首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
2.
《Geodinamica Acta》2013,26(3-4):107-122
Abstract

The results of geomorphic analysis of the Concud fault-generated mountain front (central Iberian Chain, Spain) are introduced into classifications of fault activity proposed by previous authors, and compared with slip rates calculated from geologic markers. The Concud fault is an extensional structure active since the mid Pliocene times. It gives rise to a 60 to 120 m high mountain front, where footwall rocks belonging to the Triassic and Jurassic (north-western sector) and Miocene (south-eastern sector) crop out. Conspicuous triangular facets are preserved on Jurassic rocks of the central sector, while short, generally non-incised alluvial fans make the piedmont. The value of the Mountain-front sinuosity index is Smf = 1.24 for the whole mountain front (1.17 and 1.32, respectively, for both segments showing distinct footwall lithology), as obtained by the most conservative procedure. Average valley floor width/height ratios calculated for seventeen gullies crossing the fault are Vf = 0.30 (250 m upstream from the fault trace) and Vf = 0.22 (500 m upstream). These geomorphic indices, together with qualitative features of the escarpment and piedmont landscape, indicate ‘moderate’ to ‘rapid’ fault activity. The range of slip rates estimated from such morphotectonic classification (0.03 to 0.5 mm/y) encloses the range calculated from offset Late Pliocene and Pleistocene stratigraphic markers (0.07 to 0.33 mm/y). Nevertheless, the highest potential slip rate (0.5 mm/y) clearly represents an overestimate: the mountain front could give the impression of an anomalously high level of activity owing to episodic rejuvenation caused by base level drop.  相似文献   

3.
The stress evolution of the central-eastern Iberian Chain during the Tertiary compression has been a matter of discussion during the last decades. In particular, there is not a complete agreement on whether the tectonic evolution is controlled by different external stress fields or it is essentially related to a single stress field with multiple stress perturbations. A systematic procedure to discriminate between these two hypotheses is proposed. The procedure involves statistical computing of local compression directions, identifying and ‘filtering’ stress deviations on outcrop to map scale, and timing of paleostresses. The latter has been interpreted from both analysis of cross-cut relationships of structures and consideration of the palaeostress record through the sequence of syntectonic sedimentary units. The results suggest that a single stress field with multiple perturbations cannot explain the ensemble of compression directions inferred in the region. The final proposed model includes three different, partially superposed Intraplate Stress Fields ISF (NE–SW, ESE–WNW to SSE–NNW, and NNE–SSW ISFs), driven by genetically independent far-field tectonic forces related with the active Iberia plate margins, and showing both local and regional deflection of stress trajectories.  相似文献   

4.
《Geodinamica Acta》1999,12(2):113-132
The Aguilón Subbasin (NE Spain) was originated daring the Late Jurassic-Early Cretaceous rifting due to the action of large normal faults, probably inherited from Late Variscan fracturing. WNW-ESE normal faults limit two major troughs filled by continental deposits (Valanginian to Early Barremian). NE-SW faults control the location of subsidiary depocenters within these troughs. These basins were weakly inverted during the Tertiary with folds and thrusts striking E-W to WNW-ESE involving the Mesozoic-Tertiary cover with a maximum estimated shortening of about 12 %. Tertiary compression did not produce the total inversion of the Mesozoic basin but extensional structures are responsible for the location of major Tertiary folds. Shortening of the cover during the Tertiary involved both reactivation of some normal faults and development of folds and thrusts nucleated on basement extensional steps. The inversion style depends mainly on the occurrence and geometry of normal faults limiting the basin. Steep normal faults were not reactivated but acted as buttresses to the cover translation. Around these faults, affecting both basement and cover, folds and thrusts were nucleated due to the stress rise in front of major faults. Within the cover, the buttressing against normal faults consists of folding and faulting implying little shortening without development of ceavage or other evidence of internal deformation.  相似文献   

5.
On the basis of an analysis of structural surface data in addition to previously available and new magnetotelluric data, it was possible to reconstruct the evolution of Bicorb-Quesa Diapir. This was initiated as a reactive diapir in relation to a basement fault. The reactive diapir was rejuvenated by a thin-skinned compression during the Paleogene and rose during an extensional early-middle Miocene phase. Later, in the middle Miocene, the diapir was squeezed and then, in the late Miocene, was extensionally reactivated. The current reconstruction allows us to analyse a diapir affected by a thin-skinned contractional deformation located on top of a pre-existing basement fault. Our study highlights the role played by the geometric relationship between the propagation direction of the cover deformation and the basement fault.  相似文献   

