首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Identifying fracture pathways and connectivity between adjacent wells is vital for understanding flow characteristics, transport properties, and fracture characteristics. In this investigation, a simple, straightforward methodology is presented for assessing hydrofracing success and identifying possible fracture connectivity between neighboring boreholes, using water-level barometric response and tide signatures of individual fractures in a crystalline-rock setting. Water levels and barometric pressure heads were collected at two wells 27 m apart both prior to, and after, hydrofracing one of the wells at the fractured-rock research site in Floyd County, Virginia. Vastly different barometric and tidal signatures existed at the two wells prior to hydrofracing as well EX-1 had no discernable fractures, while W-03 was connected to an identified fault-zone aquifer and produced a notable water-level earth tide and barometric signatures. After hydrofracing EX-1, new fractures were induced and the resulting water-level tidal signature and barometric efficiencies were nearly identical to the W-03 well. Aquifer testing conducted from both wells verified this connectivity along the fault-zone aquifer. The small phase difference between the tidal responses in the two wells can be accounted for by the calculated differences in transmissivity and casing diameter.  相似文献   

2.
In this paper, the effect of pre-existing discrete fracture network (DFN) connectivity on hydraulic fracturing is numerically investigated in a rock mass subjected to in-situ stress. The simulation results show that DFN connectivity has a significant influence on the hydraulic fracture (HF) & DFN interaction and hydraulic fracturing effectiveness, which can be characterized by the total interaction area, stimulated DFN length, stimulated HF length, leak-off ratio, and stimulated total length. In addition, even at the same fluid injection rate, simulation models exhibit different responses that are strongly affected by the DFN connectivity. At a low injection rate, total interaction area decreases with increasing DFN connectivity; at a high injection rate, total interaction area increases with the increase of DFN connectivity. However, for any injection rate, the stimulated DFN length increases and stimulated HF length decreases with the increase of connectivity. Generally, this work shows that the DFN connectivity plays a crucial role in the interaction between hydraulic fractures, the pre-existing natural fractures and hydraulic fracturing effectiveness; in return, these three factors affect treating pressure, created microseismicity and corresponding stimulated volume. This work strongly relates to the production technology and the evaluation of hydraulic fracturing effectiveness. It is helpful for the optimization of hydraulic fracturing simulations in naturally fractured formations.  相似文献   

3.
Numerical simulations of variable-density flow and solute transport have been conducted to investigate dense plume migration for various configurations of 2D fracture networks. For orthogonal fractures, simulations demonstrate that dispersive mixing in fractures with small aperture does not stabilize vertical plume migration in fractures with large aperture. Simulations in non-orthogonal 2D fracture networks indicate that convection cells form and that they overlap both the porous matrix and fractures. Thus, transport rates in convection cells depend on matrix and fracture flow properties. A series of simulations in statistically equivalent networks of fractures with irregular orientation show that the migration of a dense plume is highly sensitive to the geometry of the network. If fractures in a random network are connected equidistantly to the solute source, few equidistantly distributed fractures favor density-driven transport. On the other hand, numerous fractures have a stabilizing effect, especially if diffusive transport rates are high. A sensitivity analysis for a network with few equidistantly distributed fractures shows that low fracture aperture, low matrix permeability and high matrix porosity impede density-driven transport because these parameters reduce groundwater flow velocities in both the matrix and the fractures. Enhanced molecular diffusion slows down density-driven transport because it favors solute diffusion from the fractures into the low-permeability porous matrix where groundwater velocities are smaller. For the configurations tested, variable-density flow and solute transport are most sensitive to the permeability and porosity of the matrix, which are properties that can be determined more accurately than the geometry and hydraulic properties of the fracture network, which have a smaller impact on density-driven transport.  相似文献   

