首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
一个含有丰富快速精细结构的射电大爆发   总被引:2,自引:2,他引:0  
本文对1990年7月30日云南天文台四波段太阳射电高时间分辨率同步观测系统^「1,2」所观测到的太阳射电大爆发进行了分析,对在1.42GHz,2.00GHz,2.84GHz三个波段上观测到的大量尖峰辐射作了关于寿命和强度的统计,最后,针对本次爆发中的ms-spikes的特点做了一些讨论。  相似文献   

2.
概述了1988年12月16日出现在微波Ⅳ型大爆发上的快变分量观测特征,以及由MHD调制磁流管的磁场强度,而产生了12.5min和1.2min的长短准周期振荡,呈部分高能电子被磁场俘获,做同步加速回旋辐射,产生了微波Ⅳ型爆发,另一部分能电子以一定入射角喷注磁拱上,形成螺距角各为异性的空心束分布,其电子回旋不稳定性导致spike辐射。最后,用慢波模式计算了三个频率上的1.2min的准周期振荡,结果表明  相似文献   

3.
日食为射电天文提供了一维高空间分辨率太阳射电观测机会,日食射电观测在太阳射电物理的发展上起过重要的作用,文中对日食射电观测的若干重要因素作了介绍和分析,日食射电观测在我国太阳射电天文台发展上也起了重要作用,文中简要介绍了在我国组织观测的1958年,1968年,1980年及1987年太阳射电日食观测及其主要结果。  相似文献   

4.
本文介绍了太阳射电Ⅱ型爆发中一种独特的精细结构现象──频率分裂,并对它的观测特征和理论解释做了总结。最后,还对现存众多的理论模型逐一作了讨论。  相似文献   

5.
本文以近20年来Ⅱ型爆发的地面观测和空间观测的巨大成就,概述了Ⅱ型爆发的主要特征,源的结构、大小和运动;着重介绍了Ⅱ型爆发激发机制和辐射机制的最新理论;最后讨论了目前观测和理论研究中存在的问题。  相似文献   

6.
回顾了自1979年以来云南天文台太阳射电天文仪器,技术和方法以及研究方面的进展。  相似文献   

7.
耿立红 《天文学进展》2000,18(2):91-103
叙述了太阳射电天文和太阳物理上作出过杰出贡献的几个射电日像仪的概况及其进步与发展,并简述了未来射电日像仪可以完成的科学目标以及应具有的特点,以期为在21世纪我国实现“一颗空间X射线卫星、一座红外太阳塔和一台射电像仪”的宏伟构想提供研制依据。  相似文献   

8.
利用云南天文台射电四频率(1.42,2.13,2.84和4.26GHz)同步观测系统于1989.12-1994.1和北京天文台射电频谱仪(2.6-3.8GHz)于1996.11-1998.5的观测资料,仅对太阳和射电爆发中40个事件作了一个初步的统计分析,就微波低频段的快速精细结构在耀斑中产生的相位作了一个探索,期望找出太阳射电在此频段内快速活动产生相位的规律性。  相似文献   

9.
陈晓娟 《天文学报》1997,38(1):25-33
云南天文台快速采样射电望远镜(1.42GHz,2.84GHz,4.00GHz)于1988年12月16日观测到一次特大微波IV型爆发。爆发从世界时08^h31^m结束。在70分钟的持续期内,爆发出现了五个主峰段,呈现出12.5分钟的长周期振荡和1.2分钟的短周期振荡。其中两个频率上出现了丰富的快速精细结构。根据爆发源区的扭斜磁场位形,本文提出振荡是MHD调制磁流管的磁场强度产生的,爆发是高能电子在磁  相似文献   

10.
云南天文台快速采样射电望远镜(1.42GHz,2.84GHz,4.00GHz)于1988年12月16日观测到一次特大微波Ⅳ型爆发.爆发从世界时08h31m开始,至09h41m结束.在70分钟的持续期内,爆发出现了五个主峰段,呈现出12.5分钟的长周期振荡和1.2分钟的短周期振荡.其中两个频率上出现了丰富的快速精细结构.根据爆发源区的扭斜磁场位形,本文提出振荡是MHD调制磁流管的磁场强度产生的,爆发是高能电子在磁场中被俘获做同步加速回旋辐射的结果,为此作出了定量和定性的解释.  相似文献   

