首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The observed properties of Wolf-Rayet stars and relativistic objects in close binary systems are analyzed. The final masses M CO f for the carbon-oxygen cores of WR stars in WR + O binaries are calculated taking into account the radial loss of matter via stellar wind, which depends on the mass of the star. The analysis includes new data on the clumpy structure of WR winds, which appreciably decreases the required mass-loss rates $\dot M_{WR}$ for the WR stars. The masses M CO f lie in the range (1–2)M –(20–44)M and have a continuous distribution. The masses of the relativistic objects M x are 1–20M and have a bimodal distribution: the mean masses for neutron stars and black holes are 1.35 ± 0.15M and 8–10M , respectively, with a gap from 2–4M in which no neutron stars or black holes are observed in close binaries. The mean final CO-core mass is $\overline M _{CO}^f = 7.4 - 10.3M_ \odot$ , close to the mean mass for the black holes. This suggests that it is not only the mass of the progenitor that determines the nature of the relativistic object, but other parameters as well-rotation, magnetic field, etc. One SB1R Wolf-Rayet binary and 11 suspected WR + C binaries that may have low-mass companions (main-sequence or subgiant M-A stars) are identified; these could be the progenitors of low-mass X-ray binaries with neutron stars and black holes.  相似文献   

2.
We consider the evolution of close binaries resulting in the most intensive explosive phenomena in the stellar Universe—Type Ia supernovae and gamma-ray bursts. For Type Ia supernovae, which represent thermonuclear explosions of carbon-oxygen dwarfs whose masses reach the Chandrasekhar limit during the accretion of matter from the donor star, we derive the conditions for the accumulation of the limiting mass by the degenerate dwarf in the close binary. Accretion onto the degenerate dwarf can be accompanied by supersoft X-ray radiation with luminosity 1–104 L . Gamma-ray bursts are believe to accompany the formation and rapid evolution of compact accretion-decretion disks during the formation of relativistic objects—black holes and neutron stars. The rapid (~1 M /s) accretion of matter from these disks onto the central compact relativistic star results in an energy release of ~0.1 M c 2 ~ 1053 erg in the form of gamma-rays and neutrinos over a time of 0.1–1000 s. Such disks can form via the collapse of the rapidly rotating cores of Type Ib, Ic supernovae, which are components in extremely close binaries, or alternately due to the collapse of accreting oxygen-neon degenerate dwarfs with the Chandrasekhar mass into neutron stars, or the merging of neutron stars with neutron stars or black holes in close binaries. We present numerical models of the evolution of some close binaries that result in Type Ia supernovae, and also estimate the rates of these supernovae (~0.003/year) and of gamma-ray bursts (~10?4/year) in our Galaxy for various evolutionary scenarios. The collimation of the gamma-ray burst radiation within an opening angle of several degrees “matches” the latter estimate with the observed rate of these events, ~10?7–10?8/year calculated for a galaxy with the mass of our Galaxy.  相似文献   

3.
We analyze the late stages of evolution of massive (M 0 ? 8 M ) close binaries, from the point of view of possible mechanisms for the generation of gamma-ray bursts. It is assumed that a gamma-ray burst requires the formation of a massive (~1 M ), compact (R ? 10 km) accretion disk around a Kerr black hole or neutron star. Such Kerr black holes are produced by core collapses of Wolf-Rayet stars in very close binaries, as well as by mergers of neutron stars and black holes or two neutron stars in binaries. The required accretion disks can also form around neutron stars that were formed via the collapse of ONeMg white dwarfs. We estimate the Galactic rate of events resulting in the formation of rapidly rotating relativistic objects. The computations were carried out using the “Scenario Machine.”  相似文献   

