首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a 3-D thermal model of the Larderello geothermal field (Tuscany) to evaluate (1) the extent and contribution of the heat transfer mechanisms (conduction vs. convection) at the intermediate-upper crust levels, (2) the variability of the heat and mass fluxes entering from below and (3) the crucial role of the formation permeability. The model, composed by three main layers, considers the upper 10 km of the crust to better constrain the simulations with experimental data from borehole, fluid inclusion studies and hypocentral distributions. Several sets of simulations were carried out with different bottom boundary temperatures and different formation permeabilities for the two deeper layers. The results indicate that the present temperature (T) and pressure distributions in the Larderello field require deep reservoir rocks with higher permeability than the overlying capping units and underlying intermediate crust. Permeability values of 1 mDarcy for the reservoir rocks are enough to allow fluid convection, if the temperature at 10 km depth is as high as 500 ± 50°C. The presence of localized zones with formation permeability 50–100 times higher than the surrounding rocks strongly favours the migration of over-pressurized fluids, which episodically break through the overburden, feeding the presently exploited geothermal fields.  相似文献   

2.
西藏羊八井热田地热流体成因及演化的惰性气体制约   总被引:4,自引:5,他引:4  
赵平  Mack  KENNEDY 《岩石学报》2001,17(3):497-503
地热流体中惰性气体的相对丰度和同位素组成,不仅可以揭露热田的热源性质,而且还能够揭示深,浅层地热流体的内在联系和演化过程等。在西藏羊八井热田的地热气体中,已检测出大量的^4He组分,3He/^4He值是大气的0.087-0.259倍,表明深部地壳物质的局部熔融为热田提供能量,浅层地热流体的3He/4He 值自西北向东南呈降低趋势,与热储温度的变化相一致,反映出侧向运移时补充了更多的壳源氦,热田北区深层地热流体具有稍高的3He/4He值,是浅层地热流体的母源,气体中氪和氙的相对丰度具有大气降水成因的特征,结合现有的实际资料,建立了热田地热流体的概念模型。  相似文献   

3.
In a 60 Ma interval between the Late Carboniferous and the Late Permian, the magmatic arc associated with the cordilleran-type New England Fold Belt in northeast New South Wales shifted eastward and changed in trend from north–northwest to north. The eastern margin of the earlier (Devonian–Late Carboniferous) arc is marked by a sequence of calcalkaline lava flows, tuffs and coarse volcaniclastic sedimentary rocks preserved in the west of the Fold Belt. The younger arc (Late Permian–Triassic) is marked by I-type calcalkaline granitoids and comagmatic volcanic rocks emplaced mostly in the earlier forearc, but extending into the southern Sydney Basin, in the former backarc region. The growth of the younger arc was accompanied by widespread compressional deformation that stabilised the New England Fold Belt. During the transitional interval, two suites of S-type granitoids were emplaced, the Hillgrove Suite at about 305 Ma during an episode of compressive deformation and regional metamorphism, and the Bundarra Suite at about 280 Ma, during the later stages of an extensional episode. Isotopic and REE data indicate that both suites resulted from the partial melting of young silicic sedimentary rocks, probably part of the Carboniferous accretionary subduction complex, with heat supplied by the rise of asthenospheric material. Both mafic and silicic volcanic activity were widespread within and behind the Fold Belt from the onset of rifting (ca. 295 Ma) until the reestablishment of the arc. These volcanic rocks range in composition from MORB-like to calcalkaline and alkaline. The termination of the earlier arc, and the subsequent widespread and diverse igneous activity are considered to have resulted from the shallow breakoff of the downgoing plate, which allowed the rise of asthenosphere through a widening lithospheric gap. In this setting, division of the igneous rocks into pre-, syn-, and post-collisional groups is of limited value.  相似文献   

4.
The Bandombaai Complex (southern Kaoko Belt, Namibia) consists of three main intrusive rock types including metaluminous hornblende- and sphene-bearing quartz diorites, allanite-bearing granodiorites and granites, and peraluminous garnet- and muscovite-bearing leucogranites. Intrusion of the quartz diorites is constrained by a U–Pb zircon age of 540±3 Ma.

