic' assemblages at Ilimaussaq or at the Kola peninsula, which include copious amounts of very basic, water-soluble minerals such as trona, villiaumite or thermonatrite, are formed either in this way by autometasomatic reactions of late-magmatic fluids or melts (or supercritical fluid-melt-mixtures) with earlier crystallized rocks of the same plutonic complex or by large-scale vapour unmixing in the very final stages of magmatism.  相似文献   

5.
J.C. Bailey   《Lithos》2006,91(1-4):319-330
The distribution of boron has been studied in rocks and minerals of the Ilímaussaq complex, South Greenland, using optical emission spectrometry. In the silica-undersaturated rocks of intrusive phases 1 and 3, average B contents increased from 5.6 ppm in augite syenite to a maximum of 8.9 ppm in sodalite-rich agpaitic nepheline syenite (naujaite roof cumulate) and then decreased to 5.4 ppm in the final lujavrites. Boron only behaved as an incompatible element during certain stages of the fractionation history. Starting at the naujaite stage, sodalite crystals (60–45 ppm B) were fractionated by flotation and were also trapped among the heavy cumulus phases of the bottom cumulates. This prevented the significant build-up of B in late derivatives as seen in other nepheline syenites. Nevertheless, in late pegmatites and veins associated with the agpaitic rocks, B was locally concentrated in certain Be minerals and metamict/reworked minerals. In the silica-oversaturated rocks of intrusive phase 2, average B contents increased from 8.6 ppm in quartz syenite to 13 ppm in alkali granite.  相似文献   

6.
A representative collection of structurally characterized eudialyte-group minerals (EGM) with varying relative concentrations of Fe2+ and Fe3+ ions from several localities was investigated at room temperature by 57Fe Mössbauer spectroscopy coupled with magnetometric, optical, and X-ray powder diffraction methods. To refine the Mössbauer parameters of isomer shift and quadrupole splitting for Fe2+ and Fe3+ in different types of coordination polyhedra (planar quadrangle, square pyramid, and distorted octahedron) in EGM structures, we also collected Mössbauer parameters for gillespite and labuntsovite. The main purpose of this work is to determine the location of Fe3+ in different sites in typical eudialyte, rastsvetaevite, georgbarsanovite, and some of their naturally hydrated and heat-treated analogs, and investigate the kinetics and oxidation mechanisms of iron ions in their structures. Our study has confirmed the presence of Fe2+ ions in the planar quadrangle and square pyramid in primary eudialytes, as well as the presence of Fe3+ ions in the square pyramid and distorted octahedron in primary, naturally hydrated, and heat-treated eudialytes. According to this study, hydrated eudialytes are characterized by the location of Fe3+ ions mainly in octahedra with OH groups and/or water molecules at trans vertices, while heat-treated eudialytes are characterized by their location in square pyramids with an O2? anion at the apical vertex.  相似文献   

