首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract   Early Cretaceous structural development of the southern part of the South Kitakami Belt, northeast Japan, is discussed through precise structural mapping and the measurement of semiquantitative strain. The mapping and measurement revealed that wide north- to northeast-trending sinistral shear zones occupied by the 'slate' with higher strain than the surrounding rocks run from the axial part to the western limb of major synclines, with the wavelength of 5–10 km. The major synclines with a U-shaped rock distribution opening to the south are interpreted to be drag folds along the sinistral shear zones. These structures were modified by a second stage of Early Cretaceous sinistral shearing characterized by localized high-temperature mylonite zones along the rim of some of the 120 Ma granitoids that cut the major folds and baked the 'slate' in the older shear zones mentioned above. The rocks of the South Kitakami Belt, which had undergone two stages of shearing, were rapidly exhumed before the deposition of the Late Aptian–Albian Miyako Group. Finally, a restoration model is presented of the Early Cretaceous sinistral displacement and deformation in the study area.  相似文献   

2.
JUN-ICHI  TAZAWA 《Island Arc》2002,11(4):287-301
Abstract    Late Paleozoic (Middle Devonian, Early Carboniferous and Middle Permian) brachiopod faunas of the South Kitakami Belt, northeast Japan, are closely related paleobiogeographically to those of the Xinjiang–Inner Mongolia–Jilin region, northwest–northeast China. This relationship suggests that the South Kitakami Belt was part of the trench or continental shelf bordering the northern and eastern margins of North China (Sino-Korea) during the Middle Devonian to Middle Permian times. Among the three models on the origin and tectonic development of the South Kitakami Belt, the strike–slip model is most consistent, but both the microcontinent model and the nappe model have considerable inconsistencies with the above paleobiogeographic and paleogeographic evidence.  相似文献   

3.
The South Kitakami Belt in the northeast Japan is unique in presence of a thick Paleozoic–Mesozoic sedimentary rocks. The Permian sedimentary succession in the Maiya area of this belt is divided into the Nishikori, Tenjinnoki, and Toyoma formations, in ascending stratigraphic order. The Tenjinnoki Formation includes the Yamazaki Conglomerate Member containing granitic clasts. We performed U–Pb dating for detrital zircon of one sample of tuffaceous sandstone from the Nishikori Formation, six samples of sandstone from the Tenjinnoki and Toyoma formations, and five granitic clasts from the Yamazaki Conglomerate using laser ablation-inductively coupled plasma-mass spectrometry. Our dating results show that the tuffaceous sandstone sample has two age peaks at 287 and 301 Ma for the Nishikori Formation, three age peaks at 320–300, 290, and 270 Ma for the Tenjinnoki and Toyoma Formation, and ages of 311, 300, and 270 Ma from granitic clasts of the Yamazaki Conglomerate. In addition, older ages of 452–435 and 380 Ma were obtained from some zircon grains of the sandstone and granitic clasts. Our results suggest igneous activity in these periods. The South Kitakami Belt's origin with respect to continental blocks has been discussed in regard of the margin of North China Block or South China Block. Based on the stratigraphic ages and timing of igneous activity, we conclude that during the Permian the South Kitakami Belt was located at the margin of the South Central Asian Orogenic Belt, near the Solonker-Xra Moron-Changchun suture and the North China Block in East Asia.  相似文献   

4.
The Kitakami Massif of the Tohoku district, Northeast Japan, consists mainly of the South Kitakami Belt (Silurian–Cretaceous forearc shallow-marine sediments, granitoids, and forearc ophiolite) and the North Kitakami Belt (a Jurassic accretionary complex). The Nedamo Belt (a Carboniferous accretionary complex) occurs as a small unit between those two belts. An accretionary unit in the Nedamo Belt is lithologically divided into the Early Carboniferous Tsunatori Unit and the age-unknown Takinosawa Unit. In order to constrain the accretionary age of the Takinosawa Unit, detrital zircon U–Pb dating was conducted. The new data revealed that the youngest cluster ages from sandstone and tuffaceous rock are 257–248 Ma and 288–281 Ma, respectively. The Early Triassic depositional age of the sandstone may correspond to a period of intense magmatic activity in the eastern margin of the paleo-Asian continent. A 30–40 my interval between the youngest cluster ages of the sandstone and the tuffaceous rock can be explained by the absence of syn-sedimentary zircon in the tuffaceous rock. The new detrital zircon data suggest that the Takinosawa Unit can be distinguished as an Early Triassic accretionary complex distinct from the Early Carboniferous Tsunatori Unit. This recognition establishes a long-duration northeastward younging polarity of accretionary units, from the Carboniferous to Early Cretaceous, in the northern Kitakami Massif. Lithological features and detrital zircon spectra suggest that the Early Triassic Takinosawa Unit in the Nedamo Belt is comparable with the Hisone and Shingai units in the Kurosegawa Belt in Shikoku. The existence of this Early Triassic accretionary complex strongly supports a pre-Jurassic geotectonic correlation and similarity between Southwest and Northeast Japan.  相似文献   

5.
Using secondary spinel standard method, we have measured precisely the compositions of spinels of amphibole-bearing mantle peridotite xenoliths from Nüshan in eastern China, and calculated the mantle oxygen fugacities recorded by the xenoliths. Results indicate that the mantle metasomatism for forming amphiboles in Nüshan region of Anhui has resulted in the decrease of mantle redox, which is in contrast with theoretical estimation and previous research results from other areas around the world. Combining with related studies on the mantle of eastern China, we give a reasonable explanation to the 'new finding' and further elucidate the compositions and nature of mantle fluids in eastern China.  相似文献   

