首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
建水地下流体监测井水位骤降异常分析   总被引:2,自引:0,他引:2  
2012年2月底至4月上旬,建水县地下流体监测站监测井水位出现了幅度近8m的显著下降变化.通过对该监测井与石屏—建水断裂带观测井同期水位进行对比分析,排除了监测井水位骤降异常是由构造活动引起的可能性.同时,调查了周边的抽水井,运用水文地质分析方法,结合当地水文地质情况,确定该监测井水位骤降异常是由附近的井孔抽水引起.充分了解当地的水文地质情况,根据地下水的运移规律,结合实地调查,可以对地下水异常给出相对合理的解释,并进一步判断地下水异常是否是构造活动引起的地震异常.  相似文献   

4.
5.
6.
7.
8.
An analytical method is provided where the ground water practitioner can quickly determine the size (number of wells) and spacing of a well network capable of meeting a known ground water demand. In order to apply the method, two new parameters are derived that relate theoretical drawdown to the maximum drawdown that is achievable without mining the aquifer. The size of a well network is shown to be proportional to the ground water demand and inversely proportional to the transmissivity and available head. The spacing between wells in a supply well network is shown to be most sensitive to a derived parameter r HA/ 3, which is related to the available head and the propagation of drawdown away from a theoretical well if the total ground water demand was applied to that well. The method can be used to quickly determine the required spacing between wells in well networks of various sizes that are completed in confined aquifers with no leakance.  相似文献   

9.
10.
Abstract. We have developed a program which aids in the design and analysis of pumping tests and slug tests. In design mode, the program emphasizes calculation and plotting of the sensitivities of drawdown (or head) to well function parameters. In analysis mode, the program can analyze a given set of experimental data. For pumping tests, the program allows multiple observation wells and multiple variable-rate pumping wells. The program is written in a modular fashion, allowing easy addition of well functions to the currently existing library. An example based on a hypothetical pumping test illustrates the utility of sensitivity analysis for well test design.  相似文献   

11.
Private wells in Cayuga and Orange counties in New York were sampled to determine the occurrence of pesticide contamination of groundwater in areas where significant pesticide use coincides with shallow or otherwise vulnerable groundwater. Well selection was based on local groundwater knowledge, risk modeling, aerial photo assessments, and pesticide application database mapping. Single timepoint samples from 40 wells in each county were subjected to 93‐compound chromatographic scans. All samples were nondetects (reporting limits ≤1 μg/L), thus no wells from either county exceeded any of 15 state groundwater standards or guidance values. More sensitive enzyme‐linked immunosorbent assays (ELISA) found two wells with quantifiable atrazine in each county (0.1–0.3 μg/L), one well with quantifiable diazinon (0.1 μg/L) in Orange County, and one well with quantifiable alachlor (0.2 μg/L) in Cayuga County. Trace detections (<0.1 μg/L) in Cayuga County included atrazine (five wells), metolachlor (six wells), and alachlor (one well), including three wells with multiple detections. All 12 Cayuga County wells with ELISA detections had either corn/grain or corn/forage rotations as primary surrounding land uses (although 20 other wells with the same land uses had no detections) and all quantified detections and most trace detections occurred in wells up to 9‐m deep. Orange County trace (<0.1 μg/L) ELISA detections (atrazine three wells, diazinon one well, and metolachlor five wells) and quantified detections were only generally associated with agricultural land uses. Finding acceptable drinking water quality in areas of vulnerable groundwater suggests that water quality in less vulnerable areas will also be good.  相似文献   

12.
13.
The spatial distribution of hydraulic properties in the subsurface controls groundwater flow and solute transport. However, many approaches to modeling these distributions do not produce geologically realistic results and/or do not model the anisotropy of hydraulic conductivity caused by bedding structures in sedimentary deposits. We have developed a flexible object-based package for simulating hydraulic properties in the subsurface—the Hydrogeological Virtual Realities (HyVR) simulation package. This implements a hierarchical modeling framework that takes into account geological rules about stratigraphic bounding surfaces and the geometry of specific sedimentary structures to generate realistic aquifer models, including full hydraulic-conductivity tensors. The HyVR simulation package can create outputs suitable for standard groundwater modeling tools (e.g., MODFLOW), is written in Python, an open-source programming language, and is openly available at an online repository. This paper presents an overview of the underlying modeling principles and computational methods, as well as an example simulation based on the Macrodispersion Experiment site in Columbus, Mississippi. Our simulation package can currently simulate porous media that mimic geological conceptual models in fluvial depositional environments, and that include fine-scale heterogeneity in distributed hydraulic parameter fields. The simulation results allow qualitative geological conceptual models to be converted into digital subsurface models that can be used in quantitative numerical flow-and-transport simulations, with the aim of improving our understanding of the influence of geological realism on groundwater flow and solute transport.  相似文献   