7.
This paper presents and discusses the isotopic data from the hydrothermal studies of the Poços de Caldas Natural Analogue Project. The purpose of these studies was to elucidate the mass transport of relevant elements and isotopes associated with hydrothermal mineralization and alteration at the Osamu Utsumi uranium mine, as applicable to high-temperature radwaste isolation (particularly in the U.S. nuclear waste program). Research efforts were focused on studying the thermal, chemical and hydrologic nature of the palaeohydrothermal regime associated with a breccia pipe at the Osamu Utsumi mine, and related to the geochemical, geochronological and petrological characterization studies of unaltered regional nepheline syenite and phonolite.The regional rocks studies have a vertically elongated δD, δ18O pattern, which possibly indicates meteoric water/rock interaction. Regression of Rb---Sr whole-rock isotopic data for the regional nepheline syenite and phonolite samples did not produce isochrons. An internal, mineral-separate isochron regression from a nepheline syenite sample, considered representative of unaltered nepheline syenite of the Poços de Caldas plateau, yields an age of 78 Ma, and an initial ratio of approximately 0.7051. The initial ratios of the regional nepheline syenites are possibly indicative of a mantle source for the alkaline magmatism, with some incorporation of old, high Rb/Sr crustal material. The greater-than-mantle values of δ18O, if not due solely to surficial processes, also appear to require some assimilation of crustal material. Sm---Nd isotopic data for the regional rocks do not define any isochrons, although the nepheline syenite samples conform very well to a calculated reference isochron for 78 Ma and a fixed initial 143Nd/144Nd of 0.512359. The regional phonolite samples lie markedly off this isochron. This is probably due to the phonolite samples having different initial 143Nd/144Nd values. All regional samples lie within the “Mantle Array” trend. Their location within NdSr space indicates as asthenospheric Mid Ocean Ridge Basalt (MORB)-type source magma also contaminated by continental igneous and metamorphic rocks (e.g. the Precambrian gneiss surrounding the Poços de Caldas plateau).The rocks studied at the Osamu Utsumi mine from the F4 drillcore have experienced varying degrees of hydrothermal mineralization and metasomatism, and deep weathering. The hydrothermally altered rocks have a quite pronounced δD shift, with only a slight δ18O shift. The δD-δ18O trend of the hydrothermally altered F4 samples most likely reflects the variability of temperature, hydrologic flow, mineralogical alteration and, therefore, water/rock interaction and isotopic exchange in the palaeohydrothermal regime.Regression of Rb---Sr whole-rock isotopic data for subsamples from a nepheline syenite xenolith sample yields an age of 76 Ma and an initial ratio of approximately 0.7053. Due to the marked hydrothermal alteration and metasomatism of this sample, the Rb---Sr isotopic system is interpreted as being re-equilibrated and thus the regressed age is the age of the hydrothermal event. Using a versus 1/Sr mixing diagram, distinct trends are seen for hydrothermal alteration, mineralization and weathering. Again, the F4 nepheline syenite samples do not define an Sm---Nd isochron, but conform very well to a calculated model isochron for 78 Ma and an initial 143Nd/144Nd of 0.512365. The Sm---Nd isotopic data also exhibit a possible disturbance by the hydrothermal, metasomatic alteration. A lamproite dyke which crosscuts the hydrothermal alteration in the Osamu Utsumi mine gives an age of 76 Ma, which is essentially the same as the Rb---Sr age of the hydrothermally altered nepheline syenite subsamples.  相似文献   

8.
The detailed study of the mineral composition of the nepheline syenite pegmatite from the Saharjok Intrusion has resulted in the finding of behoite and mimetite, a mineral species identified in the Kola region for the first time. The pegmatite body at the contact between nepheline syenite and essexite is unusual in textural and structural features and combination of mineral assemblages including unique beryllium mineralization. Behoite Be(OH)2 is an extremely rare beryllium mineral. It occurs as powderlike aggregates in the leaching cavities between euhedral pyroxene crystals. Behoite was identified by comparison of X-ray powder diffraction data of the studied mineral phase and behoite from the Be-bearing tuff in the type locality of this mineral (Utah, United States). Mimetite was found in the same pegmatite of the Saharjok intrusion. It forms unusual parallel-fibrous aggregates with individual fibers as long as ∼1 mm and only ∼1 μm across. X-ray powder diffraction data and the chemical composition characterize the mineral as hexagonal phase Pb5[AsO4]3Cl. Both behoite and mimetite are the products of late hydrothermal alteration of primary minerals (meliphanite, galena, arsenopyrite, and loellingite). The secondary phases freely crystallized in the cavities remaining after the leached nepheline.  相似文献   

9.
J.B. Dawson  T. Frisch 《Lithos》1971,4(3):297-303
Eucolite occurs in ejected blocks of agpaitic wollastonite-bearing nepheline syenite in the pyroclastics of the active carbonatite volcano Oldoinyo Lengai, northern Tanzania. An analysis of the syenite is given, and chemical, optical and X-ray data for the eucolite are presented. The agpaitic paragenesis at Oldoinyo Lengais is one of the few recorded instances of agpaitic rocks in carbonatite environment.  相似文献   

10.
A. Steenfelt  H. Bohse 《Lithos》1975,8(1):39-45
Uranium analyses by the fission-track method on eudialytes from the undersaturated rocks of the Ilímaussaq intrusion demonstrate that uranium enters eudialyte in isomorphous substitution. The content of uranium in the eudialytes varies with the crystallization of the magma in two ways.In the downwards-crystallizing roof rocks, eudialyte is interstitial and the content of uranium in eudialyte decreases with proceeding crystallization, whereas in the bottom rocks, formed by upwards accumulation of liquidus minerals including eudialyte, the uranium content in eudialyte increases with crystallization. The reason for the abnormal trend in the roof rocks is discussed and compared with similar trends elsewhere.  相似文献   

