首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mass-flow event triggered by the 1996 flood in the Saguenay region buried the mercury-contaminated indigenous sediments at the head of the Saguenay Fjord under up to 50 cm of postglacial deltaic sediments. The vertical distributions of total mercury and methyl-mercury in the sediments and pore waters were measured in box cores recovered from the Saguenay Fjord within and outside the affected area prior to and on six consecutive years after the flood. The total solid mercury (THgs) profiles show that remobilization was limited and most of the mercury remobilized from the contaminated, indigenous sediments was trapped below or slightly above the former sediment–water interface by authigenic acid-volatile sulfides (AVS). Nonetheless, a small fraction of the remobilized mercury diffused into the flood layer, some of it was methylated and/or scavenged by organic matter and AVS. Elevated solid-phase methyl-mercury concentrations, [MeHgs], at depth in the sediment are correlated to peak AVS and THgs but, in the absence of elevated dissolved methyl-mercury concentrations, [MeHgd], the higher [MeHgs] may reflect an earlier episode of Hg methylation, the product of which was scavenged by the AVS and buried. Throughout the sediment cores, sediment–water partitioning of MeHg and Hg(II) appears to be controlled in great part by the AVS and residual organic matter content of the sediment.  相似文献   

2.
武汉市湖泊汞污染现状研究   总被引:7,自引:0,他引:7  
对武汉市远郊区、城乡结合部和市区三种环境中6个湖泊沉积物和鲢鱼肌肉中的汞污染特征进行了调查采样,采用原子荧光光谱仪进行了汞含量的测定.结果表明:与环境背景值相比,各湖泊沉积物均不同程度地遭受了汞污染,且汞污染表现出由市区向远郊呈减弱的趋势;在沉积柱垂直方向上,市区湖泊表层汞污染严重,向深层汞含量迅速降低,郊区湖泊沉积柱的汞含量基本上变化不大;沉积物中汞的赋存形态研究表明,汞在各湖泊中主要以惰性残渣态形式出现,反映了以飘尘和悬浮物颗粒形式输入为主的特点;湖泊鲢鱼肌肉中汞含量与沉积物中汞含量的变化规律一致,城区湖泊鲢鱼肌肉中的汞含量大大高于郊区湖泊,但鲢鱼肌肉中的汞含量尚未超出国家标准,属安全范围.  相似文献   

3.
In order to find out whether Aha Lake was polluted by the acid mining waste water or not, the concentration and distribution of different mercuryspecies in the water columns and sediment profile collected from Aha Lake were investigated. It was found that discernible seasonal variation of different mercury species in water body were obtained in the Aha Reservoir. With regards to the whole sampling periods, the concentrations of HgP in the Aha Reservoir water body were evidently correlated to the concentrations of total mercury, showing that total mercury was mostly associated with particle mercury. The concentrations of methylmercury in water body were also evidently correlated to the concentrations of dissolved mercury. The dissolved mercury evidently affects the distribution and transportation of methylmercury. However, there is no correlation between methylmercury and total mercury. The dissolved mercury, reactive mercury, dissolved methylmercury levels in the water body of high flow period were much higher than those in low flow period. The distribution, speciation and levels of mercury within the Aha Reservoir water body were governed by several factors, such as the output of river, the release of sediment . Discernible seasonal variation of total mercury and methylmercury in porewater was described during the sampling periods, with the concentrations in high flow period generally higher than those in low flow period. The methylmercury in pore water column was evidently correlated to that of the sediment. The results indicated that highly elevated MeHgD concentrations in the porewater were produced at the depths from 2 to 5 cm in the sediment profile, and decreased sharply with depth. A positive correlation has been found between MeHgD formation and sulfate reducing bacterial activity. These highly elevated concentrations of MeHgD at the intersurface between waters and sediments suggest a favorable methylation condition. Moreover,  相似文献   