4.
Variations in fluid density can greatly affect fluid flow and solute transport in the subsurface. Heterogeneities such as fractures play a major role for the migration of variable-density fluids. Earlier modeling studies of density effects in fractured media were restricted to orthogonal fracture networks, consisting of only vertical and horizontal fractures. The present study addresses the phenomenon of 3D variable-density flow and transport in fractured porous media, where fractures of an arbitrary incline can occur. A general formulation of the body force vector is derived, which accounts for variable-density flow and transport in fractures of any orientation. Simulation results are presented that show the verification of the new model formulation, for the porous matrix and for inclined fractures. Simulations of variable-density flow and solute transport are then conducted for a single fracture, embedded in a porous matrix. The simulations show that density-driven flow in the fracture causes convective flow within the porous matrix and that the high-permeability fracture acts as a barrier for convection. Other simulations were run to investigate the influence of fracture incline on plume migration. Finally, tabular data of the tracer breakthrough curve in the inclined fracture is given to facilitate the verification of other codes.  相似文献   

5.
Fractures in porous media have been documented extensively. However, they are often omitted from groundwater flow and mass transport models due to a lack of data on fracture hydraulic properties and the computational burden of simulating fractures explicitly in large model domains. We present a MATLAB toolbox, FracKfinder, that automates HydroGeoSphere (HGS), a variably saturated, control volume finite-element model, to simulate an ensemble of discrete fracture network (DFN) flow experiments on a single cubic model mesh containing a stochastically generated fracture network. Because DFN simulations in HGS can simulate flow in both a porous media and a fracture domain, this toolbox computes tensors for both the matrix and fractures of a porous medium. Each model in the ensemble represents a different orientation of the hydraulic gradient, thus minimizing the likelihood that a single hydraulic gradient orientation will dominate the tensor computation. Linear regression on matrices containing the computed three-dimensional hydraulic conductivity (K) values from each rotation of the hydraulic gradient is used to compute the K tensors. This approach shows that the hydraulic behavior of fracture networks can be simulated where fracture hydraulic data are limited. Simulation of a bromide tracer experiment using K tensors computed with FracKfinder in HGS demonstrates good agreement with a previous large-column, laboratory study. The toolbox provides a potential pathway to upscale groundwater flow and mass transport processes in fractured media to larger scales.  相似文献   

6.
Analysis of borehole flow logs is a valuable technique for identifying the presence of fractures in the subsurface and estimating properties such as fracture connectivity, transmissivity and storativity. However, such estimation requires the development of analytical and/or numerical modeling tools that are well adapted to the complexity of the problem. In this paper, we present a new semi-analytical formulation for cross-borehole flow in fractured media that links transient vertical-flow velocities measured in one or a series of observation wells during hydraulic forcing to the transmissivity and storativity of the fractures intersected by these wells. In comparison with existing models, our approach presents major improvements in terms of computational expense and potential adaptation to a variety of fracture and experimental configurations. After derivation of the formulation, we demonstrate its application in the context of sensitivity analysis for a relatively simple two-fracture synthetic problem, as well as for field-data analysis to investigate fracture connectivity and estimate fracture hydraulic properties. These applications provide important insights regarding (i) the strong sensitivity of fracture property estimates to the overall connectivity of the system; and (ii) the non-uniqueness of the corresponding inverse problem for realistic fracture configurations.  相似文献   

7.
The significance of flow in the matrix of the Chalk unsaturated zone, in comparison with flow in fractures, has been the subject of much debate. In this article, important elements of the literature are discussed in detail and several simple modelling analyses based on steady-state flow are presented. A study of the sensitivity of solute spreading to fracture spacing in models that ignore matrix flow shows that this latter assumption is generally incompatible with observed solute profiles, unless unrealistically small fracture spacings are assumed. The effect of air phase continuities (e.g. bedding planes) on matrix flow has also been examined. These discontinuities are frequently interrupted by points of connectivity between matrix blocks. An issue therefore is the relationship between connectivity and its effect on inter-block conductance. A simple analysis of the Laplace equation shows that just 1% connectivity represents an effective pathway equivalent to 18% of the local rock hydraulic conductivity. Obviously, when there is no fracture flow, solute spreading is significantly reduced. However, dual permeability model simulations show that matrix flow reduces solute spreading in the presence of persistent fracture flow. All of the above studies suggest that flow in the matrix of the Chalk unsaturated zone is significant and that ignoring it may result in a serious misunderstanding of the system.  相似文献   