11.
Wang  M.  Fu  Q.J.  Xie  R.X.  Huang  G.L.  Duan  C.C. 《Solar physics》2001,199(1):157-164
Two microwave type-U bursts observed with the 2.6–3.8 GHz spectrometer of Beijing Astronomical Observatory (BAO) are described and analysed in this paper. The microwave type-U bursts have very short durations (about 200 ms), narrow bandwidth, high-frequency drift rates of the ascending and descending branches, and a high degree of circular polarization (80%). The sense of polarization remains the same from the ascending to the descending branch.  相似文献   

12.
High sensitivity, high time resolution recordings of microwave radio bursts show a number of periodic and quasi-periodic bursts which exhibit intervals of the order of 10–20 s. Some of the bursts are accompanied by simultaneous pulsations of the same interval detected in X-rays, type III-m, and extreme ultraviolet emissions. Mechanisms to explain solar radio pulsations are reviewed to see which can explain or be extended to explain these observations.Supported by a company-financed research program of The Aerospace Corporation.  相似文献   

13.
Lesovoi  S.V.  Kardapolova  N.N. 《Solar physics》2003,216(1-2):225-238
An analysis of solar radio bursts with temporal fine structure (TFS) at 5730 MHz in relation to the magnetic configuration of the corresponding active regions (AR) is presented. We found that the occurrence of TFS bursts increases with increasing complexity of the AR's magnetic configuration. The degree of polarization of TFS bursts varies over a wide range. Most of these fast bursts with a high degree of polarization were observed in active regions with a simple magnetic configuration β. Most of the unpolarized fast bursts were observed in active regions with the most complicated configuration βγδ. Because bursts that are polarized in different modes have different displacements of position with respect to that of associated microwave bursts, we conclude that there are at least two types of TFS bursts at 5730 MHz. We think that fast bursts that are polarized in the ordinary mode are due to microwave type III bursts.  相似文献   

14.
A New Catalogue of Fine Structures Superimposed on Solar Microwave Bursts   总被引:1,自引:0,他引:1  
The 2.6-3.8 GHz, 4.5-7.5 GHz, 5.2-7.6 GHz and 0.7-1.5 GHz component spectrometers of Solar Broadband Radio Spectrometer (SBRS) started routine observations, respectively, in late August 1996, August 1999, August 1999, and June 2000. They just managed to catch the coming 23rd solar active maximum. Consequently, a large amount of microwave burst data with high temporal and high spectral resolution and high sensitivity were obtained. A variety of fine structures (FS) superimposed on microwave bursts have been found. Some of them are known, such as microwave type Ⅲ bursts, microwave spike emission, but these were observed with more detail; some are new. Reported for the first time here are microwave type U bursts with similar spectral morphology to those in decimetric and metric wavelengths, and with outstanding characteristics such as very short durations (tens to hundreds ms), narrow bandwidths, higher frequency drift rates and higher degrees of polarization. Type N and type M bursts were also observed. Detailed zebra pattern and fiber bursts at the high frequency were found. Drifting pulsation structure (DPS) phenomena closely associated with CME are considered to manifest the initial phase of the CME, and quasi-periodic pulsation with periods of tens ms have been recorded. Microwave “patches”, unlike those reported previously, were observed with very short durations (about 300ms), very high flux densities (up to 1000 sfu), very high polarization (about 100% RCP), extremely narrow bandwidths (about 5%), and very high spectral indexes. These cannot be interpreted with the gyrosynchrotron process. A superfine structure in the form of microwave FS (ZPS,type U), consisting of microwave millisecond spike emission (MMS), was also found.  相似文献   

15.
本文介绍了云南天文台四波段(1.42,2.13,2.84和4.26GHz)太阳射电高时间分辩率同步观测得到的五个微波II型爆发事件,它们具有宽频带、长和短寿命、内向和外向快速频漂等特征.观测事例表明,非热电子束引起的等离子体辐射和电子回旋脉泽辐射两种机制都可能发生.这些观测特征既不完全同于米波—分米波II型爆发,也不完全同于微波高频段II型爆发,说明在微波低频段可能存在二重性或过渡现象  相似文献   