14.
Water levels and water quality of open borehole wells in fractured bedrock are flow-weighted averages that are a function of the hydraulic heads and transmissivities of water contributing fractures, properties that are rarely known. Without such knowledge using water levels and water quality data from fractured bedrock wells to assess groundwater flow and contaminant conditions can be highly misleading. This study demonstrates a cost-effective single packer method to determine the hydraulic heads and transmissivities of water contributing fracture zones in crystalline bedrock wells. The method entails inflating a pipe plug to isolate sections of an open borehole at different depths and monitoring changes in the water level with time. At each depth, the change in water level with time was used to determine the sum of fracture transmissivities above the packer and then to solve for individual fracture transmissivity. Steady-state wellbore heads along with the transmissivities were used to determine individual fracture heads using the weighted average head equation. The method was tested in five wells in crystalline bedrock located at the University of Connecticut in Storrs. The single packer head and transmissivity results were found to agree closely with those determined using conventional logging methods and the dissolved oxygen alteration method. The method appears to be a simple and cost-effective alternative in obtaining important information on flow conditions in fractured crystalline bedrock wells.  相似文献   

15.
Evaluating contaminants impacting wells in fractured crystalline rock requires knowledge of the individual fractures contributing water. This typically involves using a sequence of tools including downhole geophysics, flow meters, and straddle packers. In conjunction with each other these methods are expensive, time consuming, and can be logistically difficult to implement. This study demonstrates an unsteady state tracer method as a cost‐effective alternative for gathering fracture information in wells. The method entails introducing tracer dye throughout the well, inducing fracture flow into the well by conducting a slug test and then profiling the tracer concentration in the well to locate water contributing fractures where the dye has been diluted. By monitoring the development of the dilution zones within the wellbore with time, the transmissivity and the hydraulic head of the water contributing fractures can be determined. Ambient flow conditions and the contaminant concentration within the fractures can also be determined from the tracer dilution. This method was tested on a large physical model well and a bedrock well. The model well was used to test the theory underlying the method and to refine method logistics. The approach located the fracture and generated transmissivity values that were in excellent agreement with those calculated by slug testing. For the bedrock well tested, two major active fractures were located. Fracture location and ambient well conditions matched results from conventional methods. Estimates of transmissivity values by the tracer method were within an order of magnitude of those calculated using heat‐pulse flow meter data.  相似文献   

16.
The characterization of pore-space connectivity in porous media at the sediment/water interface is critical in understanding contaminant transport and reactive biogeochemical processes in zones of groundwater and surface-water exchange. Previous in situ studies of dual-domain (i.e., mobile/less-mobile porosity) systems have been limited to solute tracer injections at scales of meters to hundreds of meters and subsequent numerical model parameterization using fluid concentration histories. Pairing fine-scale (e.g., sub-meter) geoelectrical measurements with fluid tracer data over time alleviates dependence on flowpath-scale experiments, enabling spatially targeted characterization of shallow sediment/water interface media where biogeochemical reactivity is often high. The Dual-Domain Porosity Apparatus is a field-tested device capable of variable rate-controlled downward flow experiments. The Dual-Domain Porosity Apparatus facilitates inference of dual-domain parameters, i.e., mobile/less-mobile exchange rate coefficient and the ratio of less mobile to mobile porosity. The Dual-Domain Porosity Apparatus experimental procedure uses water electrical conductivity as a conservative tracer of differential loading and flushing of pore spaces within the region of measurement. Variable injection rates permit the direct quantification of the flow-dependence of dual-domain parameters, which has been theorized for decades but remains challenging to assess using existing experimental methodologies.  相似文献   

17.
A number of samples of polyvinyl chloride (PVC) well casings used for ground water monitoring that varied in schedule, diameter or manufacturer were placed in contact with low concentrations of aqueous solutions of TNT, RDX, HMX and 2,4-DNT for 80 days. Analysis indicated that there was more loss of TNT and HMX with the PVC casing than with the glass controls, but that the amount lost was, for the most part, equivalent among different types. A second experiment was performed to determine if these losses were due to sorption or if biodegradation was involved. Several different ground water conditions were simulated by varying salinity, initial pH and dissolved oxygen content. The only case where there was an in-creased loss of any substance due to the presence of PVC casing was with the TNT solution under non-sterile conditions. The extent of loss was small, however, considering the length of the equilibration period. This increased loss is thought to be associated with increased microbial degradation rather than sorption. Several samples of PVC casing were also leached with ground water for 80 days. No detectable interferences were found by reversed-phase high performance liquid chromatography (HPLC) analysis. Therefore, it is concluded that PVC well casings are suitable for monitoring ground water for the presence of these munitions.  相似文献   

18.
Virtual Water: A Strategic Resource Global Solutions to Regional Deficits   总被引:26,自引:0,他引:26  
J.A. Allan 《Ground water》1998,36(4):545-546
  相似文献   

19.
云南会泽井水位与水温相关关系及其变异的地震预测意义   总被引:2,自引:1,他引:2  
以不同的时间尺度,对2003~2006 年云南会泽井的水位和水温资料进行了相关性计算.结果表明,水位和水温的趋势性变化具有很好的相关性(R=0.738,α=0.01)和同步性.较小时间尺度的相关性计算结果还显示,两者不仅有相关性和同步性,还有差异性,这种差异性特征与会泽及附近地区中强以上地震对应较好,可看作地震前兆异常,作为短期地震预报指标.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号