4.
Although fish in Dorena Lake are contaminated with mercury, the source of pollution in the watershed was unconfirmed until the present study. To trace the mercury to its source, fine-grained sediment samples were collected from the major streams of the watershed. A few samples of mine waste/tailings were also obtained from the Bohemia Mining District where mercury was historically used in processing gold and silver ore. Mercury concentrations in sediment from streams that do not drain the central mining district average 0.066 ppm, whereas samples taken downstream of the district contain 0.140-1.339 ppm. Mine waste/tailings contain 13.441 to >50 ppm mercury. The source of mercury contamination in the Dorena Lake watershed is thus the Bohemia Mining District. Historical and geological evidence strongly suggests that the mercury problem in the district resulted from gold-mercury amalgamation practices, but naturally high mercury content in mineralized areas cannot be ruled out with the data presented here.  相似文献   

5.
Trace element concentrations in shallow marine sediments of the Buyat-Ratototok district of North Sulawesi, Indonesia, are affected by submarine disposal of industrial gold mine tailings and unregulated dumping of tailings and wastewater from small-scale gold mining using mercury amalgamation. Industrial mine tailings contained 590–690 ppm arsenic, 490–580 ppm antimony, and 0.8–5.8 ppm mercury. Tailings-affected sediment As and Sb concentrations were 20–30 times higher than in muddy sediments not contaminated with tailings, and 50–60 times higher than pre-mining average. Highest mercury concentrations were observed in sediments affected by small-scale mining using mercury amalgamation (5–29 ppm). Concentrations of most other trace elements were comparable in sediments affected by both types of mining and were slightly higher than regional averages for sediments collected before the onset of industrial mining. Elevated concentrations of both As and Sb in approximately equal proportions suggest tailings dispersal of at least 3.5 km. Mercury released from artisanal gold mining dispersed up to 4 km from river mouths. Slight increases in concentrations of non-mercury trace elements in areas affected by artisanal mining over pre-industrial mining concentrations were probably caused by increased rates of erosion. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

6.
The impact of natural source emissions on atmospheric mercury concentrations and the biogeochemical cycle of mercury is not known. To begin to assess this impact, mercury emissions to the atmosphere were scaled up for three areas naturally enriched in mercury: the Steamboat Springs geothermal area, Nevada, the New Idria mercury mining district, California, and the Medicine Lake volcano, California. Data used to scale up area emissions included mercury fluxes, measured in-situ using field flux chambers, from undisturbed and disturbed geologic substrates, and relationships between mercury emissions and geologic rock types, soil mercury concentrations, and surface heat flux. At select locations mercury fluxes were measured for 24 h and the data were used to adjust fluxes measured at different times of the day to give an average daily flux. This adjustment minimized daily temporal variability, which is observed for mercury flux because of light and temperature effects. Area emissions were scaled spatially and temporally with GIS software. Measured fluxes ranged from 0.3 to approximately 50 ng m-2 h-1 at undisturbed sites devoid of mercury mineralization, and to greater than 10,000 ng m-2 h-1 from substrates that were in areas of mercury mining. Area-averaged fluxes calculated for bare soil at Steamboat Springs, New Idria, and Medicine Lake of 181, 9.2, and 2 ng m-2 h-1, respectively, are greater than fluxes previously ascribed to natural non-point sources, indicating that these sources may be more significant contributors of mercury to the atmosphere than previously realized.  相似文献   

7.
Geochemical analyses of lakebed and core sediments from Lake Sambe on the outskirts of Oda City in Shimane prefecture in southwestern Japan were carried out in order to assess the water quality and the concentration and distribution patterns of sixteen elements. The lake water showed a stratified condition with respect to dissolved O2, and As, Fe, and Mn concentrations in the bottom layers which increased in the summer. The chemical composition of the sediments, as measured by X-ray fluorescence, included major and trace elements (P, Ca, Sc, Ti, V, Cr, Fe, Ni, Cu, Zn, As, Sr, Zr, Pb, and Th), and total sulfur (TS). Elevated values of As, Zn, V, Fe, P, and TS were present in several layers of the upper cores (from 0 to 5 cm) and other surface sediments. Increases in the abundances of these metals in lake sediments are probably related to the reducing condition of the sediments, fine-grained organic rich sediments, and post-depositional diagenetic remobilization. Moreover, correlations between the concentrations of trace metals and iron in the sediments suggest their adsorption onto Fe (oxy)hydroxides, whereas correlations with sulfur indicate that they were precipitated as Fe-sulfides. The average abundances of As, Pb, Zn, and Cu exceeded the lowest effect level and Interim Sediment Quality Guideline values that the New York State Department of Environmental Conservation and the Canadian Council of Ministers of the Environment determined to have moderate impact on aquatic organisms. In addition, concentrations of As and Zn exceeded the Coastal Ocean Sediment Database threshold value, indicating potentially toxic levels. Therefore, the presence of trace metals in the lake sediments may result in adverse effects on biota health.  相似文献   