8.
Dikes are natural records that can be used to understand the way magma flows in the crust. Coastal platform outcrops in Gosung, South Korea, show clear evidences that their intrusion took place along pre‐existing fractures. We analyzed outcropping dikes, measuring variations in dike thickness as well as fracture density (cumulative number of fractures along strike) and geometry around the dikes. The geometry and thickness variations of dikes intruded along pre‐existing fractures can be interpreted to understand the effect of pre‐existing fractures to evolution on magma flow, especially related with fault damage zones. This helps us to gain a better understanding of magma and fluid flow along pre‐existing fractures. Magma flow is greater along planes that strike perpendicular to the direction of least compressive horizontal stress, and along well connected fractures that show a high degree of connectivity. At the fault tip and linkage damage zone, there is a concentration of extensional fractures; in these areas injected dikelets can form. As faults become linked, the fracture density increases, until they become fully linked and act as one through‐going fault plane. As faults evolve, the boundary conditions of the faults vary and this has an impact on dike characteristics. Fracture geometry around dikes that intruded pre‐existing faults can be used as a record of fault evolution and this can give insights into how the maturity of a fault system can affect to the related magma or fluid flow characteristics.  相似文献   

9.
Evaluating contaminants impacting wells in fractured crystalline rock requires knowledge of the individual fractures contributing water. This typically involves using a sequence of tools including downhole geophysics, flow meters, and straddle packers. In conjunction with each other these methods are expensive, time consuming, and can be logistically difficult to implement. This study demonstrates an unsteady state tracer method as a cost‐effective alternative for gathering fracture information in wells. The method entails introducing tracer dye throughout the well, inducing fracture flow into the well by conducting a slug test and then profiling the tracer concentration in the well to locate water contributing fractures where the dye has been diluted. By monitoring the development of the dilution zones within the wellbore with time, the transmissivity and the hydraulic head of the water contributing fractures can be determined. Ambient flow conditions and the contaminant concentration within the fractures can also be determined from the tracer dilution. This method was tested on a large physical model well and a bedrock well. The model well was used to test the theory underlying the method and to refine method logistics. The approach located the fracture and generated transmissivity values that were in excellent agreement with those calculated by slug testing. For the bedrock well tested, two major active fractures were located. Fracture location and ambient well conditions matched results from conventional methods. Estimates of transmissivity values by the tracer method were within an order of magnitude of those calculated using heat‐pulse flow meter data.  相似文献   

10.
Deep-well injection into fractured sandstone is an option for the disposal of contaminated mine dewatering discharge from an open pit uranium mine. As part of the assessment of potential contaminant migration from deep-well injection, the effect of matrix diffusion was evaluated. An analytical mathematical model was developed for the simulation of the radial movement of a contaminant front away from an injection point under steady flow conditions in a planar fracture with uniform properties. The model includes the effects of advection in the fracture, diffusion of contaminants from the fracture into the rock matrix, and equilibrium adsorption on the fracture surface as well as in the rock matrix. Effective diffusion coefficients obtained from laboratory experiments on 11 intact core samples varied from 3.4 × 10−8 to 3.2 × 10−7 cm2/s. Model simulations were made with diffusion coefficient values in this range and with single-fracture injection rates estimated from fracture frequencies in boreholes, and from bulk hydraulic conductivity values obtained from field tests. Because of matrix diffusion, the rate of outward movement of the front of the nonreactive contaminants from the injection well is much slower than the rate of water flow in the fractures. Simulations of the movement of contaminants that undergo adsorption indicate that even a small distribution coefficient for the rock matrix causes the contaminants to remain very close to the injection well during the one-year period. The results of the simplified model demonstrate that matrix diffusion is an important process that cannot be neglected in the assessment of a waste disposal scheme located in fractured porous rock. However, in order to make a definitive assessment of the capability of matrix diffusion and associated matrix adsorption to significantly limit the extent of contaminant migration around injection wells, it would be necessary to conduct field tests such as a preliminary or experimental injection.  相似文献   

