首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polarized infrared (IR) spectroscopy of olivine crystals from Zabargad, Red Sea shows the existence of four pleochroic absorption bands at 3,590, 3,570, 3,520 and 3,230 cm?1, and of one non pleochroic band at 3,400 cm?1. The bands are assigned to OH stretching frequencies. Transmission electron microscopy (TEM) shows no oriented intergrowths in this olivine; it is concluded that OH is structural. On the basis of the pleochroic scheme of the absorption spectra it is proposed that [□O(OH)3] and [□O2(OH)2] tetrahedra occur as structural elements, assuming that the vacancies are on Si sites. If M2 site vacancies were assumed [SiO3(OH)] and [SiO2(OH)2] tetrahedra occur as structural elements.  相似文献   

2.
Polarizedinfrared (IR) spectra of sanidine crystals from Volkesfeld, Eifel show the existence of two broad pleochroic absorption bands at 3,400 and 3,050 cm?1. Because overtones near 5,150 cm?1 were observed, the former bands are assigned to OH stretching frequencies of H2O molecules. On the basis of the pleochroic scheme of the bands it is proposed that H2O molecules occur as structural constituents entering theM site of the sanidine structure; the plane of the H2O molecules lies parallel to the symmetry plane.  相似文献   

3.
Several samples of wulfenite, PbMoO4, varying in colour from colourless to yellow, orange and red, have been characterised by means of IR and optical absorption spectroscopy and by microprobe analyses. A distinct pleochroic band group with absorption maxima centred at 3,380 and 3,150 cm?1 can be seen in the IR spectra of wulfenite single-crystals, indicating the presence of hydroxyl groups. The pleochroic and thermal behaviour of the OH stretching bands along with deuteration experiments, as well as results obtained from synthetic flux-grown samples, exclude the presence of submicroscopic hydrous mineral inclusions as their primary origin. The pleochroic scheme and the band positions were used to postulate a model for the OH incorporation mode, based on the assumption of vacancies on Mo and Pb sites in the structure of this ‘nominally anhydrous mineral’. Optical absorption spectra of coloured natural samples show a broad and polarised band around 23,000–24,000 cm?1, preceding the fundamental UV absorption edge, which has been identified as the reason for the colour of the mineral. The comparison with synthetic PbMoO4 single-crystals, doped with variable amounts of Cr6+, yielded conclusive evidence that trace amounts of the CrO4 2? anion group, substituting for MoO4 2?, determine the variable colour. Besides, in one sample, trace amounts of Nd3+ have been spectroscopically identified.  相似文献   

4.
The IR spectrum of an alpine, hydrothermally formed diopside containing 17 wt ppm H2O consists of three main OH absorption bands centred at 3647, 3464 and 3359 cm−1. Jadeite from a Californian vein occurrence is characterised by bands at 3616 and 3557 cm−1 and contains about 197 wt ppm H2O. Based on the pleochroic scheme of the OH absorption bands in diopside, OH defect incorporation models are derived on the basis of fully occupied cation sites and under the assumption of M1 and M2 site vacancies; OH defects replacing O2 oxygen atoms are most common. The less pronounced OH pleochroism and the broad band absorption pattern of jadeite indicate a high degree of OH defect disordering. The pleochroic scheme of the main absorption bands at 3616 and 3557 cm−1 implies partial replacement of O2 oxygen atoms by OH dipoles pointing to vacant Si sites. Under the assumption of M1 and M2 site vacancies, O1–H and O2–H defects are also derivable. OH incorporation modes assuming Si-vacancies should be considered for jadeite-rich clinopyroxenes formed in deep crust and upper mantle regions.  相似文献   

5.
Polarized FTIR spectra of near endmember forsterite single crystals from Pamir, Tadzikistan show the existence of sharp strongly pleochroic absorption bands in the region of the OH stretching fundamental. Bands centered at 3674/3624, 3647/3598 and 3640/ 3592 cm-1 are attributed to OH dipoles oriented parallel to [100]. An OH band doublet at 3570/3535 cm-1 shows both, a strong absorption parallel to [100] and a strong component parallel to [001]. On the basis of the pleochroic scheme and under the assumption of vacancies on Si- and M-sites it is proposed that O1 is partially replaced by OH defects pointing to the vacant Si-site. O3 is donator oxygen of OH dipoles lying near the O3-O1 tetrahedral edge or roughly pointing to a vacant M2-site. Also O2 can act as donator oxygen of an OH group oriented along the O2-O3 edge of a vacant M1 octahedron. The splitting of the bands is explained by the presence of Fe2+ in cation sites surrounding the OH defects.  相似文献   