8.
Doklady Earth Sciences - The mercury concentrations in the water of the Angara River Source (runoff of Lake Baikal) are compared to temporal distributions of earthquakes of various magnitudes that...  相似文献   

9.
 Two reservoirs in western Oregon contain mercury-contaminated sediment and fish as a result of historic mercury mining in the Cottage Grove Lake watershed and mercury amalgamation used in gold mining in the Dorena Lake watershed. On average, sediment in Cottage Grove Lake contains ten times as much mercury as sediment from Dorena Lake (2.720 versus 0.242 ppm). Mercury content in Cottage Grove Lake sediment shows a sharp initial decrease and leveling off with time that reflects the end of the major cinnabar mining phase; deposition of other heavy metals appears to be linked to the clay content of sediment. Mercury input to Dorena Lake has remained fairly constant with time, but small increases in mercury are associated with the deposits of large floods. Copper, lead, and zinc input to Dorena Lake exhibits a marked decrease and leveling off related to the end of commercial mining for these metals. Received: 12 October 1999 · Accepted: 22 March 2000  相似文献   

10.
Core and surface sediment samples were collected from three sub-lakes ( Lake Nanyang, Lake Dushan and Lake Zhaoyang) in the Lake Nansi Basin, Shandong Province. In order to reveal the characteristics of spatial and historical distribution of heavy metals in different sublakes of the Upper Lake Nansi, heavy metal (As, Cr, Cu, Hg, K, Mn, Ni, Pb, Zn, Al, Fe, Ti and V) concentrations of sediment samples were investigated. Based on the activity of^137Cs in the sediments, the modem accumulation rate of Lake Nansi sediments is 3.5 mm/a. Our results show that the whole Upper Lake Nansi has been already polluted by heavy metals, among which Lake Nanyang has been polluted seriously by mercury, as well as by lead and arsenic, while Lake Dushan has been most seriously polluted by lead and arsenic. Historical variation of heavy metal (Cr, Cu, K, Ni, Zn, A1, Fe, Ti and V) concentrations shows an abrupt shift in 1962, resuiting in a division of two periods: from 1957 to 1962 when metal enrichment increased with time, and from 1962 to 2000 when it decreased with time, while that of some anthropogenic elements such as Hg, Pb and Mn tend to increase toward the surface. However, the variation trend of As in the sediments is different from that of Hg, Pb and Mn, with its maximum value appearing in 1982. Since 1982 the concentrations of As have decreased due to the forbidden use of arsenite pesticides. This variation trend revealed changes in manner of human activity (coal combustion, waste discharges from both industries and urban sewage ) within the catchment during different periods.  相似文献   

11.
Eighteen sediment samples and six water-column samples were collected in a small (6 km2), coastal embayment (Port Jefferson Harbor, New York) to define a high-resolution spatial distribution of metals and to elucidate sources of contaminants to the harbor. Sediment metal (Ag, Cu, Fe, Ni, Pb, V, and Zn) concentrations varied widely, reflecting differences in sediment grain size, with higher metal concentrations located in the fine-grained inner harbor sediments. Calculated enrichment factors for these sediments show that Ag, Pb, Cu, and Zn are elevated relative to both crustal abundances and their respective abundances in sediments in central Long Island Sound. Metal concentrations were 1.2 to 10 fold greater in water from the inner harbor compared to water from Long Island Sound collected outside the mouth of the harbor. Spatial variations in trace metals in surface waters within the bay parallel the spatial variations of trace metals in sediments within the harbor. Elevated water-column metal concentrations appear to be partially derived from a combination of diagenetic remobilization from contaminated sediments (e.g., Ag) and anthropogenic sources (e.g., Cu and Zn) within the southern portions of the harbor. Although the National Status and Trends Program had reported previously that sediment metal concentrations in Port Jefferson Harbor were low, the results of this study show sediment metals have high spatial variability and are enriched in the inner harbor sediments at levels comparable to more urbanized western north shore Long Island harbors.  相似文献   