4.
The formation and evolution of supermassive (102?1010 M ) black holes (SMBHs) in the dense cores of globular clusters and galaxies is investigated. The raw material for the construction of the SMBHs is stellar black holes produced during the evolution of massive (25?150M ) stars. The first SMBHs, with masses of ~1000M , arise in the centers of the densest and most massive globular clusters. Current scenarios for the formation of SMBHs in the cores of globular clusters are analyzed. The dynamical deceleration of the most massive and slowly moving stellar-mass (< 100M ) black holes, accompanied by the radiation of gravitational waves in late stages, is a probable scenario for the formation of SMBHs in the most massive and densest globular clusters. The dynamical friction of the most massive globular clusters close to the dense cores of their galaxies, with the formation of close binary black holes due to the radiation of gravitational waves, leads to the formation of SMBHs with masses ? 103 M in these regions. The stars of these galaxies form galactic bulges, providing a possible explanation for the correlation between the masses of the bulge and of the central SMBHs. The deceleration of the most massive galaxies in the central regions of the most massive and dense clusters of galaxies could lead to the appearance of the most massive (to 1010 M ) SMBHs in the cores of cD galaxies. A side product of this cascade scenario for the formation of massive galaxies with SMBHs in their cores is the appearance of stars with high spatial velocities (> 300 km/s). The velocities of neutron stars and stellar-mass black holes can reach ~105 km/s.  相似文献   

5.
The paper considers the evolution of the supernova envelopes produced by Population III stars with masses ofM * ?? 25?C200M ?? located in non-rotating protogalaxies with masses of M ?? 107 M ?? at redshifts z = 12, with dark-matter density profiles in the form of modified isothermal spheres. The supernova explosion occurs in the ionization zone formed by a single parent star. The properties of the distribution of heavy elements (metals) produced by the parent star are investigated, as well as the efficiency with which they are mixed with the primordial gas in the supernova envelope. In supernovae with high energies (E ? 5 × 1052 erg), an appreciable fraction of the gas can be ejected from the protogalaxy, but nearly all the heavy elements remain in the protogalaxy. In explosions with lower energies (E ? 3 × 1052 erg), essentially no gas and heavy elements are lost from the protogalaxy: during the first one to threemillion years, the gas and heavy elements are actively carried from the central region of the protogalaxy (r ?? 0.1r v , where r v is the virial radius of the protogalaxy), but an appreciable fraction of the mass of metals subsequently returns when the hot cavity cools and the envelope collapses. Supernovae with high energies (E ? 5 × 1052 erg) are characterized by a very low efficiency of mixing of metals; their heavy elements are located in the small volume occupied by the disrupted envelope (in a volume comparable with that of the entire envelope), with most of the metals remaining inside the hot, rarified cavity of the envelope. At the same time, the efficiency of mixing of heavy elements in less energetic supernovae (E ? 3 × 1052 erg) is appreciably higher. This comes about due to the disruption of the hot cavity during the collapse of the supernova envelope. However, even in this case, a clear spatial separation of regions enriched and not enriched in metals is visible. During the collapse of the supernova envelope, the metallicity of the gas is appreciably higher in the central region ([Z] ?? ?1 to 0) than at the periphery ([Z] ?? ?2 to ?4) of the protogalaxy; most of the enriched gas has metallicities [Z] ?? ?3.5 to ?2.5. The masses of enriched fragments of the supernova envelope remain appreciably lower than the Jeans mass, except in regions at the center of the protogalaxy upon which the surrounding enriched gas is efficiently accreted. Consequently, the birth of stars with metallicities close to those characteristic of present-day Galactic stars is very probable in the central region of the protogalaxy.  相似文献   