11.
Hydraulic fracturing has become an important technique for enhancing the permeability of hydrocarbon source rocks and increasing aquifer transmissivity in many hard rock environments where natural fractures are limited, yet little is known about the nature or behaviour of these hydraulically induced fractures as conduits to flow and transport. We propose that these fractures tend to be smooth based on observed hydraulic and transport behaviour. In this investigation a multi‐faceted approach was used to quantify the properties and characteristics of an isolated hydraulically induced fracture in crystalline rocks. Packers were used to isolate the fracture that is penetrated by two separate observation wells located approximately 33 m apart. A series of aquifer tests and an induced gradient tracer test were performed to better understand the nature of this fracture. Aquifer test results indicate that full recovery is slow because of the overall low permeability of the crystalline rocks. Drawdown tests indicate that the fracture has a transmissivity of 1–2 m2/day and a specific storage on the order of 2–9 × 10?7/m. Analysis of a potassium–bromide tracer test break through curve shows classic Fickian behaviour with minimal tailing analogous to parallel plate flow. Virtually all of the tracer was recovered, and the breakthrough curve dilution indicates that the swept area is only about 11% of a radial flow field and the estimated aperture is ≤0.5 mm, which implies a narrow linear flow region. These outcomes suggest that transport within these hydraulically induced ‘smooth’ fractures in crystalline rocks is rapid with minimal mixing, small local velocity fluctuations and no apparent diffusion into the host rock or secondary fractures. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
To study the impact of the fractures on development in the ultra-low permeability sandstone reservoir of the Yangchang Formation of the Upper Triassic in the Ordos Basin,data on outcrops,cores,slices,well logging and experiments are utilized to analyze the cause of the formation of the fractures,their distribution rules and the control factors and discuss the seepage flow effect of the fractures. In the studied area developed chiefly high-angle tectonic fractures and horizontal bedding fractures,inter-granular fractures and grain boundary fractures as well. Grain boundary fractures and intragranular fractures serve as vital channels linking intragranular pores and intergranular solution pores in the reservoir matrix,thus providing a good connectivity between the pores in the ultra-low perme-ability sandstone reservoir. The formation of fractures and their distribution are influenced by such external and internal factors as the palaeo-tectonic stress field,the reservoir lithological character,the thickness of the rock layer and the anisotropy of a layer. The present-day stress field influences the preservative state of fractures and their seepage flow effect. Under the tec-tonic effect of both the Yanshan and Himalayan periods,in this region four sets of fractures are distributed,respectively assuming the NE-SW,NW-SE,nearly E-W and nearly S-N orientations,but,due to the effect of the rock anisotropy of the rock formation,in some part of it two groups of nearly orthogonal fractures are chiefly distributed. Under the effect of the present-day stress field,the fractures that assume the NE-SW direction have a good connectivity,big apertures,a high permeability and a minimum starting pressure,all of which are main advantages of the seepage fractures in this region. With the development of oilfields,the permeability of the fractures of dif-ferent directions will have a dynamic change.  相似文献   

13.
Identifying connections in a fractured rock aquifer using ADFTs   总被引:1,自引:0,他引:1  
Halihan T  Love A  Sharp JM 《Ground water》2005,43(3):327-335
Fractured rock aquifers are difficult to characterize because of their extremely heterogeneous nature. Developing an understanding of fracture network hydraulic properties in these aquifers is difficult and time consuming, and field testing techniques for determining the location and connectivity of fractures in these aquifers are limited. In the Clare Valley, South Australia, well interference is an important issue for a major viticultural area that uses a fractured aquifer. Five fracture sets exist in the aquifer, all dipping > 25 degrees . In this setting, we evaluate the ability of steady-state asymmetric dipole-flow tests (ADFTs) to determine the connections between a test well and a set of piezometers. The procedure involves dividing a test well into two chambers using a single packer and pumping fluid from the upper chamber to the lower chamber. By conducting a series of tests at different packer elevations, an "input" signal is generated in fracture zones connected to the test well. By monitoring the "output" response of the hydraulic dipole field at piezometers, the connectivity of the fractures between the test well and piezometers can be determined. Results indicate the test well used in this study is connected in a complex three-dimensional geometry, with drawdown occurring above and below areas of potentiometric buildup. The ADFT method demonstrates that the aquifer evaluated in this study cannot be modeled effectively on the well scale using continuum flow models.  相似文献   