6.
A Lower Cretaceous (Aptian) succession of carbonate rocks in the southern Maestrat Basin (Iberian Chain, Spain) was analysed in terms of sedimentological and palaeontological criteria. The shallow marine sequence was deposited upon a homoclinal carbonate ramp. Five main facies types were distinguished: (A) peloidal and bioclastic grainstones and rudstones of the inner ramp shoals; (B) orbitolinid wackestones-packstones of the distal outer ramp; (C) peloid and Ostrea wackestones-packstones of the middle outer ramp; (D) coral-algal sheetstones of the proximal outer ramp; and (E) coral-algal platestones-domestones of the middle ramp. Coral-bearing facies types (D) and (E) showed similar major environmental factors: low energy hydrodynamism, low light intensity and apparently nutrient-rich water. Slight differences in these conditions are reflected in the different growth forms and coral assemblages. Coral-algal sheetstones are characterized by sheet-like and lamellar forms with a low coral diversity not clearly dominated by any taxon. Coral-algal platestones-domestones develop platy, tabular and irregular massive forms with a slightly higher coral diversity characterized by a Microsolenina-Faviina association. The coral fauna is revised taxonomically and yielded a total of 22 species in 18 genera (21 Scleractinia species, one Octocorallia species). Genera of the suborders Microsolenina and Faviina predominate, those of the suborders Stylinina, Fungiina, Rhipidogyrina and the order Coenothecalia are subordinate.  相似文献   

7.
Cortés  & Maestro 《地学学报》1998,10(5):287-294
Palaeostresses inferred from brittle mesostructures in the eastern Duero Basin show a recent stress field characterized by an extensional regime, with local strike-slip and compressional stress states. Orientations of the maximum horizontal stress ( SHmax ) show a relative scattering with two main modes: NNE to NE–SW and NW–SE. These orientations suggest the existence of two stress sources responsible for the dominant directions of the maximum horizontal stress in northeastern Iberia. Extensional structures within a broad-scale compressional stress field can be related to both the decrease in relative stress magnitudes from active margins to intraplate regions and rifting proccesses ocurring in eastern Iberia. Stress states with NW–SE-trending SHmax are compatible with the dominant pattern established for western Europe. NE–SW orientations of SHmax suggest the occurrence of tectonic forces coming from the Pyrenean zone. Geological and geophysical data indicate the existence of both orientations from the upper Miocene to the present-day in NE Iberia.  相似文献   

8.
It is now generally accepted that the Oceanic Anoxic Event 1a [OAE 1a] correlates with the lower part of the Leupoldina cabri planktonic foraminiferal Zone. Its calibration against the standard ammonite scale, however, seems to be more problematic. This is due, in part, to the fact that ammonites are scarce and/or of little diagnostic value from a biochronological viewpoint in the lower Aptian pelagic successions where the black shale horizons are better developed.We have been able to characterize OAE 1a geochemically in the relatively shallow water deposits of the eastern Iberian Chain (Maestrat Basin, eastern Spain), where ammonite faunas are rich. The interval corresponding to this event is dominated by the genera Roloboceras and Megatyloceras, accompanied by Deshayesites forbesi and Deshayesites gr. euglyphus/spathi. This assemblage is characteristic of the middle/upper part of the Deshayesites weissi Zone. The first occurrence of the species Deshayesites deshayesi (d'Orbigny), which marks the base of the overlying zone, takes place in our sections some metres above the OAE 1a interval.In the historical stratotype region of Cassis-La Bédoule (southern Provence Basin, southeastern France), the OAE 1a interval is also characterized by the presence of Roloboceras and Megatyloceras. Nevertheless, it has usually been correlated with the D. deshayesi Zone. In our opinion, this discrepancy is due to divergences in the taxonomic assignments of the deshayesitids present in these beds. In fact, the specimens attributed by French authors [Ropolo, P., Conte, G., Gonnet, R., Masse, J.P., Moullade, M., 2000. Les faunes d'Ammonites du Barrémien supérieur/Aptien inférieur (Bédoulien) dans la région stratotypique de Cassis-La Bédoule (SE France): état des connaissances et propositions pour une zonation par Ammonites du Bédoulien-type. Géologie Méditerranéenne 25, 167–175; Ropolo, P., Moullade, M., Gonnet, R., Conte, G., Tronchetti, G., 2006. The Deshayesitidae Stoyanov, 1949 (Ammonoidea) of the Aptian historical stratotype region at Cassis-La Bédoule (SE France), Carnets de Géologie / Notebooks on Geology Memoir 2006/01, 1–46.] to D. deshayesi and D. dechyi can be reinterpreted as belonging to D. forbesi.Following this reinterpretation, the Roloboceras beds (equivalent of OAE 1a) of Cassis-La Bédoule would also correspond to the D. weissi Zone. This age is additionally corroborated by data from southern England [Casey, R., 1961a. The stratigraphical palaeontology of the Lower Greensand. Palaeontology 3, 487–621; Casey, R., 1961b. A Monograph of the Ammonoidea of the Lower Greensand, part III. Palaeontographical Society, London, pp. 119–216], and by our recent observations in Le Teil (Ardèche Platform, southeastern France), where the Roloboceras faunas are also associated with Deshayesites consobrinus and Deshayesites gr. euglyphus, taxa that are characteristic of the D. weissi Zone.  相似文献   