6.
We have analyzed the evolution of the components of the unique massive binary system WR 20a, which consists of a Wolf-Rayet nitrogen star and an Of star with an extremely small separation. The estimated masses of the components are 83 and 82 M , which are among the highest stellar mass inferred. We have carried out numerical modeling of the evolution of the components, taking into account the mass loss due to the stellar wind inherent to massive stars. In a scenario in which the systemis detached from the time the components reach the main sequence until its present state, the initial component masses are inferred to be close to 110 M , if the initial masses of the stars were equal, or 120 and 100 M , if they were different. Currently, the components are evolved main-sequence stars, whose surfaces are relatively little enriched by helium. The further evolution of the system will result in one of the components filling its Roche lobe and evolution within a common envelope. As a result, the components may coalesce, leading to the formation of a single massive black hole the supernova explosion. Otherwise, depending on the masses of the resulting black holes, either a binary system with two black holes or two free black holes will be formed. In the latter case, gamma-ray bursts will be observed.  相似文献   

7.
We analyze models for quasi-stationary, ultraluminous X-ray sources (ULXs) with luminosities 1038–1040 erg/s exceeding the Eddington limit for a ~1.4M neutron star. With the exception of relatively rare stationary ULXs that are associated with supernova remnants or background quasars, most ULXs are close binary systems containing a massive stellar black hole (BH) that accretes matter donated by a stellar companion. To explain the observed luminosities of ~1040 erg/s, the mass of the BH must be ~40M if the accreted matter is helium and ~60M if the accreted matter has the solar chemical composition. We consider donors in the form of main-sequence stars, red giants, red supergiants, degenerate helium dwarfs, heavy disks that are the remnants of disrupted degenerate dwarfs, helium nondegenerate stars, and Wolf-Rayet stars. The most common ULXs in galaxies with active star formation are BHs with Roche-lobe-filling main-sequence companions with masses ~7M or close Wolf-Rayet companions, which support the required mass-exchange rate via their strong stellar winds. The most probable candidate ULXs in old galaxies are BHs surrounded by massive disks and close binaries containing a BH and degenerate helium-dwarf, red-giant, or red-supergiant donor.  相似文献   

8.
We consider the evolutionary status of observed close binary systems containing black holes and Wolf-Rayet (WR) stars. When the component masses and the orbital period of a system are known, the reason for the formation of a WR star in an initial massive system of two main-sequence stars can be established. Such WR stars can form due to the action of the stellar wind from a massive OB star (MOB≥50M), conservative mass transfer between components with close initial masses, or the loss of the common envelope in a system with a large (up to ~25) initial component mass ratio. The strong impact of observational selection effects on the creation of samples of close binaries with black holes and WR stars is demonstrated. We estimate theoretical mass-loss rates for WR stars, which are essential for our understanding the observed ratio of the numbers of carbon and nitrogen WR stars in the Galaxy \(\dot M_{WR} (M_ \odot yr^{ - 1} ) = 5 \times 10^{ - 7} (M_{WR} /M_ \odot )^{1.3} \). We also estimate the minimum initial masses of the components in close binaries producing black holes and WR stars to be ~25M. The spatial velocities of systems with black holes indicate that, during the formation of a black hole from a WR star, the mass loss reaches at least several solar masses. The rate of formation of rapidly rotating Kerr black holes in close binaries in the Galaxy is ~3×10?6 yr?1. Their formation may be accompanied by a burst of gamma radiation, possibly providing clues to the nature of gamma-ray bursts. The initial distribution of the component mass ratios for close binaries is dNdq=dM2/M1 in the interval 0.04?q0≤1, suggesting a single mechanism for their formation.  相似文献   