Quartz diorites, granodiorites and granites display heterogeneous initial Nd- and O isotope compositions (Nd (540 Ma)=−6.3 to −19.8; δ18O=9.0–11.6‰) but rather low and uniform initial Sr isotope compositions (87Sr/86Srinitial=0.70794–0.70982). Two leucogranites and one aplite have higher initial 87Sr/86Sr ratios (0.70828–0.71559), but similar initial Nd (−11.9 to −15.8) and oxygen isotope values (10.5–12.9‰). The geochemical and isotopic characteristics of the Bandombaai Complex are distinct from other granitoids of the Kaoko Belt and the Central Zone of the Damara orogen. Our study suggests that the quartz diorites of the Bandombaai Complex are generated by melting of heterogeneous mafic lower crust. Based on a comparison with results from amphibolite-dehydration melting experiments, a lower crustal garnet- and amphibole-bearing metabasalt, probably enriched in K2O, is a likely source rock for the quartz diorites. The granodiorites/granites show low Rb/Sr (<0.6) ratios and are probably generated by partial melting of meta-igneous (intermediate) lower crustal sources by amphibole-dehydration melting. Most of the leucogranites display higher Rb/Sr ratios (>1) and are most likely generated by biotite-dehydration melting of heterogeneous felsic lower crust. All segments of the lower crust underwent partial melting during the Pan-African orogeny at a time (540 Ma) when the middle crust of the central Damara orogen also underwent high T, medium P regional metamorphism and melting. Geochemical and isotope data from the Bandombaai Complex suggest that the Pan-African orogeny in this part of the orogen was not a major crust-forming episode. Instead, even the most primitive rock types of the region, the quartz diorites, represent recycled lower crustal material.  相似文献   


5.
Structural analysis carried out in the Tuscan Nappe (TN) in the southeastern sector of the Apuan Alps highlights a structural evolution much more complex than that proposed so far. The TN has been deformed by structures developed during four deformation phases. The three early phases resulted from a compressive tectonic regime linked to the construction of the Apenninic fold‐and‐thrust‐belt. The fourth phase, instead, is connected with the extensional tectonics, probably related to the collapse of the belt and/or to the opening of the Tyrrhenian Sea. Our structural and field data suggest the following. (1) The first phase is linked to the main crustal shortening and deformation of the Tuscan Nappe in the internal sectors of the belt. (2) The second deformation phase is responsible for the prominent NW–SE‐trending folds recognized in the study area (Mt. Pescaglino and Pescaglia antiforms and Mt. Piglione and Mt. Prana synforms). (3) The direction of shortening related to the third phase is parallel to the main structural trend of the belt. (4) The interference between the third folding phase and the earlier two tectonic phases could be related to the development of the metamorphic domes. The two directions of horizontal shortening induced buckling and vertical growth of the metamorphic domes, enhancing the process of exhumation of the metamorphic rocks. (5) The exhumation of the Tuscan Nappe occurred mostly in a compressive tectonic setting. A new model for the exhumation of the metamorphic dome of the Apuan Alps is proposed. Its tectonic evolution does not fit with the previously suggested core complex model, but is due to compressive tectonics. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
李文博  黄智龙张冠 《岩石学报》2006,22(10):2567-2580
云南会泽铅锌矿田是我国著名的超大型特富铅锌矿田之一,由相距3公里的矿山厂和麒麟厂两个独立的矿床组成,Zn Pb 金属量超过五百万吨,矿石品位在25%至35%之间。为确定矿床成矿流体和成矿金属来源,本文系统研究了矿床的 Pb、S、C、O、H 和 Sr 同位素组成特征。矿石硫化物的铅同位素组成均一,~(206)Pb/~(204)Pb,~(207)Pb/~(204)Pb 和~(208)Pb/~(104)Pb 的变化范围分别为18.251~18.530,15.663~15.855和38.487~39.433,与围岩碳酸盐岩中浸染状黄铁矿一致,与碳酸盐地层相近,在~(208)Pb/~(204)Pb-~(206)Pb/~(204)Pb 图上显示明显的线性关系,表明铅同位素组成相近的碳酸盐围岩地层提供了成矿物质。矿石硫化物的δ~(34)S 变化范围为10.9‰~17.4‰,多数集中于13‰~17‰,表明还原硫主要来自地层中海相硫酸盐的还原,还原方式为热化学还原,下伏页岩、碎屑岩和泥质岩中的有机质在硫酸盐还原过程中发挥了重要作用。三种不同产状的脉石矿物方解石的碳氧同位素组成均一且没有明显差别,δ~(13)C 变化范围为-2.1‰~-3.5‰,δ~(18)O 为16.8‰~18.6‰。脉石矿物方解石中流体包裹体水的δD_(FI)为-50‰~-60‰,取温度为200℃计算包裹体水的δ~(18)O_(H_2O)值为7.0‰~8.8‰。碳、氧和氢、氧同位素研究结果表明,成矿流体为来自下部上升的变质流体,由于下伏页岩、碎屑岩和泥质岩中有机质的参与,成矿流体具有低的δ~(13)C和δD_(FI)值,在上升过程中与围岩发生了同位素交换。矿石中黄铁矿、闪锌矿和方解石的初始锶同位素组成(~(87)Sr/~(86)Sr)_i值的变化范围为0.714~0.717,赋矿围岩中未蚀变白云岩的初始锶同位素组成(~(87)Sr/~(86)Sr)_i值为0.7083~0.7093,明显低于蚀变白云岩(0.7106),表明成矿流体具有高的(~(87)Sr/~(86)Sr)_i比值。相对围岩碳酸盐岩而言,下伏地层中的页岩、碎屑岩和泥质岩往往具有高得多的~(87)Sr/~(86)Sr,因此,流经或者起源于这些地层的流体具有高的锶同位素比值。  相似文献   