12.
Zinc concentrates with a mercury content of >600 tons are processed by zinc smelters each year, with primary zinc producers contributing significantly to anthropogenic mercury emissions. The chief host of mercury in zinc concentrates is sphalerite, the mercury content of which varies depending on the type and age of the deposit. Sphalerites from Proterozoic exhalative deposits have high mercury concentrations; they were formed during periods when the mercury input via emanations from the mantle was high. Sphalerites from Phanerozoic exhalative and vein-type deposits have intermediate mercury concentrations; they probably received most of their mercury from fluid-rock interaction, with direct input of gaseous mercury from a mantle source being less important. Mississippi Valley-type deposits have low mercury concentrations; they probably formed from mineralizing solutions, the mercury content of which has been scavenged by organic phases.  相似文献   

13.
武汉市墨水湖沉积物重金属污染特征与防治对策   总被引:8,自引:2,他引:8  
苏春利  王焰新 《矿物岩石》2006,26(2):111-116
武汉市墨水湖重金属污染严重,其污染特征在我国城市湖泊中具代表性。在对墨水湖不同湖区沉积物中重金属污染物空间分布特征进行分析的基础上,应用地积累指数法探讨不同重金属元素含量随深度变化的规律和原因,并对墨水湖沉积物中重金属的污染程度进行评价表明:墨水湖沉积物中重金属元素锌和汞污染最为严重,污染程度由高到低依次为:Zn>Hg>Cu>C r>Pb>A s;从整个湖区来看,分布有排污口的周边湖区污染严重,湖心污染程度较低;沉积物中主要重金属元素含量随深度增加而降低,其变化规律主要受污染状况的影响,沉积物颗粒粒径的变化和早期成岩作用的影响不大。为了改善墨水湖水质条件和重金属污染严重的现状,必须在截污、疏浚和引水工程等基本治理措施保护下,重建和恢复沉水植物系统,才能从根本上改善湖泊水质。  相似文献   

14.
U-Pb geochronology of igneous zircon from rhyolitic host rocks to the Archean Kidd Creek, Geco and Winston Lake massive sulfide deposits, in the Superior Province of Ontario, shows that volcanism, which accompanied mineralization, occupied a narrow time span (2717±2 Ma, 2720±2 Ma and 2723±2 Ma, respectively). Precise ages of hydrothermal monazite, allanite and rutile from alteration zones surrounding the above deposits indicate that these minerals crystallized 40–70 million years after volcanism. Monazite from Kidd Creek mine is 2659±3 Ma old, in agreement with spatially associated 2664±25 Ma old rutile. Monazite from a biotite schist at Geoco mine gives a similar age of 2661±1 Ma. However, monazite from a sericite schist, which hosts the ore at Geco mine, is 2675±2 Ma old. Abraded large monazite grains from three units in the Winston Lake deposit are coeval with biotite crystallization and record an age of 2677±2 Ma, approximately the same as monazite in the sericite schist at Geco. Data points from allanite fractions from both the Winston Lake and Geco deposits fall on a Pb-Pb isochron that gives an age of 2672±5 Ma. Rutile from Winston Lake gives a younger age of 2651±6/-2 Ma and may date retrograde alteration of biotite to chlorite. The ca. 2676 Ma age of monazite from Winston Lake and in the sericite schist at Geco mine probably dates a regional metamorphic event that affected most of the southern Superior Province. The ca. 2660 Ma old monazite in the biotite schist at Geco mine and in the chlorite-sericite alteration at Kidd Creek may date later K-metasomatism caused by metamorphically derived fluids that were focussed along old fault structures. Such fluids were also responsible for local sulfide remobilization. Monazite and rutile are spatially associated with chlorite and sericite alterations at Kidd Creek. Their young ages indicate that these originally syngenetic mineral assemblages may have been significantly affected by regional metamorphism. Formation of monazite at all three deposits studied was a result of significant REE remobilization during metamorphism. The discrete character of syn-metamorphic hydrothermal activity in different units of the same deposit, as well as its synchroneity among different, widely separated deposits, requires a mechanism for episodic injection of heat and fluid into the crust on a regional scale. These activities are broadly coeval with, and probably related to, plutonism within adjacent metasedimentary subprovinces and middle to lower crustal metamorphism in the Superior Province.  相似文献   