6.
The infrared (IR) spectra of gem-quality olivine crystals from Pakistan, formed in serpentinised dunitic rocks, are characterised by strongly pleochroic absorption bands at 3,613, 3,597, 3,580 and 3,566 cm?1. These bands are assigned to O-H stretching vibrations of OH point defects corresponding to H2O concentrations of about 35 wt ppm. Unlike other olivine spectra, the dominating bands are strongly polarised parallel to the b-axis. The unusual spectra type, excludes the presence of planar defects. This finding is supported by transmission electron microscopy. The 3,613 cm?1 band is related to vacant Si sites, the slightly lower energetic bands preferentially to vacant M2 sites. The exclusive presence of these bands is not only a characteristic feature of olivines treated under high P,T conditions equivalent to mantle environment, the presence of these bands in untreated natural olivine also indicates formation conditions equivalent to crustal rocks.  相似文献   

7.
A detailed evaluation of the assignments given to the infrared (IR) vibrations in the lattice stretching region is presented here based on observations of the effects of various chemical substitutions in synthetic analogues of phlogopite, KMg3(AlSi3)O10(OH)2. As in previous studies, this study has confirmed that the 995, 960, and 460 cm?1 vibrations are influenced by Si, the 822 and 760 cm?1 vibrations by Al, the 915 and 725 cm?1 vibrations by Al and Si, and the 592 cm?1 vibration by OH. Contrary to previous studies, it is shown here that the 690, 495, and 375 cm?1 vibrations are strongly linked with Mg and not just Si. The 655 cm?1 band in phlogopite is attributed to an in-plane Al-O vibration rather than an Al-O-Si vibration. As a check on the band assignments made here, IR spectra were obtained for synthetic clintonite, CaMg2Al(Al3Si)O10(OH)2, as well as its chemical analogues and compared with the IR spectrum of phlogopite. The band intensities for the Si-O, Al-O, and Si-O-Mg vibrations changed in accord with the composition of clintonite. The most intense band in clintonite at 660 cm?1 appears to be associated only with Al and is assigned here to a tetrahedral Al-O-Al vibration which must be present, if not dominant, in this mineral. The near coincidence of an in-plane Al-O vibration at 655 cm?1 (phlogopite) and an in-plane Al-O-Al vibration at 660 cm?1 (clintonite) makes the identification of tetrahedral Al-Si order-disorder in trioctahedral layered silicates by IR spectroscopy very difficult. The ratio of the 822/995 cm?1 bands may, however, prove to be very useful for discerning the amount of tetrahedrally coordinated Al in these types of minerals.  相似文献   

8.
Polarized infrared absorption spectra of thin single-crystal slabs parallel to (010) and (001) of a staurolite from Pizzo Forno, Ticino, with analyzed composition (Fe2.9Mg0.9Zn0.1Mn0.1)Al17.5Ti0.1(Si7.7Al0.3)O48H3 have been measured in the range of 3000–4000 cm?1. From the pleochroitic behaviour of the OH-vibrations three groups of bands can be distinguished: the bands of group I, a strong band at 3445 cm?1 plus a weak shoulder at 3358 cm?1, and the bands of group II, a weak band centered at 3677 cm?1 plus a shoulder at 3635 cm?1, are assigned to the H1 and H2 protons, respectively. The bands of group III, a weak band at 3577 cm?1 plus a shoulder, cannot be interpreted on the basis of the proton positions known so far. We assign them to an additional proton H3, which is bonded to O1 and shows a bifurcated hydrogen bridge to two O5 in a vacant T2 site.  相似文献   