7.
The tectonic evolution of the Mt Amiata volcano-geothermal area is under discussion. Some authors state that this region, as well as the hinterland of the Northern Apennines, were affected by compression from the Cretaceous to the Quaternary. In contrast, most authors believe that extension drove the tectonic evolution of the Northern Apennines from the Early Miocene to the Quaternary. Field data, seismic analyses and borehole logs have been integrated in order to better define the structural features of the continental crust in the Mt Amiata geothermal area. In this paper I propose the hypothesis that the structure of the crust in the Mt Amiata volcano-geothermal area derives from two main geological processes: (1) contractional tectonics related to the stacking of the Northern Apennines (Cretaceous–Early Miocene), (2) subsequent extensional collapse of the hinterland of the mountain chain, and related opening of the Northern Tyrrhenian Sea (Early Miocene–Quaternary). Compressional and extensional structures characterise the Mt Amiata region, although extensional structures dominate its geological framework. In particular the extension produced: (a) Middle-Late Miocene boudinage of the previously stacked tectonic units; (b) Pliocene–Quaternary normal faulting which favoured the emplacement of a magmatic body in the middle-upper crust; and (c) the eruption of the Mt Amiata volcano, which gave rise to an acid and intermediate volcanic complex (0.3–0.19 Ma). The extension produced the space necessary to accommodate the Middle-Late Miocene marine and continental sediments. Pliocene and Quaternary normal and transtensional faults dissected the previous structures and influenced the Early Middle Pliocene marine sedimentation within the structural depressions neighbouring the Mt Amiata volcano. The magmatic body was emplaced at depth (about 6–7 km) during the Pliocene extension, and produced the eruption of the Mt Amiata volcano during the Late Pleistocene. This gave rise to local uplift, presently reaching about 3,000 m, as well as a negative Bouguer anomaly (−16 mgal), both centred on the Mt Amiata area. The crustal dome shows a good correspondence with the convex shape of the regional seismic marker known as the K-horizon, which corresponds to the 450°C isotherm, and the areas with greatest heat flow. This is probably a consequence of the above-cited magmatic body presently in the process of solidification. A Late Pleistocene eruption occurred along a crustal fissure striking N50° (Mt Amiata Fault), which crosscuts the crustal dome. Hydrothermal circulation, proven by the occurrence of thermal springs and gas vents (mainly CO2 and H2S), mainly occurs along the Mt Amiata Fault both in the northeastern ans southwestern sides of the volcano.  相似文献   