15.
《Applied Geochemistry》1994,9(5):597-608
In Pacheta Lake, a high-elevation alkaline lake proximal to the smelting region of southern Arizona-New Mexico, concentrations of transition metal ions in pore waters and co-existing sediments were compared. Copper, Fe, Mn and Zn have been partitioned among operationally defined sediment solid phases (exchangeable sites, organic complexes, amorphous oxides, crystalline oxides, sulfides and residual silicates) and their concentrations in interstitial waters were measured. Concentrations are reported as a function of depth in the sediment column. The diagenetic environment is described and cycling mechanisms postulated for the above metals.Selective, sequential extraction of metals from lake sediments showed different binding mechanisms for Cu and Zn, the former most strongly associated with organic complexes, and the latter with iron oxyhydroxides. This difference has strong implications for selective metal remobilization under variable environmental conditions, both naturally and anthropogenically induced. Copper and zinc in porewaters were estimated to diffuse to overlying waters at 12.8 and 21.9 μg/cm2/a, respectively. These fluxes are large enough to account for observed concentrations of Cu and Zn in overlying waters. No sediment metal contamination was directly attributable to smelting activity. However, this study does document a flux from sediments, which have accumulated Cu and Zn, to overlying waters no longer receiving trace metal deposition from now inactive smelters.  相似文献   

16.
A geochemical–paleolimnological study was conducted to investigate human influences on three lakes (Nuasjärvi, Jormasjärvi and Kolmisoppi) located in an area with high background levels of metals and sulphur in bedrock and till overburden. Accordingly, background concentrations of Co, Fe, Mg, Mn, Ni and Zn were above average in sediments of the study lakes.The land use-related erosion and transport of particulate matter into Lake Nuasjärvi started as early as in the seventeenth century, while increased inputs to Lake Jormasjärvi date to the eighteenth century and Lake Kolmisoppi to the 1970s and 1980s. Local tills and fine-grained sediments are the source of the particles and hydraulic sorting has resulted in elevated sediment concentrations of Ca, Cr, Cu, K, Mg, Na and Ni. At the same time, sedimentation of carbon and autochthonous phases has decreased, leading to low concentrations of Co, Fe and Mn in the erosion-associated sediment layers in Nuasjärvi and Kolmisoppi. Despite the geochemical changes, no marked eutrophication of the lakes could be detected with diatom-based nutrient reconstructions during the early land-use period.Elevated amounts of sulphur and chalcophilic elements were deposited throughout the study area during the 1970s and 1980s. In Lake Nuasjärvi combination of the elements is associated with the Lahnaslampi mine and the difference in the sulphide degradation rate is reflected as a sequence of element mobility and sedimentation in the order 1) S, and 2) Co, Ni, Cu, Zn, Cd and Sb. Sulphur, Cu, Ni, Pb and Zn enrichment in the other two lakes is related to other land uses and to atmospheric deposition. In addition to sulphur and metals, these most recent inputs from the catchment have caused nutrient enrichment in all three study lakes, most notably in the lowest-lying Lake Nuasjärvi. This lake has the highest percentage of fine-grained soils in its catchment and also suffers from point source nutrient inputs. In addition, metals (Ni) had a signal in diatom assemblages in Lake Nuasjärvi that was statistically independent of eutrophication (N:C) but inseparable from mineral matter inputs (K).  相似文献   