9.
Synthetic, flux-grown uvarovite, Ca3Cr2 [SiO4]3, was investigated by optical methods, electron microprobe analysis, UV-VIS-IR microspectrometry, and luminescence spectroscopy. The crystal structure was refined using single-crystal X-ray CCD diffraction data. Synthetic uvarovite is optically isotropic and crystallizes in the “usual” cubic garnet space group Ia3¯d [a=11.9973 Å, Z=8; 21524 reflections, R1=2.31% for 454 unique data and 18 variables; Cr–O=1.9942(6), Si–O=1.6447(6), Ca–Oa=2.3504(6), Ca–Ob= 2.4971(6) Å]. The structure of Ca3Cr2[SiO4]3 complies with crystal-chemical expectations for ugrandite group garnets in general as well as with predictions drawn from “cubically averaged” data of non-cubic uvarovite–grossular solid solutions (Wildner and Andrut 2001). The electronic absorption spectra of Cr3+ in trigonally distorted octahedra of synthetic uvarovite were analyzed in terms of the superposition model (SM) of crystal fields. The resulting SM and interelectronic repulsion parameters are =9532 cm?1, =4650 cm?1, power law exponent t 4=6.7, Racah B35=703 cm?1 at 290 K (reference distance R 0=1.995 Å; fixed power law exponent t 2=3 and spin-orbit parameter ζ=135 cm?1). The interelectronic repulsion parameters Racah B 55=714 cm?1 and C=3165 cm?1 were extracted from spin-forbidden transitions. This set of SM parameters was subsequently applied to previously well-characterized natural uvarovite–grossular solid solutions (Andrut and Wildner 2001a; Wildner and Andrut 2001) using their extrapolated Cr–O bond lengths to calculate the energies of the spin-allowed bands. These results are in very good agreement with the experimentally determined band positions and indicate the applicability of the superposition model to natural 3d N prevailing systems in geosciences. Single-crystal IR absorption spectra of synthetic uvarovite in the region of the OH-stretching vibration exhibit one isotropic absorption band at 3508 cm?1 at ambient conditions, which shifts to 3510 cm?1 at 77 K. This band is caused by structurally incorporated hydroxyl groups via the (O4H4)-hydrogarnet substitution. The water content, calculated using an integral extinction coefficient ?=60417 cm?2 l mol?1, is c H2O=33 ppm.  相似文献   

10.
The structure of a single crystal hydrous ringwoodite, Mg1.89Si0.98H0.30O4 synthesized at conditions of 1300?°C and 20?GPa has been analyzed. Crystallographic data for hydrous ringwoodite obtained are; Cubic with Space group: Fd3m (no. 227). a= 8.0693(5)?Å, V=526.41(9)?Å3, Z=8, Dcalc= 3.48?g?cm?3. The results of site occupancy refinement using higher angle reflections showed the existence of a small degree of Mg2+-Si4+ disorder in the structure such as (Mg1.84Si0.050.11)(Si0.93Mg0.050.02)H0.30O4. The IR and Raman spectra were measured and OH vibration spectra were observed. A broad absorption band was observed in the IR spectrum and the maxima were observed at 3160?cm?1 in the IR and at 3165?cm?1 and 3685?cm?1 in relatively sharp Raman spectra, which suggest that locations between O-O pairs around the octahedral 16c and 16d sites are possible sites for hydrogen.  相似文献   

11.
Optical absorption spectra (OAS) of synthetic single crystals of the solid solution spinel sensu stricto (s.s.)–magnesioferrite, Mg(Fe3+Al1???y)2O4 (0?y?≤ 0.3), have been measured between 12 500 and 28 500?cm?1. Chemical composition and Fe3+ site distribution have been measured by electron microprobe and Mössbauer spectroscopy, respectively. Ferric iron is ordered to the tetrahedral site for samples with small magnesioferrite component, and this ordering is shown to increase with magnesioferrite component. The optical absorption spectra show a strong increase in band intensities with Fe3+→Al substitution. Prominent and relatively sharp absorption bands are observed at 25 300 and 21 300?cm?1, while less intense bands occur at 22 350, 18 900, 17 900 and 15 100?cm?1. On the basis of band energies, band intensities and the compositional effect on band intensity, as well as structural considerations, we assign the observed bands to electronic transitions in IVFe3+VIFe3+clusters. A linear relationship (R 2= 0.99) between the αnet value of the absorption band at 21 300?cm?1 and [IVFe3+]?·?[VIFe3+] concentration product has been defined: αnet=2.2?+?15.8 [IVFe3+]?·?[VIFe3+]. Some of the samples have been heat-treated between 700 and 1000?°C to investigate the relation between Fe3+ ordering and absorption spectra. Increase of cation disorder with temperature is observed, which corresponds to a 4% reduction in the number of active clusters. Due to the high spatial resolution (??~?10?μm), the OAS technique may be used as a microprobe for determination of Fe3+ concentration or site partitioning. Potential applications of the technique include analysis of small crystals and of samples showing zonation with respect to total Fe3+ and/or ordering.  相似文献   