8.
李义曼  陈凯  天娇  程远志  罗霁  庞忠和 《地质论评》2022,68(3):993-1005
华南火成岩地区发育多期次的花岗岩及丰富的地热资源,二者关系密切。目前关于该区岩石的REE分异特征及其富集机理研究较多,但对地热水中REE的特征及其影响因素等研究较少。笔者以广东丰顺汤坑地热田为例,分析了地热水稀土元素的特征并且与浅层地下水和榕江河水进行对比,探讨其赋存特征以及影响因素。结果表明:该区地热水较榕江河水和浅层地下水稀土元素含量偏低,具有MREE富集的Eu正异常、Ce负异常的REE配分模式,这是碱性水溶解硅酸盐矿物的结果。水的REE含量与pH值呈正相关关系,且其赋存形式受pH值影响较大。碱性地热水中REE以络合物Ln(CO3)-2和LnCO+3形式为主,中性的榕江河水则以络合物LnCO+3为主,而偏酸性的浅层地下水REE以Ln3+为主,含一定量的LnSO+4  相似文献   

9.
Sequence stratigraphy, based on climatic, tectonic, and base level parameters, can be used to understand carbonate sedimentation in continental basins. The uppermost continental fill of the Guadix Basin (Betic Cordillera), containing both siliciclastics and carbonates, is investigated here. In its central sector a thick succession of fluvio-lacustrine sediments appear, hosting several important Pliocene and Pleistocene macrovertebrate sites (Fonelas Project). The need to characterize the stratigraphic and sedimentologic context of these important paleontologic sites has lead to litho-, magneto- and biostratigraphic studies. These data, together with the sedimentologic analysis of the Pliocene and Pleistocene siliciclastic and carbonate successions, establish a sedimentary model for the fluvio-lacustrine sedimentation of the two last stages of sedimentation in the Guadix Basin (Units V and VI). Unit V comprises mostly fluvial siliciclastic sediments with less abundant carbonate beds interpreted as floodplain lakes or ponds. The latter, Unit VI, is dominated by vertically-stacked, carbonate palustrine successions. Using two pre-existent continental stratigraphic models, the influence of climate, tectonism, and stratigraphic base level during the last 3.5 Ma on the sedimentary evolution of the fluvio-lacustrine system in the Guadix Basin, especially the carbonate sedimentation patterns, is outlined.  相似文献   

10.
Pliocene and Pleistocene deposits from Grande‐Terre (Guadeloupe archipelago, French Lesser Antilles) provide a remarkable example of an isolated carbonate system built in an active margin setting, with sedimentation controlled by both rapid sea‐level changes and tectonic movements. Based on new field, sedimentological and palaeontological analyses, these deposits have been organized into four sedimentary sequences (S1 to S4) separated by three subaerial erosion surfaces (SB0, SB1 and SB2). Sequences S1 and S2 (‘Calcaires inférieurs à rhodolithes’) deposited during the Late Zanclean to Early Gelasian (planktonic foraminiferal Zones PL2 to PL5) in low subsidence conditions, on a distally steepened ramp dipping eastward. Red algal‐rich deposits, which dominate the western part of Grande‐Terre, change to planktonic foraminifer‐rich deposits eastward. Vertical movements of tens of metres were responsible for the formation of SB0 and SB1. Sequence S3 (‘Formation volcano‐sédimentaire’, ‘Calcaires supérieurs à rhodolithes’ and ‘Calcaires à Agaricia’) was deposited during the Late Piacenzian to Early Calabrian (Zones PL5 to PT1a) on a distally steepened, red algal‐dominated ramp that changes upward into a homoclinal, coral‐dominated ramp. Deposition of Sequence S3 occurred during a eustatic cycle in quiet tectonic conditions. Its uppermost boundary, the major erosion surface SB2, is related to the Cala1 eustatic sea‐level fall. Finally, Sequence S4 (‘Calcaires à Acropora’) probably formed during the Calabrian, developing as a coral‐dominated platform during a eustatic cycle in quiet tectonic conditions. The final emergence of the island could then have occurred in Late Calabrian times.  相似文献   