9.
The results of numerical studies of the evolution of a close binary system containing a black hole with a mass of ~3000M are presented. Such a black hole could form in the center of a sufficiently rich and massive globular cluster. The secondary could be a main-sequence star, giant, or degenerate dwarf that fills or nearly fills its Roche lobe. The numerical simulations of the evolution of such a system take into account the magnetic wind of the donor together with the wind induced by X-ray irradiation from the primary, the radiation of gravitational waves by the system, and the nuclear evolution of the donor. Mass transfer between the components is possible when the donor fills its Roche lobe, and also via the black hole’s capture of some material from the induced stellar wind. The computations show that the evolution of systems with solar-mass donors depends only weakly on the mass of the accretor. We conclude that the observed ultra-luminous X-ray sources (L X ? 1038 erg/s) in nearby galaxies could include accreting black holes with masses of 102?104M. Three scenarios for the formation of black holes with such masses in the cores of globular clusters are considered: the collapse of superstars with the corresponding masses, the accretion of gas by a black hole with a stellar initial mass (<100M), and the tidal accumulation of stellar black holes. We conclude that the tidal accumulation of stellar-mass black holes is the main scenario for the formation of intermediate-mass black holes (102?104M) in the cores of globular clusters.  相似文献   

10.
Several scenarios for the formation of accretion and decretion disks in single and binary Ae and Be stars are proposed. It is shown that, in order for a rapidly rotating main-sequence Be star to lose mass via a disk, the star’s rotation must be quasi-rigid-body. Estimates show that such rotation can be maintained by the star’s magnetic field, which is probably a relict field. The evolution of single Be main-sequence stars is numerically simulated allowing for mass loss via the stellar wind and rotational mass loss assuming rigid-body rotation. The stellar wind is the factor that determines the maximum mass of Be stars, which is close to 30M . The evolution of Be stars in close binaries is analyzed in the approximation adopted in our scenario. Long gamma-ray bursts can be obtained as a result of the collapse of rapidly rotating oxygen—neon degenerate dwarfs—the accreting companions of Be stars—into neutron stars.  相似文献   

11.
The distribution of observed energies for gamma-ray bursts with known redshifts can be explained as a consequence of events releasing a standard energy of E 0=5×1051 erg. Two situations are possible: the degree of collimation could vary from burst to burst, or there could be a universal radiation pattern for all bursts, with the observed differences being due to differences in the orientation of this pattern relative to the line of sight to the Earth.  相似文献   

12.
The paper analyzes the mass distribution of stellar black holes derived from the light and radial-velocity curves of optical stars in close binary systems using dynamical methods. The systematic errors inherent in this approach are discussed. These are associated primarily with uncertainties in models for the contribution from gaseous structures to the optical brightness of the systems under consideration. The mass distribution is nearly flat in the range 4–15M . This is compared with the mass distribution for black holes in massive close binaries, which can be manifest as ultrabright X-ray sources (L x >1039 erg/s) observed in other galaxies. If the X-ray luminosities of these objects correspond to the Eddington limit, the black-hole mass distribution should be described by a power law, which is incompatible with the flat shape derived dynamically from observations of close binaries in our Galaxy. One possible explanation of this discrepancy is the rapid evaporation of stellar-mass black holes predicted in recent multi-dimensional models of gravity. This hypothesis can be verified by refining the stellar black-hole mass spectrum or finding isolated or binary black holes with masses below ~3M .  相似文献   

13.
The results of hydrodynamical calculations of radially pulsating helium stars with masses 0.5MM≤0.9M, bolometric luminosities 600L≤5×103L, and effective temperatures 1.5×104 K≤Teff≤3.5×104 K are presented. The pulsation instability of these stars is due to the effects of ionization of iron-group elements in layers with temperatures T~2×105 K. The calculations were carried out using opacities for the relative mass abundances of hydrogen and heavy elements X=0 and Z=0.01, 0.015, and 0.02. Approximate formulas for the pulsation constant Q over the entire range of pulsation instability of the hot helium stars in terms of the mass M, radius R, effective temperature Teff, and heavy-element abundance Z are derived. The instability of BX Cir to radial pulsations with the observed period Π=0.1066 d occurs only for a mass M≥0.55M, effective temperature Teff≥23000 K, and heavy-element abundance Z≥0.015. The allowed mass of BX Cir is in the range 0.55MM≤0.8M, which corresponds to luminosities 800LM≤1400L and mean radii 1.7R?R?2.1R.  相似文献   