16.
The active region McMath 10433 was the source of several flares and radio outbursts during the early part of July 1974. This region was tracked continuously, for several periods during the month at 22.2 GHz using a telescope with a 4 beam. Comparison with the results obtained simultaneously with a normal 7 GHz solar patrol instrument indicate that there is important burst activity occurring at levels below the detection limit of normal solar patrol instruments. The time-development morphology of these bursts is similar to those normally observed and has enabled the simple events to be re-interpreted. A completely new type of event - the fast absorption - has also been recognized. The correlation of the microwave events with SPA events observed on VLF propagation is also discussed.Spending a sabbatical year at CRAAM, São Paulo, Brazil.  相似文献   

17.
Radio observation is one of important methods in solar physics and space science. Sometimes, it is almost the sole approach to observe the physical processes such as the acceleration, emission, and propagation of non-thermal energetic particles, etc. So far, more than 100 solar radio telescopes have been built in the world, including solar radiometers, dynamic spectrometers, and radioheliographs. Some of them have been closed after the fulfillment of their primary scientific objectives, or for their malfunctions, and thus replaced by other advanced instruments. At the same time, based on some new technologies and scientific ideas, various kinds of new and much more complicated solar radio telescopes are being constructed by solar radio astronomers and space scientists, such as the American E-OVSA and the solar radio observing system under the framework of Chinese Meridian Project II, etc. When we plan to develop a new solar radio telescope, it is crucial to design the most suitable technical parameters, e.g., the observing frequency range and bandwidth, temporal resolution, frequency resolution, spatial resolution, polarization degree, and dynamic range. Then, how do we select a rational set of these parameters? The long-term observation and study revealed that a large strong solar radio burst is frequently composed of a series of small bursts with different time scales. Among them, the radio spike burst is the smallest one with the shortest lifetime, the narrowest bandwidth, and the smallest source region. Solar radio spikes are considered to be related to a single magnetic energy release process, and can be regarded as an elementary burst in solar flares. It is a basic requirement for the new solar radio telescope to observe and discriminate these solar radio spike bursts, even though the temporal and spatial scales of radio spike bursts actually vary with the observing frequency. This paper presents the scaling laws of the lifetime and bandwidth of solar radio spike bursts with respect to the observing frequency, which provide some constraints for the new solar radio telescopes, and help us to select the rational telescope parameters. Besides, we propose a spectrum-image combination mode as the best observation mode for the next-generation solar radio telescopes with high temporal, spectral, and spatial resolutions, which may have an important significance for revealing the physical essence of the various non-thermal processes in violent solar eruptions.  相似文献   

18.
Magnetic field estimation in microwave radio sources   总被引:1,自引:0,他引:1  
Zhou Ai-hua  M. Karlický 《Solar physics》1994,153(1-2):441-444
Eliminating the termN L, useful formulae for the magnetic field estimation in microwave radio sources are presented. Applications of these formulae to observed solar microwave radio bursts are shown.  相似文献   

19.
V. K. Verma 《Solar physics》1985,97(2):381-385
It is found that 20% solar surges are associated with microwave bursts (2800–15000 MHz) and also that solar surges are not associated with hard X-ray bursts (17–40 keV).  相似文献   

20.
M. Stählt  M. Fuhrer 《Solar physics》1988,114(1):105-113
Observations of solar microwave bursts have shown fine structures (e.g., the millisecond spikes), not resolvable in time and frequency by existing instruments. In order to investigate these features in greater detail we have developed a spectrometer with high temporal and spectral resolution. The frequency range from 3000 to 4000 MHz is covered by 32 channels with different bandwidths (0.1, 5, and 20 MHz). The instrument is fully controlled by a multiprocessor computer system and allows the recording of about 200 000 measurements per second. Thus it is possible to observe the intensity and the circular polarization of all the 32 channels with a time resolution of about 350 s. A very flexible frequency selection system allows the use of many different observation modes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号