11.
Rb-Sr and K-Ar ages have been obtained on six biotites, two muscovites and one hornblende from samples of micaschist, gneiss and amphibolite of Lower Paleozoic to Precambrian age at a depth exceeding 2,000 m in basement rocks of the Larderello-Travale geothermal region. Most of the data cluster in the range 2.5–3.7 Ma, revealing the existence of a Pliocene thermal event to which the origin of the field may be attributed. The resulting duration of the Larderello geothermal field is unexpectedly long. In the basement levels of the two wells examined, unstabilized minimum temperatures of 290° and 380° C were measured. All the biotites show almost complete 40Ar and 87Sr retention at the measured well temperatures. Petrologic evidence (stilpnomelane stability) and experimental data (activation energies and diffusion coefficients) also favour a closure temperature above 400° C for Rb-Sr and K-Ar in biotites, in agreement with recent direct experimental determinations.For the last 3 Ma mean geothermal gradients of 120°–150° C/km have been evaluated in the first 2–3 km, and 60°–65° C/km in the underlying 2 km. A rough estimate of total cooling in the last 3 Ma gives a value of 120° C at 2,500 m depth and 50° C at 4,000 m depth in Sasso 22 well. A mean uplift rate of about 0.2 mm/year is calculated independently.Research conducted under a collaboration agreement between the Italian National Research Council (CNR) and the Italian National Electricity Board (ENEL)  相似文献   

12.
13.
We report compositions of homogenized quartz-hosted melt inclusions from a layered sequence of Li-, F-rich granites in the Khangilay complex that document the range of melt evolution from barren biotite granites to Ta-rich, lepidolite–amazonite–albite granites. The melt inclusions are crystalline at room temperature and were homogenized in a rapid-quench hydrothermal apparatus at 200 MPa before analysis. Homogenization runs determined solidus temperatures near 550 °C and full homogenization between 650 and 750 °C. The compositions of inclusions, determined by electron microprobe and Raman spectroscopy (for H2O), show regular overall trends of increasing differentiation from the least-evolved Khangilay units to apical units in the Orlovka intrusion. Total volatile contents in the most-evolved melts reach over 11 wt.% (H2O: 8.6 wt.%, F: 1.6 wt.%, B2O3: 1.5 wt.%). Concentrations of Rb range from about 1000 to 3600 ppm but other trace elements could not be measured reliably by electron microprobe. The resulting trends of melt evolution are similar to those described by the whole-rock samples, despite petrographic evidence for albite- and mica-rich segregations previously taken as evidence for post-magmatic metasomatism.

Melt variation trends in most samples are consistent with fractional crystallization as the main process of magma evolution and residual melt compositions plot at the granite minimum in the normative Qz–Ab–Or system. However, melts trapped in the highly evolved pegmatitic samples from Orlovka deviate from the minimum melt composition and show compositional variations in Al, Na and K that requires a different explanation. We suggest that unmixing of the late-stage residual melt into an aluminosilicate melt and a salt-rich dense aqueous fluid (hydrosaline melt) occurred. Experimental data show the effectiveness of this process to separate K (aluminosilicate melt) from Na (hydrosaline melt) and high mobility of the latter due to its low viscosity and relatively low density may explain local zones of albitization in the upper parts of the granite.  相似文献   


14.
梅仙铅锌矿位于福建省中部地区,是环太平洋中、新生代巨型构造-岩浆带中的重要成矿区之一。区内与成矿有关的侵入岩主要以花岗斑岩、黑云母花岗斑岩、钾长花岗岩和黑云母钾长花岗岩等为主。该次研究在矿床地质工作基础上,采用LA-ICP-MS锆石U-Pb法获得梅仙矿区花岗岩成岩年龄在158~155 Ma。岩石具高硅、富碱、高钾、铝饱和指数较高,以及富铁贫镁等特征,富集Cs、Rb、K、Pb等大离子亲石元素,富集Th、U、Zr、Hf等高场强元素,亏损Ba、Sr、P、Ti等元素,Ga/Al比值较低,具有明显的壳源特征,其岩石成因类型属高分异的I型花岗岩。梅仙矿区花岗岩是板内伸展造山阶段的产物,形成于古太平洋板块向欧亚大陆板块俯冲-消减后的伸展引张环境。在岩浆热液活动作用下,早期海底火山喷发沉积初始矿源层受到强烈的构造-岩浆热液叠加和改造作用,对矿质富集和矿体最终定位具有重要意义。  相似文献   