14.
The relationship between the masses of the central, supermassive black holes (M bh) and of the nuclear star clusters (M nc) of disk galaxies with various parameters galaxies are considered: the rotational velocity at R = 2 kpc V (2), the maximum rotational velocity V max, the indicative dynamical mass M 25, the integrated mass of the stellar populationM *, and the integrated color index B-V. The rotational velocities andmasses of the central objects were taken from the literature. ThemassM nc correlatesmore closely with the kinematic parameters and the disk mass than M bh, including with the velocity V max, which is closely related to the virial mass of the dark halo. On average, lenticular galaxies are characterized by higher massesM bh compared to other types of galaxies with similar characteristics. The dependence of the blackhole mass on the color index is bimodal: galaxies of the red group (red-sequence) with B-V >0.6–0.7 which are mostly early-type galaxies with weak star formation, differ appreciably from blue galaxies, which have higher values of M nc and M bh. At the dependences we consider between the masses of the central objects and the parameters of the host galaxies (except for the dependence of M bh on the central velocity dispersion), the red-group galaxies have systematically higher M bh values, even when the host-galaxy parameters are similar. In contrast, in the case of nuclear star clusters, the blue and red galaxies form unified sequences. The results agree with scenarios in which most red-group galaxies form as a result of the partial or complete loss of interstellar gas in a stage of high nuclear activity in galaxies whose central black-hole masses exceed 106?107 M (depending on the mass of the galaxy itself). The bulk of disk galaxies with M bh > 107 M are lenticular galaxies (types S0, E/S0) whose disks are practically devoid of gas.  相似文献   

15.
We consider the evolution of close binaries in which the initial secondary component is a nondegenerate helium star with mass MHe = 0.4–60 M, while the initially more massive primary has evolved into a black hole, neutron star, or degenerate dwarf. The neutron star is assumed to originate as a result of the evolution of a helium star with a mass of 2.5 MMHe ≤ 10 M after the explosion of a type Ib,c supernova. If the axial rotation of the helium star before the explosion is rigid-body and synchronized with the orbital rotation, for Porb ≤ 0.16 day, the rotational energy of the young neutron star will exceed the energy of an ordinary supernova. If the magnetic field of the neutron star is sufficiently strong, the necessary conditions for a magnetic-rotational supernova are provided. The initial rotational period of a young neutron star originating in a system with an orbital period shorter than ~50 days is shorter than ~4 s, which, according to observations, is required for the appearance of a radio pulsar. A helium star whose mass exceeds ~10 M in a close binary with an orbital period shorter than one day and with the axial rotation of the helium presupernova synchronous with the orbital rotation evolves into a Kerr black hole, whose formation is likely to be accompanied by a gamma-ray burst with a duration longer than two seconds. In particular, we consider close binaries in which the second supernova results in the formation of a neutron star that remains in the binary. The theoretical distribution of orbital periods and eccentricities for such systems is consistent with that observed for radio pulsars in the Galactic disk in binaries with compact components and orbital eccentricities exceeding ~0.09, providing an explanation for the observed correlation between the orbital eccentricities and orbital periods for these systems.  相似文献   