12.
The infrared spectroscopic properties of selected OH defects in zircon are investigated by first-principles calculations. The explicit treatment of the coupled nature of OH motions in the stretching modes, together with the calculation of the intensity and polarization of absorption bands, makes it possible to directly compare theoretical and experimental data. The bands observed at 3,420 cm?1 (polarization parallel to c axis) and 3,385 cm?1 (polarization perpendicular to c axis) in natural and synthetic samples correspond to the IR-active vibrational modes of the hydrozircon defect, that is, fully protonated Si vacancy. The broad band observed at 3,515 cm?1 in the spectrum of zircon crystals grown in F-rich environments is consistent with the occurrence of composite (OH,F) tetrahedral defects. Calculations also show that the band observed at 3,200 cm?1 in the spectrum of synthetic undoped samples can be ascribed to fully protonated Zr vacancies. The theoretical values of integrated absorption coefficients indicate that general correlations can be reasonably used to determine the concentration of OH groups in zircon.  相似文献   

13.
The incorporation of OH defects in quartz from the systems quartz–water, quartz–albite–water and granite–water at pressures between 5 and 25?kbar and temperatures between 800 and 1,000?°C was investigated by IR spectroscopy. The two most important OH absorption features can be assigned to hydrogarnet defects (absorption band at 3,585?cm?1) and coupled substitutions involving Al3+ (Al–H defects, absorption bands at 3,310, 3,378 and 3,430?cm?1). Al incorporation in quartz is controlled by mineral/melt partitioning (D Al Qz/Melt ?=?0.01) and exhibits a negative pressure dependence. This trend is not clearly reflected by the concentration of Al–H defects, which shows positive deviations from the theoretical 1:1 correlation of Al/H for some samples. In contrast to the Al–H defects, formation of hydrogarnet defects appears to be positively correlated to pressure and water activity, and may be used a petrological indicator. The overall water concentration exhibits only minor changes with pressure and temperature, but a clear correlation of water activity (controlled by various amounts of dissolved salts) and hydrogarnet substitution could be established.  相似文献   

14.
Summary IR spectra of phenakite single crystals from different localities show a distinct variability in the region of the OH stretching fundamental. Minute hydrous mineral phases (tourmaline, bertrandite) are included in Piracicaba phenakite. Structural OH, ranging up to 0.005 equivalent wt.% H2O, is characterized by two extremely pleochroic bands centered at 3380 and 3120 cm–1. On the basis of their pleochroic scheme it is proposed that (O2(OH)2) and (O3(OH)) tetrahedra occur as structural elements, assuming that the vacancies are on Be sites.
Das Auftreten von OH Absorptionen in Phenakit—eine IR spektroskopische Untersuchung
Zusammenfassung Die IR Spektren von Phenakit-Einkristallen verschiedener Vorkommen zeigen im Bereich der OH-Streckschwingungen eine deutliche Variabilität. Piracicaba Phenakit enthält feinste Einschlüsse von OH-hältigen Mineralphasen (Turmalin, Bertrandit). Strukturell gebundene OH-Gruppen (bis 0,005 äquivalente Gew.% H2O) sind durch zwei extrem pleochroitische Banden bei 3380 und 3120 cm–1 charakterisiert. Unter der Annahme von Be-Leerstellen werden aufgrund des Pleochroismus dieser Banden (O2(OH)2) und (O3(OH)) Tetraeder als strukturelle Baueinheiten vorgeschlagen.