15.
武定迤纳厂铁铜金稀土矿位于我国云南省中部,扬子板块西缘,康滇地轴云南段。根据矿物组合、围岩蚀变和矿化特征等方面的差异,可将其蚀变矿物组合划分为铁稀土长石硅酸盐组合和铜金石英碳酸盐组合两类,前者发生在矿化中前期,后者发生于矿化后期。铁铜稀土长石硅酸盐组合又可划分为磁铁矿钠长石稀土组合和黄铜矿钾长石石榴子石黑云母组合。分别对黄铜矿钾长石石榴子石黑云母组合中的黄铜矿、萤石,铜金石英碳酸盐组合中的黄铜矿、萤石、石英、方解石开展了S、Pb、H、O同位素的示踪研究。两组黄铜矿的δ34SCDT(‰)值变化范围为-0.44‰~+4.07‰,集中于0值附近,说明其具有单一岩浆来源。后一组黄铜矿单矿物的δ34SCDT(‰)值稍高于前一组合。第一组黄铜矿的Pb同位素组成较为均一,206Pb/204Pb比值范围为37.684~51.112,207Pb/204Pb比值范围为16.939~17.875,208Pb/204Pb比值范围为40.116~41.984,表明其来源单一;而第二组黄铜矿的Pb同位素组成则相对分散且具线性趋势,206Pb/204Pb比值范围为19.523~356.740,207Pb/204Pb比值范围为15.853~41.182,208Pb/204Pb比值范围为39.411~42.010,表明其为混合来源。前一组合中的萤石单矿物δ18OV-SMOW值介于+9.30‰~+10.80‰之间,δDV-SMOW值介于-63.20‰~-80.20‰之间,表明其更具岩浆水性质;后一组合中的石英单矿物δ18OV-SMOW值介于+15.20‰~+18.10‰之间,δDV-SMOW值介于-47.70‰~-91.20‰之间;方解石单矿物δ18OV-SMOW值介于+17.00‰~+19.60‰之间,δDV-SMOW值介于-66.10‰~-98.20‰之间,表明其更具有变质水的特征。  相似文献   

16.
Remnants of a fossil continent–ocean transition similar to that of the modern non-volcanic continental margins are preserved in the Jurassic External Liguride units. They consist of fertile lherzolites of subcontinental origin, MOR-type basalts and rare gabbroic intrusives, together with continental crust bodies exhumed during the rifting phases preceding the oceanization. The gabbroic rocks include troctolites, (olivine) gabbros, Fe–Ti oxide-bearing gabbros and diorites. Trace element and Nd isotope compositions indicate that these rocks were derived from N-MORB melts variably evolved through fractional crystallisation. In the gabbroic rocks, high-temperature ( 900 °C) shearing along ductile shear zones is locally overprinted by amphibolite-facies recrystallization (T  650 °C), which was most likely assisted by seawater-derived fluids. Basalts crop out as lava flows and as dykes crosscutting mantle lherzolites and gabbroic rocks. They display nearly flat REE patterns and high Y/Nb values (5–14), similar to modern N-MORB. Basalts are also characterised by weak Zr enrichment relative to neighbouring REE (Zr/Zr = 1.1–1.7) and high (Sm/Yb)DM ratios (1.5–1.8). Their Nd isotope compositions are close to typical depleted mantle (initial Nd = +7.6 to + 9.4). The geochemical features of parental melts of basaltic and gabbroic rocks may be attributed to melting of a MORB-type asthenospheric source. Trace element modelling shows that low-degree (≤ 6%) fractional melting of a depleted spinel peridotite cannot account for the elevated Sm/Yb ratios of basalts. Low-degree melting of a mixed source of spinel peridotite with small amounts of garnet pyroxenite has been proposed to explain the trace element signature of basalts.  相似文献   