16.
We discuss the possible stellar sources of short-lived radionuclides (SLRs) known to have been present in the early solar system (26Al, 36Cl, 41Ca, 53Mn, 60Fe, 107Pd, 129I, 182Hf, 244Pu). SLRs produced primarily by irradiation (7Be, 10Be) are not discussed in this paper. We evaluate the role of the galactic background in explaining the inventory of SLRs in the early solar system. We review the nucleosynthetic processes that produce the different SLRs and place the processes in the context of stellar evolution of stars from 1 to 120 M. The ejection of newly synthesized SLRs from these stars is also discussed. We then examine the extent to which each stellar source can, by itself, explain the relative abundances of the different SLRs in the early solar system, and the probability that each source would have been in the right place at the right time to provide the SLRs. We conclude that intermediate-mass AGB stars and massive stars in the range from ∼20 to ∼60 M are the most plausible sources. Low-mass AGB stars fail to produce enough 60Fe. Core-collapse Type II supernovae from stars with initial masses of <20 M produce too much 60Fe and 53Mn. Sources such as novae, Type Ia supernovae, and core-collapse supernovae of O-Ne-Mg white dwarfs do not appear to provide the SLRs in the correct proportions. However, intermediate-mass AGB stars cannot provide 53Mn or the r-process elements, so if an AGB star provided the 41Ca, 36Cl, 26Al, 60Fe, and 107Pd, and if a late stellar source is required for 53Mn and the r-process elements, then two types of sources would be required. A separate discussion of the production of r-process elements highlights the difficulties in modeling their production. There appear to be two sources of r-process elements, one that produces the heavy r-process elements, including the actinides, and one that produces the elements from N to Ge and the elements ∼110 < A < ∼130. These can be assigned to SNII explosions of stars of ?11 M and stars of 12-25 M, respectively. More-massive stars, which leave black holes as supernova remnants, apparently do not produce r-process elements.  相似文献   

17.
The coalescence of components of a binary star with equal masses (M 1 = M 2 = M ) and moving in circular orbits is considered. The equation of state for degenerate neutrons is used, leading to the equation of state for an ideal gas. The initial model has zero temperature, corresponding to a polytrope with n = 1.5. To reduce the required computational time, the initial close binary is constructed using the self-consistent field method. The computations use Newtonian gas dynamics, but the back reaction of the gravitational radiation is taken into account in a PN2.5 post-Newton approximation, obtained using ADM formalism. This makes it possible to apply previous experienceof constructing high-order Godunov-type difference schemes, which are suitable for end-to-end calculations of discontinuous solutions of the gas-dynamics equations on a fixed Eulerian grid. The Poisson equations were solved using an original spherical-function expansion method. The 3D computations yielded the parameters of the gravitational signal. Near the radiation maximum, the strain amplitude is rh ~ 4 × 104 cm, the power maximum is 4 × 1054 erg/s, and the typical radiation frequency is ?1 kHz. The energy carried away by gravitational waves is ?1052 erg. These parameters are of interest, since they form an inherent part of a rotational mechanism for the supernova explosion. They are also of interest for the planning of gravitational-wave detection experiments.  相似文献   

18.
A new model is put forward to explain the observed features of anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs). It is shown that drift waves can be excited in the magnetosphere of a neutron star with a rotational period of P~0.1 s, surface magnetic field Bs~1012 G, and angle between the rotational axis and magnetic moment β<10°. These waves lead to the formation of radiation pulses with a period of Pdr~10 s. The rate of loss of rotational energy by such a star (~1037 erg/s) is sufficient to produce the observed increase in the period \((\dot P \sim 10^{ - 10} )\), the X-ray luminosities of AXPs and SGRs (~1034–1036 erg/s), and an injection of relativistic particles into the surrounding supernova remnant. A modulation of the constant component of the radiation with a period of P~0.1 s is predicted. In order for SGRs to produce gamma-ray bursts, an additional source of energy must be invoked. Radio pulsars with periods of Pobs>5 s can be described by the proposed model; in this case, their rotational periods are considerably less than Pobs and the observed pulses are due to the drift waves.  相似文献   