11.
Peralkaline syenite and granite dykes cut the Straumsvola nepheline syenite pluton in Western Dronning Maud Land, Antarctica. The average peralkalinity index (PI?=?molecular Al/[Na?+?K]) of the dykes is 1.20 (n?=?29) and manifests itself in the presence of the Zr silicates eudialyte, dalyite and vlasovite, and the Na–Ti silicate, narsarsukite. The dykes appear to have intruded during slow cooling of the nepheline syenite pluton, and the petrogenetic relationship of the dykes and the pluton cannot be related to closed-system processes at low pressure, given the thermal divide that exists between silica-undersaturated and oversaturated magmas. Major and trace element variations in the dykes are consistent with a combination of fractional crystallization of parental peralkaline magma of quartz trachyte composition, and internal mineral segregation prior to final solidification. The distribution of accessory minerals is consistent with late-stage crystallization of isolated melt pockets. The dykes give an Rb–Sr isochron age of 171?±?4.4 Ma, with variable initial 87Sr/86Sr ratio (0.7075?±?0.0032), and have an average ε Nd of ? 12.0. Quartz phenocrysts have δ18O values of 8.4–9.2‰, which are generally in O-isotope equilibrium with bulk rock. Differences in the δ18O values of quartz and aegirine (average Δquartz?aegirine = 3.5‰) suggest aegirine formation temperatures around 500 °C, lower than expected for a felsic magma, but consistent with poikilitic aegirine that indicates subsolidus growth. The negative ε Nd (< ? 10) and magma δ18O values averaging 8.6‰ (assuming Δquartz?magma = 0.6‰) are inconsistent with a magma produced by closed-system fractional crystallization of a mantle-derived magma. By contrast, the nepheline syenite magma had mantle-like δ18O values and much less negative ε Nd (average ??3.1, n?=?3). The country rock has similar δ18O values to the granite dykes (average 8.0‰, n?=?108); this means that models for the petrogenesis of the granites by assimilation are unfeasible, unless an unexposed high-δ18O contaminant is invoked. Instead, it is proposed that the peralkaline syenite and granite dykes formed by partial melting of alkali-metasomatised gneiss that surrounds the nepheline syenite, followed by fractional crystallization.  相似文献   

12.
The variant rock types of an Alkaline-Carbonatite Complex (ACC) comprising alkali pyroxenite, nepheline syenite, phoscorite, carbonatite, syenitic fenite and glimmerite along with REE and Nb-mineralization are found at different centres along WNW-ESE trending South Purulia Shear Zone (SPSZ) in parts of Singhbhum Crustal Province. The ACC occurs as intrusions within the Mesoproterozoic Singhbhum Group of rocks. Alkali pyroxenite comprises of aegirine augite, magnesiotaramite, magnesiokatophorite as major constituents. Pyrochlore and eucolite are ubiquitous in nepheline syenite. Phoscorite contains fluorapatite, dahllite, collophane, magnetite, hematite, goethite, phlogopite, calcite, sphene, monazite, pyrochlore, chlorite and quartz. Coarse fluorapatite shows overgrowth of secondary apatite (dahllite). Secondary apatite is derived from primary fluorapatite by solution and reprecipitation. The primary fluorapatite released REE to crystallize monazite grains girdling around primary apatite. Carbonatite is composed dominantly of Srcalcite along with dolomite, tetraferriphlogopite, phlogopitic biotite, aegirine augite, richterite, fluorapatite, altered magnetite, sphene and monazite. The minerals comprising of the carbonatite indicate middle stage of carbonatite development. Fenite is mineralogically syenite. Glimmerite contains 50–60% tetraferriphlogopite. An alkali trend in the evolution of amphiboles (magnesiotaramite-magnesiokatophorite-richterite) and chinopyroxenes (aegirine augite, aegirine) during the crystallization of the suite of rocks is noted. Monazite is the source of REE in phoscorite and carbonatite. Fluorapatite has low contents of REE, PbO, ThO2 and UO2. Pyrochlore reflects Nb-mineralization in nepheline syenite and it is enriched in Na2O, CaO, TiO2, PbO and UO2. Pyrochlore containing UO2 (6.605%) and PbO (0.914%) in nepheline syenite has been chemically dated at 948 ± 24 Ma by EPMA.  相似文献   