17.
The abundance and distribution of radioelements on bulk and microscopic scales were investigated in residual granitic-derived soil at a facility for investigating the movement of radon into structures. In bulk soil samples, Ra concentrations range from 0.6 to 1.3 pCi/g, and variations in Ra, Th, and K appear to be controlled mainly by heterogeneities inherited from the parent granitic rock, which contains abundant dikes and inclusions. U in soil and parent rock is concentrated in primary minerals (mainly zircon and sphene), and in secondary sites that are of greater importance for Rn emanation. The main U-bearing secondary sites are weathered sphene, grain boundary coatings, weathered biotite and plagioclase, as well as dense Fe-rich coatings and a REE-phosphate mineral present in near-vertical fracture zones in saprolite underlying shallow loam. Elevated U in these sites generally correlates with high Ti, Al, Fe, and/or P. Preferential distribution of U and Ra on grain boundaries and porous weathered minerals is reflected in relatively high Rn emanation rates in the soil. Highest emanation occurs between 1.3 and 2.3 m depth, where fine pedogenic phasesgibbsite and amorphous silica and Fe-OOH—are most abundant; it is related to fixation of Ra by these phases, which precipitate close to the surface and accumulate at these depths by illuviation. Separation of Ra from U may occur locally, given remobilization of U-series elements from secondary sites, and large differences between Ra and U sorption capabilities of several phases present in the soil. Concentration of U along permeable fracture zones in saprolite suggests that contribution of soil-gas Rn from depth (> 2 m) could be significant to Rn availability near the surface.  相似文献   

18.
The results are presented of a survey of mercury concentrations in various parts of the Icelandic environment. Values for air and gas samples include: <0.03 μg/m3 for Reykjavík, 15–20 km away from a hydrothermal area; 1–3 μg/m3 for air in a hydrothermal area near Lake Mývatn; 12–30 μg/m3 for air in Heimaey during the 1973 eruption; and 16 μg/m3 for a sample of fumarole gas. Values for fresh igneous rocks, of various compositions, extrusive (subaerial), subaqueous (up to 3000 m depth), and intrusive, range between 2 and 9 ppb. Highest values obtained for uncontaminated samples are 37 ppb for a pyrite-bearing zone in a hydrothermal drill hole, and 125 ppb for a volcanic sublimate. The sources of the mercury levels observed are briefly discussed.  相似文献   

19.
Mercury emissions during production of blister copper at the smelter Karabashmed are roughly estimated. The high mercury content in the atmospheric dust, soils, lake sediments of the Karabash geotechnogenic system shows that emissions of the plant are the main source of environmental contamination. The mercury content in soils of residential territory ranges within 0.2–11.4 mg/kg, reaching 15 mg/kg in soils of the impact zone. The maximum mercury content in the bottom sediments of Lake Serebry is 32 mg/kg. The high degree of contamination by other elements of emissions (Cu, Pb, Zn, As, Cd) is also demonstrated. Obtained results justify the need for the instrumental control of mercury in emissions.  相似文献   

20.
This study assesses the level of contamination of Hg in farmland soils along the irrigating channel downstream from Guizhou Organic Chemical Factory (GOCF), where metallic mercury is used as a catalyst to produce acetic acid. The total input of mercury into the environment, as announced by GOCF, is 140 t in the past 30 years (1971-2000). Sampling sites were chosen based on the distance from the source of pollution--the chemical factory. A total of 39 samples were collected from the study area and analyzed for total mercury concentrations and methyl mercury concentrations. The characteristics of vertical and horizontal distributions of total mercury and methyl mercury in the study area (farmland) are described in this paper. Much attention was paid to the transformation of inorganic Hg into organic mercury species in soils as well. The results showed that the farmland has been heavily contaminated by Hg. Land cultivation activity, land utilization style and distance from the pollution source could be the dominant factors controlling the distribution of THg and MeHg. It is observed that active transformation of inorganic Hg into organic mercury species (MeHg) usually takes place in paddy soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号