19.
The evolution of close binary systems containing Wolf-Rayet (WR) stars and black holes (BHs) is analyzed numerically. Both the stellar wind from the donor star itself and the induced stellar wind due to irradiation of the donor with hard radiation arising during accretion onto the relativistic component are considered. The mass and angular momentum losses due to the stellar wind are also taken into account at phases when the WR star fills its Roche lobe. It is shown that, if a WR star with a mass higher than ~10M fills its Roche lobe in an initial evolutionary phase, the donor star will eventually lose contact with the Roche lobe as the binary loses mass and angular momentum via the stellar wind, suggesting that the semi-detached binary will become detached. The star will remain a bright X-ray source, since the stellar wind that is captured by the black hole ensures a near-Eddington accretion rate. If the initial mass of the helium donor is below ~5M , the donor may only temporarily detach from its Roche lobe. Induced stellar wind plays a significant role in the evolution of binaries containing helium donors with initial masses of ~2M . We compute the evolution of three observed WR-BH binaries: Cyg X-3, IC 10 X-1, and NGC 300 X-1, as well as the evolution of the SS 433 binary system, which is a progenitor of such systems, under the assumption that this binary will avoid a common-envelope stage in its further evolution, as it does in its current evolutionary phase.  相似文献   

20.
Tutukov  A. V.  Fedorova  A. V. 《Astronomy Reports》2019,63(6):460-478

Under certain conditions, stars close to intermediate-mass black holes (IMBHs) can form close binary systems with these objects, in which the Roche lobe can be filled by the star and intense accretion of the star’s matter onto the IMBH is possible. Recently, accreting IMBHs have been associated with hyperluminous X-ray sources (HLXs), whose X-ray luminosities can exceed 1041 erg/s. In this paper, the evolution of star—IMBH binary systems is investigated assuming that the IMBH mainly accretes the matter of its companion star, and that the presence of gas in the vicinity of the IMBH does not appreciably affect changes in the orbit of the star. The computations take into account all processes determining the evolution of ordinary binary systems, as well as the irradiation of a star by hard radiation during the accretion of its matter onto the IMBH. The absorption of external radiation in the stellar envelope was calculated applying the same formalism that is used to calculate the opacity of the stellar matter. The computations also assumed that, if the characteristic time for the mass transfer is less than the thermal time scale of the star, there is no exchange betwween the orbital angular momentum of the system and the angular momentum of the matter flowing onto the IMBH.

Numerical simulations have shown that, under these assumptions, three types of evolution are possible for such a binary system, depending on the mass of the IMBH and the star, as well as on the star’s initial distance from the IMBH. The first type ends with the destruction of the star. For low-mass main sequence (MS) stars, only this option is realized, even in the case of large initial distances from IMBH. For massive MS stars, the star is also destroyed if the mass of the IMBH is high and the initial distance of the star from the IMBH is sufficiently small.

The second type of evolution can occur for massive MS stars, which are initially located farther from the IMBH than in the first type of evolution. In this case, the massive star fills its Roche lobe during its evolutionary expansion, after which a stage of intense mass transfer begins. It is in this phase of the evolution that the star- IMBH system can manifest itself as a HLX, when its X-ray luminosity LX exceeds 1041 erg/s for a fairly long time. Numerical simulations show that the initial mass of the donor star in systems with MBH = (103?105)M must be close to ~10 M in this case. The characteristic duration of the HLX stage is 30 000–70 000 years. For smaller initial donor masses close to ~5M, LX does not reach 1041 erg/s in the stage of intense mass transfer, but can exceed 1040 erg/s. The duration of this stage of evolution is 300 000–800 000 years. A characteristic feature of this second type of evolution is an increase in the orbital period of the system over time. As a result, after a period of intense mass loss, the star “retreats” inside the Roche lobe. A remnant of the star in the form of a white dwarf is left behind, and can end up fairly far from the IMBH.

The third type of evolution can occur for massive MS stars that are initially even farther from the IMBH, as well as for massive stars that are already evolved at the initial time. In this case, conservative mass exchange in the presence of intense stellar wind leads to the star moving away from the IMBH, without filling its Roche lobe at all. For massive stars with sufficiently strong stellar winds (for example, stars with masses ~50M), the accretion rate of matter onto the IMBH in this case can reach values that are characteristic of HLXs. As in the case of the second type of evolution, the stellar remnant can remain at a fairly large distance from the IMBH.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号