9.
Fluid inclusions and clay mineralogy of the Permo-Triassic rocks from the Espina and Espadà Ranges (SE Iberian Chain, Spain) have been investigated to establish their relationship with hydrothermal fluid circulation during the Alpine Orogeny. Primary fluid inclusions in quartz-filled tension gashes in Permo-Triassic sandstones reveal maximum temperatures around 230 °C and very constant salinities of 8.5% wt. eq. NaCl. Secondary fluid inclusions found in quartz from the Santonian Ba–Cu–Hg deposits show similar compositional and thermodynamic characteristics, denoting an Alpine recrystallization. Clay mineral composition of Permo-Triassic mudrocks is characterized by pyrophyillite, indicating low-grade metamorphic conditions. Field observations and experimental data suggest that the crystallization of quartz in tension gashes, the formation of secondary fluid inclusions and the development of the metamorphism are contemporaneous and related to fluid circulation during the Alpine compression. Fluid flow took place along the Hercynian fault system that was reactivated during the Mesozoic rift stage and inverted during the Alpine deformation.  相似文献   

10.
11.
Situated in the inner zone of the Iberian massif, the Tormes gneiss dome is composed of two units with different lithological contents and metamorphic evolution. The upper unit consists of a thick sequence of low- to high-grade metasediments, ranging in age from Late Proterozoic to Silurian. The lower unit is a high-grade metamorphic complex composed mostly of granitic orthogneisses and minor amounts of metasediments. Four Variscan deformations are distinguished. At deep structural levels, the most prominent D1 ductile structures are recumbent anticlines with NE vergence, cored by orthogneisses, and separated by narrow synclines. These recumbent folds grade upward into less-flattened and NE-vergent steeper structures. The overall structure is that of a large-scale stacking of orthogneissic slices underlying a shortened and thickened sedimentary sequence that formed a huge orogenic wedge in this region. During the heterogeneous and ductile D2 deformation, the rheological behaviour of the orthogneisses and metasediments became similar. The vertical D2 shortening associated with a strong top-to-the-SE shearing in a large-scale subhorizontal shear zone folded the prior SW-dipping structures, developing SW-vergent folds with axes close to NW–SE L2 mineral and stretching lineations. D2 corresponds to post-collisional crustal thinning following D1 crustal thickening. The D3 and D4 late structures are much more localized and occurred under retrograde conditions, but have a significant effect on the final geometry of the metamorphic complex. This sequence of contractional and extensional deformative events permits a tectonic interpretation in the framework of the dynamic wedge theory based on the evolution in the time of the stress configuration applied to a portion of the crust.  相似文献   