With 3 Figures  相似文献   

15.
Over thirty samples of natural Ti-bearing amphiboles with Ti- and Fe-contents ranging from 0.111 to 0.729 atom per formula unit (a.p.f.u.) and from 0.479 to 2.045 a.p.f.u., respectively, were studied by means of optical absorption spectroscopy and microprobe analysis. Thirteen samples were also studied by Mössbauer spectroscopy. A strong pleochroic absorption edge, causing the dark brown colours of Ti-bearing amphiboles, is attributed to ligand-metal and metal-metal charge transfer transitions involving both iron and titanium ions (O2?→ Fe3+, Fe2+, O2?→ Ti4+ and Fe2+ + Ti4+→ Fe3+ + Ti3+). A broad intense Y-polarized band ~22?000?cm?11/2?≈?3700?cm?1) in spectra of two low iron amphiboles with a relatively low Fe3+/Fetotal ratio, both from eclogite-like rocks in kimberlite xenoliths, was attributed to electronic Fe2+(M3) + Ti4+(M2)→Fe3+(M3)+Ti3+(M2) IVCT transitions. The IVCT bands of other possible ion pairs, involving Ti4+ and Fe2+ in M2 and M1, M4 sites, respectively, are presumed to be at higher energies, being obscured by the absorption edge.  相似文献   

16.
Saprolites are residual soils which preserve the textures of their parent rocks and thus have evolved by an isovolumetric process of weathering (MILLOT, 1970, The Geology of Clays, Springer). Using bulk density, saprolite elemental analyses can be converted to units of g cm?3. Furthermore, an empirical reaction progress diagram can be constructed for a suite of saprolite samples by plotting element concentrations (in g cm?3) against bulk density (B.D.). Our data for a granite saprolite show that Al2O3 and SiO2 decrease in a linear fashion from B.D. 2.1g cm?3 to 1.5g cm?3 but that K2O follows a curvilinear trend such that it decreases from 75% of its fresh rock value at B.D. 1.6 g cm?3 to nearly zero at B.D. 1.5 g cm?3. The only hypothetical reaction paths that are compatible with these B.D. vs A12O3, SiO2 and K2O constraints are those in which orthoclase alters to kaolinite through an intermediate potassium phase similar to KAl3Si3O10(OH)2 or KAl2Si2O6(OH)3 (hypothetical K-kaolinite). Normative mineral calculations, X-ray diffraction data and structural H2O data are employed to test this conclusion.  相似文献   

17.
We performed in situ infrared spectroscopic measurements of OH bands in a forsterite single crystal between ?194 and 200 °C. The crystal was synthesized at 2 GPa from a cooling experiment performed between 1,400 and 1,275 °C at a rate of 1 °C per hour under high silica-activity conditions. Twenty-four individual bands were identified at low temperature. Three different groups can be distinguished: (1) Most of the OH bands between 3,300 and 3,650 cm?1 display a small frequency lowering (<4 cm?1) and a moderate broadening (<10 cm?1) as temperature is increased from ?194 to 200 °C. The behaviour of these bands is compatible with weakly H-bonded OH groups associated with hydrogen substitution into silicon tetrahedra; (2) In the same frequency range, two bands at 3,617 and 3,566 cm?1 display a significantly anharmonic behaviour with stronger frequency lowering (42 and 27 cm?1 respectively) and broadening (~30 cm?1) with increasing temperature. It is tentatively proposed that the defects responsible for these OH bands correspond to H atoms in interstitial position; (3) In the frequency region between 3,300 and 3,000 cm?1, three broad bands are identified at 3,151, 3,178 and 3,217 cm?1, at ?194 °C. They exhibit significant frequency increase (~20 cm?1) and broadening (~70 cm?1) with increasing temperature, indicating moderate H bonding. These bands are compatible with (2H)Mg defects. A survey of published spectra of forsterite samples synthesized above 5 GPa shows that about 75 % of the incorporated hydrogen belongs to type (1) OH bands associated with Si substitution and 25 % to the broad band at 3,566 cm?1 (type (2); 3,550 cm?1 at room temperature). The contribution of OH bands of type (3), associated to (2H)Mg defects, is negligible. Therefore, solubility of hydrogen in forsterite (and natural olivine compositions) cannot be described by a single solubility law, but by the combination of at least two laws, with different activation volumes and water fugacity exponents.  相似文献   