14.
Field characterization of a trichloroethene (TCE) source area in fractured mudstones produced a detailed understanding of the geology, contaminant distribution in fractures and the rock matrix, and hydraulic and transport properties. Groundwater flow and chemical transport modeling that synthesized the field characterization information proved critical for designing bioremediation of the source area. The planned bioremediation involved injecting emulsified vegetable oil and bacteria to enhance the naturally occurring biodegradation of TCE. The flow and transport modeling showed that injection will spread amendments widely over a zone of lower‐permeability fractures, with long residence times expected because of small velocities after injection and sorption of emulsified vegetable oil onto solids. Amendments transported out of this zone will be diluted by groundwater flux from other areas, limiting bioremediation effectiveness downgradient. At nearby pumping wells, further dilution is expected to make bioremediation effects undetectable in the pumped water. The results emphasize that in fracture‐dominated flow regimes, the extent of injected amendments cannot be conceptualized using simple homogeneous models of groundwater flow commonly adopted to design injections in unconsolidated porous media (e.g., radial diverging or dipole flow regimes). Instead, it is important to synthesize site characterization information using a groundwater flow model that includes discrete features representing high‐ and low‐permeability fractures. This type of model accounts for the highly heterogeneous hydraulic conductivity and groundwater fluxes in fractured‐rock aquifers, and facilitates designing injection strategies that target specific volumes of the aquifer and maximize the distribution of amendments over these volumes.  相似文献   

15.
Accurate simulation of flow and transport processes in fractured rocks requires that flow in fractures and shear zones to be coupled with flow in the porous rock matrix. To this end, we will herein consider a single-continuum approach in which both fractures and the porous rock are represented as volumetric objects, i.e., as cells in an unstructured triangular grid with a permeability and a porosity value associated with each cell. Hence, from a numerical point of view, there is no distinction between flow in the fractures and the rock matrix. This enables modelling of realistic cases with very complex structures. To compute single-phase advective transport in such a model, we propose to use a family of higher-order discontinuous Galerkin methods. Single-phase transport equations are hyperbolic and have an inherent causality in the sense that information propagates along streamlines. This causality is preserved in our discontinuous Galerkin discretization. We can therefore use a simple topological sort of the graph of discrete fluxes to reorder the degrees-of-freedom such that the discretized linear system gets a lower block-triangular form, from which the solution can be computed very efficiently using a single-pass forward block substitution. The accuracy and utility of the resulting transport solver is illustrated through several numerical experiments.  相似文献   

16.
石云  刘春平  廖欣  唐彦东  万飞 《地震学报》2013,35(3):421-429
将多孔介质中井-含水层-隔水层的潮汐水位振幅和位相的计算公式推广到裂隙饱水岩体潮汐分析中, 分析了裂隙含水层中井与裂隙, 裂隙与微裂隙的潮汐孔压响应原理和水流交换过程, 提取了影响裂隙含水层潮汐水位振幅和位相的主要因素, 应用井-裂隙排水产生的井水位-引潮高的振幅比A和位相差α2主要随径向等效导水系数T同向变化, 裂隙和微裂隙(孔隙)排水产生的孔压-引潮高的振幅比D和位相差α1主要随不排水条件下微裂隙与裂隙间振幅比E'/E反向变化的规律, 提出了潮汐井水位振幅和位相的8种不同变化类型, 分析了不同类型所反映的含水层形变, 并用于分析东川、 弥勒和西昌川03等3口井井水位振幅和位相变化的成因.   相似文献   

17.
Magmas are transported through pre-existing fractures in many repeatedly erupting volcanoes. The study of this special process of magma transport is fundamentally important to understand the mechanisms and conditions of volcanic eruptions. In this paper, we numerically simulate the magma propagation process through a pre-existing vertical fracture in the crust by using the combined finite difference method (FDM), finite element method (FEM) and discontinuous deformation analysis (DDA) approach. FDM is used to analyze magma flow in the pre-existing fracture, FEM is used to calculate the opening of the fracture during magma intrusion, and DDA is used to deal with the contact of the closed fracture surfaces. Both two-dimensional (2D) and three-dimensional (3D) examples are presented. Parametric studies are carried out to investigate the influence of various physical and geometric parameters on the magma transport in the pre-existing fracture. We have considered magma chamber depth ranging from 7 km to 10 km under the crust surface, magma viscosity ranging from 2 × 10−2 to 2 × 10−7 MPa s, and the density difference between the magma and host rock ranging from 300 to 700 kg/m3. The numerical results indicate that (1) the fluid pressure p varies gradually along the depth, (2) the shape of the magma body during propagation is like a torch bar and its width ranges from 2 m to 4 m approximately in the 3D case and 10 m to 50 m in the 2D case for the same physical parameters used, (3) the crust surface around the pre-existing fracture begins to increase on both sides of the fracture, forms a trough between them, then gradually uplifts during the transport of the magma, and finally takes the shape of a crater when the magma reaches the surface. We have also examined the influence of physical and geometric parameters on the minimum overpressure for magma transport in the 3D case. The numerical results show that our numerical technique presented in this paper is an effective tool for simulating magma transport process through pre-existing fractures in the crust.  相似文献   