17.
Mafic alkaline lavas from the Venetian Volcanic Province (NE Italy) contain orange–brown zircon megacrysts up to 15 mm long, subhedral to subrounded and showing equant morphology, with width-to-length ratios of 1:2–1:2.5. U–Pb ages of zircon (51.1 ± 1.5 to 30.5 ± 0.51 Ma) fit the stratigraphic age of the host lava (Middle Eocene and Oligocene) and their oxygen isotope composition (δ18O = 5.31–5.51‰) is similar to that of zircon formed in the upper mantle. Cathodoluminescence images and crystal chemical features, e.g. depletion of incompatible elements such as REE, Y, U and Th at constant Hf content, indicate that centre-to-edge zircon zoning is not consistent with evolution of the melt by fractional crystallization. All the above features, together with the fact that zircon and host basalts are coeval, indicate that the studied Zr megacrysts crystallised from a primitive alkaline mafic magma, which later evolved to the less alkaline host magma.  相似文献   

18.
The Central Atlantic Magmatic Province (CAMP) is one of the largest igneous provinces on Earth, extending more than 5000 km north to south, on both sides of the Atlantic Ocean. Its emplacement occurred about 200 Ma ago, at the Triassic–Jurassic boundary, and is linked to the initial breakup of Pangaea. Two areas of the province are studied here: French Guyana/Surinam (South America) and Guinea (West Africa), in order to document the petrogenesis and geodynamical significance of high-Ti and low-Ti basaltic magmas from the CAMP.

In Guyana, doleritic and gabbroic dykes are located on the edge of the Guiana Shield, and represent limited volumes of magma. They display low SiO2 (47–50%), high TiO2 (2.5–3.5%) and high FeO tholeiitic trends and show variably enriched trace element patterns ((La/Yb)n=1.5–5.1). Their isotopic signature and ratios of very incompatible elements (εNdi=+5.8 to +4.2, (87Sr/86Sr)i=0.703–0.705, (207Pb/204Pb)i=15.46–15.64) match a depleted PREMA (prevalent mantle)-like source. Their genesis can be modeled by ca. 15% partial melting of a lherzolite source, and a subsequent limited fractional crystallization (5–10%) or a slight upper crustal assimilation–fractional crystallization (AFC, r=0.1, Proterozoic contaminant). In Guinea, in contrast, huge volumes of CAMP magmas were intruded along the Rockelides suture and the West African craton, forming the Fouta Djalon sills and the Kakoulima laccolith. The laccolith is more than 1000 m thick. These features consist of gabbros, dolerites, diorites and mafic (gabbro) and ultramafic (dunite, wherlite) cumulates. Guinean tholeiites show high SiO2 (51–58%), low TiO2 (0.7–1.2%) and FeO trends, with high LILE/HFSE ratios and slight negative Nb–Ta anomalies. Isotopic signatures (εNdi=+0.4 to −5.3, (87Sr/86Sr)i=0.705–0.710, (207Pb/204Pb)i=15.57–15.66) indicate a more enriched source than for Guyana as well as a higher rate of magma–upper crust interaction through an AFC process (r=0.3, Birimian crust contaminant) and, probably, an additional upper crustal contamination for the most differentiated sample.

This geochemical study supports the prevalence in Guinea, as for other low-Ti CAMP tholeiites, of a lithospheric mantle source, previously enriched during ancient subduction events, and preferentially reactivated in late Triassic times by edge-driven convection between cratonic and mobile belt domains. A larger contribution from a depleted asthenospheric source is required to generate high-Ti tholeiites in Guyana, which may reflect the development of CAMP rifting towards the initiation of the Central Atlantic oceanic crust.  相似文献   