13.
The most evolved rocks of the Pilansberg alkaline complex are aegirine lujavrites in which three varieties of eudialyte are recognized on the basis of textural relationships and composition. Manganoan eudialyte-I is a relict orthomagmatic phase occurring as poikilitic plates or as relict grains in pseudomorphed euhedral phenocrysts. Late eudialyte-II ranges in composition from manganoan eudialyte through kentbrooksite to taseqite-like varieties and is considered to be formed by cation exchange with eudialyte-I and alkaline fluids. Eudialyte-III is a hydrothermal phase replacing eudialyte-II, and has either taseqite-like (5–7.3 wt.% SrO, < 2.0 wt.% REE2O3) or kentbrooksite (< 1.5 wt.% SrO,  8.5 wt.% REE2O3) compositions. Three styles of replacement of eudialyte-I and -II are recognizable. Type 1 involves replacement by complex aggregates of zircon, fergusonite-(Ce), allanite-(Ce), britholite-(Ce), titanite, pyrochlore, albite and potassium feldspar, i.e. a “miaskitic” paragenesis. Type 2 alteration consists of complex aggregates dominated by deuteric Na–Zr-silicates (?catapleiite), stronalsite, strontium-apatite and lamprophyllite replacing eudialyte-I and -II and relicts of the “miaskitic paragenesis”, i.e. a highly sodic “agpaitic-to-hyperagpaitic” paragenesis. Type 3 replacement involves mantling of any residual eudialyte-II and zircon, and replacement of deuteric Na–Zr-silicates by eudialyte-III together with barytolamprophyllite as late hydrothermal phases. Further alteration and replacement resulted in the superposition of natrolite, britholite, pyrochlore, allanite and diverse Ba- and Mn-based minerals onto the types 2 and 3 assemblages, and ultimately to the deposition of allanite-(La), La-dominant REE carbonates and rarely a silica phase. All of the alteration styles are considered to have occurred in situ under subsolidus conditions (< 450 °C) by interaction of pre-existing eudialyte and other minerals with deuteric, sodium- and chlorine-bearing aqueous fluids. The evolution of the replacement products is from a miaskitic through an agpaitic to a hyperagpaitic paragenesis and ultimately back to a low agpaitic-to-miaskitic assemblage, reflecting changes in the a(Na+)/a(Cl) ratio and alkalinity of the deuteric/hydrothermal fluids.  相似文献   

14.
Huashan, Guposhan and Qitianling are three similar and representative metaluminous A-type tin granites in the western Nanling Range, China. They all have a high oxidization state with magnetite as the dominant Fe–Ti oxide. This study presents an understanding of systematic mineralogy of Sn-bearing minerals (biotite, titanite, magnetite and cassiterite) in the three granites. Biotite has an annite composition and both electron-microprobe and LA-ICP-MS analyses indicate trace amounts of tin in biotite (approximately 100–20 ppm). Chloritization of biotite is accompanied by formation of Sn-rich rutile and cassiterite. Titanite has a long history of crystallization from the early-magmatic stage through the late-magmatic stage to the hydrothermal stage. Owing to its solid-solution relationship with malayaite (CaSnSiO5), titanite always contains tin to various extents. Early-magmatic titanite contains about 0.5 wt.% SnO2, while the late-magmatic titanite is markedly enriched in tin (on average 14.8 and 3.4 SnO2 in titanite from the Qitianling and Huashan granites, respectively). Magnetite grains typically display a trellis structure with ilmenite lamellae, where microinclusions of cassiterite (<1 μm in size) are present. This is likely consistent with features of the “oxy-exsolution” process of Sn-bearing titanomagnetite precursor. Cassiterite may be observed as late-magmatic phase, but most commonly appears as an alteration product of other primary minerals. All tin-bearing minerals in the three granites record a complete process of tin mineralization in granite. The features of tin in primary biotite, titanite and magnetite reflect an initial enrichment during the early stage of magmatic crystallization of the Huashan, Guposhan and Qitianling granites. Association of interstitial Sn-titanite and cassiterite suggests further tin enrichment related to fractional crystallization of granitic magmas. Fluids and alteration of primary minerals play an important role in the leaching, concentration and transportation of Sn during hydrothermal processes, which favors vein-type Sn mineralization.  相似文献   