18.
During hydraulic fracturing millions of gallons of water are typically injected at high pressure into deep shale formations. This water can be housed in fractures, within the shale matrix, and can potentially migrate beyond the shale formation via fractures and/or faults raising environmental concerns. We describe a generic framework for producing estimates of the volume available in fractures and undamaged shale matrix where water injected into a representative shale site could reside during hydraulic fracturing, and apply it to a representative site that incorporates available field data. The amount of water that can be stored in the fractures is estimated by calculating the volume of all the fractures associated with a discrete fracture network (DFN) based on real data and using probability theory to estimate the volume of smaller fractures that are below the lower cutoff for the fracture radius in the DFN. The amount of water stored in the matrix is estimated utilizing two distinct methods—one using a two‐phase model at the pore‐scale and the other using a single‐phase model at the continuum scale. Based on these calculations, it appears that most of the water resides in the matrix with a lesser amount in the fractures.  相似文献   

19.
Various numerical methods have been used in the literature to simulate single and multiphase flow in fractured media. A promising approach is the use of the discrete-fracture model where the fracture entities in the permeable media are described explicitly in the computational grid. In this work, we present a critical review of the main conventional methods for multiphase flow in fractured media including the finite difference (FD), finite volume (FV), and finite element (FE) methods, that are coupled with the discrete-fracture model. All the conventional methods have inherent limitations in accuracy and applications. The FD method, for example, is restricted to horizontal and vertical fractures. The accuracy of the vertex-centered FV method depends on the size of the matrix gridcells next to the fractures; for an acceptable accuracy the matrix gridcells next to the fractures should be small. The FE method cannot describe properly the saturation discontinuity at the matrix–fracture interface. In this work, we introduce a new approach that is free from the limitations of the conventional methods. Our proposed approach is applicable in 2D and 3D unstructured griddings with low mesh orientation effect; it captures the saturation discontinuity from the contrast in capillary pressure between the rock matrix and fractures. The matrix–fracture and fracture–fracture fluxes are calculated based on powerful features of the mixed finite element (MFE) method which provides, in addition to the gridcell pressures, the pressures at the gridcell interfaces and can readily model the pressure discontinuities at impermeable faults in a simple way. To reduce the numerical dispersion, we use the discontinuous Galerkin (DG) method to approximate the saturation equation. We take advantage of a hybrid time scheme to alleviate the restrictions on the size of the time step in the fracture network. Several numerical examples in 2D and 3D demonstrate the robustness of the proposed model. Results show the significance of capillary pressure and orders of magnitude increase in computational speed compared to previous works.  相似文献   

20.
Since natural fractures in petroleum reservoirs play an important role in determining fluid flow during production, knowledge of the orientation and density of fractures is required to optimize production. This paper outlines the underlying theory and implementation of a fast and efficient algorithm for upscaling a Discrete Fracture Network (DFN) to predict the fluid flow, elastic and seismic properties of fractured rocks. Potential applications for this approach are numerous and include the prediction of fluid flow, elastic and seismic properties for fractured reservoirs, model‐based inversion of seismic Amplitude Versus Offset and Azimuth (AVOA) data and the optimal placement and orientation of infill wells to maximize production. Given that a single fracture network may comprise hundreds of thousands of individual fractures, the sheer size of typical DFNs has tended to limit their practical applications. This paper demonstrates that with efficient algorithms, the utility of Discrete Fracture Networks can be extended far beyond mere visualization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号