18.
The transformation of vivianite and the direct synthesis starting from pure chemicals lead to the formation of lipscombite {Fe x 2+ Fe 3?x 3+ [(OH)3?x/(PO4)2]} with varying Fe2+/Fe3+ molar ratios. The influence of this ratio on the Mössbauer spectra, solubility, electrokinetic potential and infrared spectra has been studied. By means of Mössbauer spectroscopy, the distribution of the Fe2+ and Fe3+ ions between the octahedral sites I and II has been investigated. The unit cell dimensions have been determined from Guinier-Hägg X-ray diffraction patterns. The crystal system is tetragonal for synthetic lipscombite with a=5.3020±0.0005 Å and c=12.8800±0.0005 Å. Lipscombite has been found to show a negative and time-dependent zeta-potential which, moreover, is influenced by the pH of the suspension and the Fe2+/Fe3+ molar ratio. An explanation of the time-dependence of the zeta-potential on variations of solubility is proposed. Infrared absorption spectrum only is characterized by two absorption bands: v OH(3,500 cm?1) and v P?O(1,100-960 cm?1). The density at 25° C is determined in toluene as 3.36±0.01 g·cm?3.  相似文献   

19.
The assignment of spin-allowed Fe2+-bands in orthopyroxene electronic absorption spectra is revised by studying synthetic bronzite (Mg0.8 Fe0.2)2Si2O6, hypersthene (Mg0.5 Fe0.5)2Si2O6 and ferrosilite (Fe2Si2O6). Reheating of bronzite and hypersthene single crystals causes a redistribution of the Fe2+-ions over the M1 and M2 octahedra, which was determined by Mössbauer spectroscopy and correlated to the intensity change of the spin-allowed Fe2+ d-d bands in the polarized absorption spectra. The 11000 cm-1 band is caused by Fe2+ in M1 (5B2g5A1g) and Fe2+ in M2 (5A15A1), the 8500 cm-1 band by Fe2+ in M1 (5B2g5B1g) and the 5000 cm-1 band by Fe2+ in M2 octahedra (5A15B1). The Fe2+-Fe3+ charge transfer band is identified at 12500cm-1 in the spectra of synthetic Fe3+ -Al bearing ferrosilite. This band shows a strong γ-polarization and therefore is caused by Fe2+ -Fe3+-ions in edge-sharing octahedra.  相似文献   

20.
Olivine crystals from two mantle nodules in kimberlites (pipe Udachnaya and pipe Obnazennaya, Yakutiya, Siberia) were investigated using EMP, TEM, AEM and FTIR techniques to determine the mode of hydrogen occurrence in olivine. Olivine contains three types of nanometer-sized inclusions: “large” inclusions of hexagonal-like shape up to several hundred nm in size (1), lamellar defects (2) and small inclusions of hexagon-like shape up to several 10?nm in size (3). Lamellar defects and small inclusions are considered to be a “hydrous” olivine. All three types of inclusions contain OH? or water, but they are different with respect to their phase composition. In “large” inclusions (1) hydrous magnesium silicates, such as serpentine?+?talc (“kerolite”?) and 10-Å phase?+?talc were identified. Lamellar defects (2) and small inclusions (3) are depleted in Mg and Fe compared to the olivine matrix, while the silica content is the same as that of olivine. Modulations in the periodicity of the olivine structure are observed in SAED patterns and HREM images of (2) and (3). The superperiodicity can be referred to OH?-bearing point defect ordering in the olivine structure. If this is the case, the material of both lamellar defects and small inclusions can be assumed to be a “hydrous olivine” Mg2– x v x SiO4H2 x with a cation-deficient olivine crystal structure. Thus, both an extrinsic mode of hydrogen occurrence in olivine, such as nanometer-sized inclusions of OH?-bearing magnesium silicates, and an intrinsic mode of hydrogen incorporation into the olivine structure, such as “hydrous olivine” in itself, were found. The data obtained here show that the OH absorption bands observed in olivine spectra at 3704(3717) and 3683(3688) cm?1 can be unambiguously identified with serpentine; the band at 3677(3676) cm?1 can be associated with talc. The absorption bands observed at 3591 and 3660?cm?1 in olivine match those of the 10-Å phase at 3594, 3662 and 3666?cm?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号