15.
Aegirines with almost 7.0 wt.% ZrO2 have been discovered in nepheline syenites from the Motzfeldt Centre, South Greenland. The analyses require the postulate of a new endmember pyroxene composition with the formula NaFM0.5Zr0.5Si2O6.A possible acronym is FM-NAZ. Aegirines rich in this component occur in rocks in which there is no other zirconium-bearing phase such as eudialyte.These zirconian pyroxenes have crystallised from magmas which were peralkaline, low in lime and silica and relatively low in oxygen fugacity compared with other nepheline syenites. These factors have combined to prevent the usual crystallisation of such Zr-phases as eudialyte, zircon or baddeleyite.  相似文献   

16.
Aegirines with almost 7.0 wt.% ZrO2 have been discovered in nepheline syenites from the Motzfeldt Centre, South Greenland. The analyses require the postulate of a new endmember pyroxene composition with the formula NaFM0.5Zr0.5Si2O6.A possible acronym is FM-NAZ. Aegirines rich in this component occur in rocks in which there is no other zirconium-bearing phase such as eudialyte.These zirconian pyroxenes have crystallised from magmas which were peralkaline, low in lime and silica and relatively low in oxygen fugacity compared with other nepheline syenites. These factors have combined to prevent the usual crystallisation of such Zr-phases as eudialyte, zircon or baddeleyite.  相似文献   

17.
The Toongi Deposit, located in central NSW, Australia, hosts significant resources of Zr, Hf, Nb, Ta, Y and REE within a small (ca. 0.3 km2), rapidly cooled trachyte laccolith. Toongi is part of regional Late Triassic to Jurassic alkaline magmatic field, but is distinguished from the other igneous bodies by its peralkaline composition and economically significant rare metal content that is homogenously distributed throughout the trachyte body. The primary ore minerals are evenly dispersed throughout the rock and include lueshite/natroniobite and complex Na–Fe–Zr–Nb–Y–REE silicate minerals dominated by a eudialyte group mineral (EGM). The EGM occurs in a unique textural setting in the rock, commonly forming spheroidal or irregular-shaped globules, herein called “snowballs”, within the rock matrix. The snowballs are often protruded by aegirine and feldspar phenocrysts and contain swarms of fine aegirine and feldspar grains that often form spiral or swirling patterns within the snowball. Secondary ore minerals include REE carbonates, Y milarite, catapleiite and gaidonnayite that fill fractures and vesicles in the rock. Based on bulk-rock geochemical and Nd isotope data, and thermodynamic modelling of magma fractionation, the alkaline rocks of the region are interpreted to represent extrusive to hyperbyssal products of mantle-derived magma that ponded at mid-crustal levels (ca. 0.3 GPa) and underwent extensive fractionation under low-oxygen fugacity conditions. The high Na2O, peralkaline nature of the Toongi Deposit trachyte developed via extensive fractionation of an alkali olivine basalt parental magma initially in the mid-crust and subsequently at shallow levels (ca. 0.1 GPa). This extended fractionation under low fO2 and relatively low H2O-activity conditions limited volatile release and allowed build-up of rare metal contents to ore grades. We speculate that the ore minerals may have originally formed from rare metal-rich sodic-silicate melt that formed immiscible globules (subsequently crystallized to EGM) in the magma shortly before emplacement and rapid cooling. Subsequent hydrothermal alteration caused relatively limited and localized remobilization of some ore metals into fractures and vesicles in the rock.  相似文献   

18.
辽宁赛马碱性岩体早年因产铀矿而闻名,该岩体主要由响岩、霞石正长岩和异霞正长岩组成,其中铀、锆和稀土等元素矿化主要集中于异霞正长岩岩浆阶段。异性石是异霞正长岩中特征的锆-稀土矿物,主要分为两期,晚期异性石表现出更加富集Nb、REE等高场强元素的特点。早期异性石经历了一系列的热液蚀变,根据蚀变强弱程度,蚀变矿物组合可分为:(1)异性石+钠锆石+霓石±钠沸石;(2)异性石+钠锆石+锆石+钠沸石±霓石;(3)异性石假晶,假晶主要由残余异性石+钠锆石+锆石+钠沸石+霓石+钾长石+铈硅磷灰石组成。相比于岩浆锆石,蚀变组合中次生锆石具有富Ca、Al、Fe的特点,与异性石本身化学成分和流体性质密切相关。通过对异性石及其蚀变组合的精细矿物学研究,我们得知假晶的形成可能是异性石"溶解-再沉淀"的结果,致使假晶形成的流体至少包括:(1)占主导的富Na(±K)、Al、F的自交代流体;(2)少量晚期富Ca流体。假晶中次生锆石和铈硅磷灰石的结晶说明了Zr和REE等高场强元素的热液活动性,自交代碱性流体和富Ca流体在此过程中起到"搬运"和"提纯"的作用,这对认识碱性岩稀有、稀土成矿机制具有重要的指示意义。  相似文献   