12.
13.
In the Guadix-Baza Basin (Betic Cordillera) lies the Baza Fault, a structure that will be described for the first time in this paper. Eight gravity profiles and a seismic reflection profile, coupled with surface studies, indicate the existence of a NE-dipping normal fault with a variable strike with N-S and NW-SE segments. This 37-km long fault divides the basin into two sectors: Guadix to the West and Baza to the East. Since the Late Miocene, the activity of this fault has created a half-graben in its hanging wall. The seismic reflection profile shows that the fill of this 2,000–3,000 m thick asymmetric basin is syntectonic. The fault has associated seismicity, the most important of which is the 1531 Baza earthquake. Since the Late Tortonian to the present, i.e. over approximately the last 8 million years, extension rates obtained vary between 0.12 and 0.33 mm/year for the Baza Fault, being one of the major active normal faults to accommodate the current ENE–WSW extension produced in the central Betic Cordillera. The existence of this fault and other normal faults in the central Betic Cordillera enhanced the extension in the upper crust from the Late Miocene to the present in this regional compressive setting.  相似文献   

14.
The discrimination between distinct remote compressions and multiple local stress deviations within a single compressive stress field has been carried out in the central-eastern Iberian Chain, by using structural criteria, computing palaeostress directions, identifying and ‘filtering’ stress deviations, and analysing time relationships. A probabilistic analysis based on a systematic comparison of real and expected frequencies of coexistence of two compressions is applied by means of the χ 2 Test. This allows us to identify those tectonic compressions that behave as independent events from the probabilistic point of view. The results suggest that among five initially defined compression directions only three can be considered as representative of distinct (although partially superposed) externally applied intraplate stress fields: Iberian s.l. (NE-SW), Betic s.l. (NW-SE), and Pyrenean (N-S to NNE-SSW).  相似文献   

15.
The Cameros Basin is a part of the Mesozoic Iberian Rift. It is an extensional basin formed during the late Jurassic and early Cretaceous, in the Mesozoic Iberian Rift context, and it was inverted in the Cenozoic as a result of the Alpine contraction. This work aims to reconstruct the tectono-stratigraphic evolution of the basin during the Mesozoic, using new and revised field, geophysical and subsurface data. The construction of a basin-wide balanced section with partial restorations herein offers new insights into the geometry of the syn-rift deposits. Field data, seismic lines and oil well data were used to identify the main structures of the basin and the basin-forming mechanisms. Mapping and cross-sectional data indicate the marked thickness variation of the depositional sequences across the basin, suggesting that the extension of the depositional area varied during the syn-rift stage and that the depocentres migrated towards the north. From field observation and seismic line interpretation, an onlap of the depositional sequences to the north, over the marine Jurassic substratum, can be deduced. In the last few decades, the structure and geometry of the basin have been strongly debated. The structure and geometry of the basin infill reconstructed herein strongly support the interpretation of the Cameros Basin as an extensional-ramp synclinal basin formed on a blind south-dipping extensional ramp. The gradual hanging-wall displacement to the south shifted the depocentres to the north over time, thus increasing the basin in size northwards, with onlap geometry on the pre-rift substratum. The basin was inverted by means of a main thrust located in a detachment located in the Upper Triassic beds (Keuper), which branched in depth with the Mesozoic extensional fault flat. The reconstruction of the tectono-stratigraphic evolution of the Cameros Basin proposed herein represents a synthesis and an integration of previous studies of the structure and geometry of the basin. This study can be used as the basis for future basin-scale research and for modelling the ancient petroleum system of the basin.  相似文献   

16.
Compactional deformation facilitated replacement of dolomite and calcite by siderite and its subsequent oxidation in carbonate cemented red beds of the Triassic Buntsandstein in the Iberian Chain. Locally, the sedimentary clasts were cemented by carbonate that was derived from dissolution of locally exposed dolomite in the basement. Microstructures indicate that during sedimentation of the rocks, oxidizing conditions prevailed in the sediments and the basement was reddened by impregnation of hematite. Reducing conditions prevailed during deformation of the sediments. Ferric iron was reduced to Fe2+, that reacted with deformed dolomite and calcite cement to produce fine grained siderite. At a later stage, siderite crystallites were (partly) oxidized to form a secondary phase of brown ferric oxide (goethite). Locally, goethite transformed to fine grained hematite that caused secondary reddening of the sediments. The reactions are associated with a combined volume loss of the solid phases of c. 50% per reaction mol; this was accommodated by the formation of pores. Oxidation of siderite was associated with release of CO2; localized dissolution took place of feldspar and concurrently growth of kaolinite occurred by acidifying condition during release of CO2. The relation of redox reactions and deformation is comparable to those in red bed conglomerates in the region. Reductive dissolution occurred at sites of stress concentration, particularly at contact points of pebbles. Late stage precipitation of ferric oxides and pyrolusite took place at oxidizing conditions in association with uplift.  相似文献   