19.
We present a revision and a seismotectonic interpretation of deep crust strike–slip earthquake sequences that occurred in 1990–1991 in the Southern Apennines (Potenza area). The revision is motivated by: i) the striking similarity to a seismic sequence that occurred in 2002  140 km NNW, in an analogous tectonic context (Molise area), suggesting a common seismotectonic environment of regional importance; ii) the close proximity of such deep strike–slip seismicity with shallow extensional seismicity (Apennine area); and iii) the lack of knowledge about the mechanical properties of the crust that might justify the observed crustal seismicity. A comparison between the revised 1990–1991 earthquakes and the 2002 earthquakes, as well as the integration of seismological data with a rheological analysis offer new constraints on the regional seismotectonic context of crustal seismicity in the Southern Apennines. The seismological revision consists of a relocation of the aftershock sequences based on newly constrained velocity models. New focal mechanisms of the aftershocks are computed and the active state of stress is constrained via the use of a stress inversion technique. The relationships among the observed seismicity, the crustal structure of the Southern Apennines, and the rheological layering are analysed along a crustal section crossing southern Italy, by computing geotherms and two-mechanism (brittle frictional vs. ductile plastic strength) rheological profiles. The 1990–1991 seismicity is concentrated in a well-defined depth range (mostly between 15 and 23 km depths). This depth range corresponds to the upper pat of the middle crust underlying the Apulian sedimentary cover, in the footwall of the easternmost Apennine thrust system. The 3D distribution of the aftershocks, the fault kinematics, and the stress inversion indicate the activation of a right-lateral strike–slip fault striking N100°E under a stress field characterized by a sub-horizontal N142°-trending σ1 and a sub-horizontal N232°-trending σ3, very similar to the known stress field of the Gargano seismic zone in the Apulian foreland. The apparent anomalous depths of the earthquakes (> 15 km) and the confinement within a relatively narrow depth range are explained by the crustal rheology, which consists of a strong brittle layer at mid crustal depths sandwiched between two plastic horizons. This articulated rheological stratification is typical of the central part of the Southern Apennine crust, where the Apulian crust is overthrusted by Apennine units. Both the Potenza 1990–1991 and the Molise 2002 seismic sequences can be interpreted to be due to crustal E–W fault zones within the Apulian crust inherited from previous tectonic phases and overthrusted by Apennine units during the Late Pliocene–Middle Pleistocene. The present strike–slip tectonic regime reactivated these fault zones and caused them to move with an uneven mechanical behaviour; brittle seismogenic faulting is confined to the strong brittle part of the middle crust. This strong brittle layer might also act as a stress guide able to laterally transmit the deviatoric stresses responsible for the strike–slip regime in the Apulian crust and may explain the close proximity (nearly overlapping) of the strike–slip and normal faulting regimes in the Southern Apennines. From a methodological point of view, it seems that rather simple two-mechanism rheological profiles, though affected by uncertainties, are still a useful tool for estimating the rheological properties and likely seismogenic behaviour of the crust.  相似文献   

20.
The Aguablanca Cu–Ni orthomagmatic ore deposit is hosted by mafic and ultramafic rocks of the Aguablanca stock, which is part of the larger, high-K calc-alkaline Santa Olalla plutonic complex. This intrusive complex, ca. 338 Ma in age, is located in the Ossa-Morena Zone (OMZ) of the Iberian Variscan Belt. Mineralization consists mainly of pyrrhotite, pentlandite and chalcopyrite resulting from the crystallization of an immiscible sulphide-rich liquid. Isotope work on the host igneous rocks (Sr, Nd) and the ore (S) suggests that contamination with an upper-crustal component took place at some depth before final emplacement of the plutons (Nd338=−6 to −7.5; Sr(338)=0.7082 to 0.7100; δ34S(sulphides) near +7.4‰). Assimilation–fractional crystallization (AFC) processes are invoked to explain early cumulates and immiscible sulphide-magma formation. Intrusion took place at the beginning of the type-A oblique subduction of the South Portuguese Zone under the Ossa-Morena Zone and was probably driven by transpressive structures (strike-slip faults). The mineralization is thus synorogenic.Aguablanca is probably the first case referred to in the literature of a magmatic Cu–Ni ore deposit hosted by calc-alkaline igneous rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号