19.
H. Srensen  H. Bohse  J.C. Bailey 《Lithos》2006,91(1-4):286-300
Lujavrites are rare meso- to melanocratic agpaitic nepheline syenites that are characterized by elevated contents of elements such as Li, Be, Zr, REE, Nb, Th and U. They are the most evolved members of the three large composite agpaitic complexes – Lovozero, Kola Peninsula, Russia; Pilansberg, South Africa; and Ilímaussaq, South Greenland – and are inferred to stem from the same deep fractionating magma sources that fed the earlier members of the complexes. The composition of the melts that evolved into lujavrites is, however, not well known. The agpaitic part of the Ilímaussaq complex is divided into a roof series, a floor series of cumulates and an intermediate series of lujavrites sandwiched between the two. In the traditional view, the lujavrites formed from residual melts left between the downward crystallizing roof series and the floor cumulates. New field observations and geochemical data suggest that the floor cumulates and the main mass of lujavrites constituted a separate intrusive phase which was emplaced into the already consolidated roof series rocks largely by piecemeal stoping. Studies of the contact facies of the floor cumulates indicate that the initial magma of the floor cumulate–lujavrite sequence was peralkaline nepheline syenitic with enhanced contents of Zr, Hf, HREE, Y, Nb, Ta, F, Ba and Sr. Subsequent crystallization in a closed system resulted in the formation of the floor cumulates and lujavrites. Chemical analyses of dykes within and outside the complex represent stages in the magmatic evolution of the agpaitic rocks.  相似文献   

20.
The Sakharjok Y-Zr deposit in Kola Peninsula is related to the fissure alkaline intrusion of the same name. The intrusion ∼7 km in extent and 4–5 km2 in area of its exposed part is composed of Neoarchean (2.68–2.61 Ma) alkali and nepheline syenites, which cut through the Archean alkali granite and gneissic granodiorite. Mineralization is localized in the nepheline syenite body as linear zones 200–1350 m in extent and 3–30 m in thickness, which strike conformably to primary magmatic banding and trachytoid texture of nepheline syenite. The ore is similar to the host rocks in petrography and chemistry and only differs from them in enrichment in zircon, britholite-(Y), and pyrochlore. Judging from geochemical attributes (high HSFE and some incompatible element contents (1000–5000 ppm Zr, 200–600 ppm Nb, 100–500 ppm Y, 0.1–0.3 wt % REE, 400–900 ppm Rb), REE pattern, Th/U, Y/Nb, and Yb/Ta ratios), nepheline syenite was derived from an enriched mantle source similar to that of contemporary OIB and was formed as an evolved product of long-term fractional crystallization of primary alkali basaltic melt. The ore concentrations are caused by unique composition of nepheline syenite magma (high Zr, Y, REE, Nb contents), which underwent subsequent intrachamber fractionation. Mineralogical features of zircon-the main ore mineral—demonstrate its long multistage crystallization. The inner zones of prismatic crystals with high ZrO2/HfO2 ratio (90, on average) grew during early magmatic stage at a temperature of 900–850°C. The inner zones of dipyramidal crystals with average ZrO2/HfO2 = 63 formed during late magmatic stage at a temperature of ∼500°C. The zircon pertaining to the postmagmatic hydrothermal stage is distinguished by the lowest ZrO2/HfO2 ratio (29, on average), porous fabric, abundant inclusions, and crystallization temperature below 500°C. The progressive decrease in ZrO2/HfO2 ratio was caused by evolution of melt and postmagmatic solution. The metamorphic zircon rims relics of earlier crystals and occurs as individual rhythmically zoned grains with an averaged ZrO2/HfO2 ratio (45, on average) similar to that of the bulk ore composition. The metamorphic zircon is depleted in uranium in comparison with magmatic zircon, owing to selective removal of U by aqueous metamorphic solutions. Zircon from the Sakharjok deposit is characterized by low concentrations of detrimental impurities, in particular, contains only 10–90 ppm U and 10–80 ppm Th, and thus can be used in various fields of application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号