17.
Buntsandstein deposits generated in a slowly subsiding basin on the western margin of the Iberian Chain are represented by a stratigraphic succession of fluvial deposits less than 100 m thick (conglomerates, sandstones, and shales). Diagenetic processes in sandstones can be grouped as eodiagenetic, mesodiagenetic, and telodiagenetic. Eodiagenesis can be associated with Muschelkalk, Keuper, and probably early Jurassic times. Mesodiagenesis is probably related to Jurassic times. Diagenetic chemical reactions suggest a maximum burial less than 1.5 km and low temperatures (<120°C). Patterns of porosity reduction by compaction and cementation suggest four diagenetic stages: (1) Loss of primary porosity by early mechanical compaction; (2) early cementation (K-feldspar and dolomite); (3) dissolution of cements; and (4) framework collapse by re-compaction. These stages are manifested by the presence of two types of sandstone. Type I sandstones present high intergranular volume (mean, 30%). Type II sandstones are characterized by high compactional porosity loss and exhibit low values of intergranular volume (mean, 16.9%). Type II sandstones are associated with the dissolution of cement and later re-compaction of type I sandstones. An intermediate telodiagenetic phase is deduced and related to the sharp unconformity between Lower Cretaceous sediments and the underlying sediments. This suggests that a mechanically unstable framework collapsed during the Cretaceous, generating type II sandstones. The analyzed diagenetic paths have a wide applicability on similar marginal areas of rift basins.  相似文献   

18.
The Finne fault zone, located in central Germany to the southwest of the Harz mountains, was studied by means of detailed map analysis, investigations of fault displacement and balanced cross-sections for the most strongly deformed area in the center of the fault zone (ca. 50?% of total fault zone length). The system of the Finne fault zone shows a nearly 100-km-long straight flexure that symbolizes the morphological and geological northeastern border of the Thuringian basin. In the central part, which should be surveyed here, the fault zone corresponds to a distinctive narrow band of highly deformed Triassic sedimentary rocks. The northwestern and especially the southeastern parts of the research area are developed as several parallel branch faults. In the southeastern elongation of the fault zone, which is not part of our survey, the sedimentary cover is missing. Here, it is possible to gain insight to the fact that the basement is also involved to the kinematics of the fault zone. Based on our results, we propose a subdivision of the fault zone into four sectors. From the northwest to the southeast, we interpret the structure of these sectors to reflect (1) a compressional flexure, (2) an overthrust graben, and (3) a partially inverted and folded half graben. In the extreme southeast (4), the fault zone is characterized by an anticline with some strike-slip movement parallel to the fold axis. This segmentation is caused by a thrust fault system whose strike direction deviates slightly from that of the earlier formed graben system. The structural configuration can be explained by a two-phase deformation, in which the contractional strain exceeded the preceding extensional deformation. In the investigated area, the horizontal shortening attains a maximum of ca. 1?km. The present study confirms many earlier hypotheses, presents new results on the deformation history of the fault zone, and attempts to evaluate the deformation in a regional geological context. The results of earlier studies were refined and revised using modern methods, and a unified structural and kinematic model of the Finne fault zone was created.  相似文献   

19.
Pliocene and Quaternary tectonic structures mainly consisting of segmented northwest–southeast normal faults, and associated seismicity in the central Betics do not agree with the transpressive tectonic nature of the Africa–Eurasia plate boundary in the Ibero-Maghrebian region. Active extensional deformation here is heterogeneous, individual segmented normal faults being linked by relay ramps and transfer faults, including oblique-slip and both dextral and sinistral strike-slip faults. Normal faults extend the hanging wall of an extensional detachment that is the active segment of a complex system of successive WSW-directed extensional detachments which have thinned the Betic upper crust since middle Miocene. Two areas, which are connected by an active 40-km long dextral strike-slip transfer fault zone, concentrate present-day extension. Both the seismicity distribution and focal mechanisms agree with the position and regime of the observed faults. The activity of the transfer zone during middle Miocene to present implies a mode of extension which must have remained substantially the same over the entire period. Thus, the mechanisms driving extension should still be operating. Both the westward migration of the extensional loci and the high asymmetry of the extensional systems can be related to edge delamination below the south Iberian margin coupled with roll-back under the Alborán Sea; involving the asymmetric westward inflow of asthenospheric material under the margins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号