6.
Late Early Paleozoic mafic-ultramafic dykes and volcanic rocks from the South Qinling belt are char- acterized by εNd( t ) = 3.28― 5.02, (87Sr/86Sr)i= 0.70341― 0.70555, (206Pb/204Pb)i = 17.256― 18.993, (207Pb/204Pb)i= 15.505―15.642, (208Pb/204Pb)i=37.125―38.968, ?8/4=21.18―774.43, ?7/4=8.11―18.82. These charac- teristics suggest that they derived from a Middle Neoproterozoic mantle with isotopic compositions of mixed HIMU, EMII and minor EMI components. We interpret that these rocks were melting products of depleted mantle modified by subducted ancient oceanic crust and continental margin sediments along the northern margin of Yangtze block during Early Neoproterozoic.  相似文献   

7.
Takayuki  Uchino  Makoto  Kawamura 《Island Arc》2010,19(1):177-191
The Nedamo Terrane, an Early Carboniferous accretionary complex, is the oldest biostratigraphically dated accretionary complex in Japan. The purpose of this study is to describe and interpret a conglomerate from the Nedamo Terrane that contains clasts of high-pressure/low-temperature (high- P/T ) schist (mainly garnet-bearing phengite schist) and ultramafic rock, and to infer the tectonics of an Early Carboniferous arc–trench system at the eastern margin of the paleo-Asian continent. Clasts of high- P/T schist and ultramafic rock within the conglomerate make up 8.4 and 6.7% of the total clasts, respectively, based on modal counts. These clasts are subangular to subrounded, whereas volcanic clasts are well rounded. The source of the schist clasts, which yield a radiometric age of 347–317 Ma, is considered to be the Renge Metamorphic Rocks of Southwest Japan or equivalent rocks. Based on the chemical composition of chromian spinel, the source of ultramafic clasts is inferred to be the island-arc-type Ordovician Miyamori and Hayachine ultramafic complexes in the Kitakami Massif. The conglomerate records multiple provenance regions, including an island arc (South Kitakami Terrane) and a forearc ridge; the high P/T schist and ultramafic rocks were exhumed in the forearc region. The duration of the interval from the early stages of exhumation of the schist to its deposition in the trench as clasts is estimated to have been less than 30 my.  相似文献   

8.
Ken-Ichi  Hirauchi 《Island Arc》2006,15(1):156-164
Abstract   Serpentinite bodies in the Kurosegawa Belt are mapped along fault boundaries between the Cretaceous Sanchu Group (forearc basin-fill sediments) and the rocks of the Southern Chichibu Belt (Jurassic to Early Cretaceous accretionary prism) in the northwestern Kanto Mountains, central Japan. The serpentinites were divided into three types based on microtextures and combinations of serpentine minerals: massive, antigorite and chrysotile serpentinites. Massive serpentinite retains initial pseudomorphic textures without any deformation after serpentinization. Antigorite serpentinite exhibits shape-preferred orientation of antigorite replacing the original lizardite and/or chrysotile to form pseudomorphs. It has porphyroclasts of chromian spinel, and is characterized by ductile deformation under relatively high-pressure–temperature conditions. Chrysotile serpentinite shows evidence for overprinting of pre-existing serpentinite features under shallow, low-temperature conditions. It exhibits unidirectional development of chrysotile fibers. Foliations in antigorite and chrysotile serpentinites strike parallel to the elongate direction of the serpentinite bodies, suggesting a continuous deformation during solid-state intrusion along the fault zones after undergoing complete serpentinization at deeper levels (lower crust and upper mantle).  相似文献   

9.
Relicts of deformed lithospheric mantle have been identified within serpentinites and weathered peridotites recovered from nine dredge sites and one submersible dive site from across the Godzilla Megamullion, which was emplaced at the now‐extinct Parece Vela Rift in the Parece Vela Basin, a back‐arc basin in the Philippine Sea. The serpentinites consist dominantly of lizardite ± chrysotile and magnetite with minor relict primary minerals that include pyroxene, spinel, and rare olivine. The weathered peridotites consist of pyroxene, spinel, lizardite ± chrysotile, and magnetite as well as weathering products of olivine. These rocks were classified in hand specimen into three types with different structures: massive, foliated, and mylonitic. In thin‐section the serpentine minerals show no sign of deformation, whereas relict primary minerals show evidence of plastic deformation such as undulose extinction, kink bands, dynamic recrystallization, and weak to moderate crystallographic preferred orientations. Therefore, the serpentinites and weathered peridotites result from the static replacement and weathering of previously ductile‐deformed peridotite. Given their location close to or on the detachment surface that exposed them, the relicts of peridotite provide evidence of deformation in the lithospheric mantle that could be related to the formation and emplacement of the Godzilla Megamullion in the Parece Vela Rift.  相似文献   

10.
More than 30 mafic dykes crop out in the Sergeevka belt in the coastal South Primorye, Far East Russia, of which geologic settings have been unclear for years. This study conducted major- and trace elements characterization, Sr–Nd isotope analyses, and Ar–Ar amphibole and U–Pb zircon datings for these rocks in order to identify their origin. The results demonstrated that all dykes are characterized by high Ba/Yb and low Nb/Y, Zr/Y, and Th/Yb ratios, which suggest their origin from arc melts derived from thin wedge mantle and shallow-dipping slab. These dykes are clearly separated into two distinct age/geochemistry suites; that is, the Paleogene and Early Cretaceous one with dolerites/basalts and adakitic rocks, and the Permian–Triassic one with high-Mg and high-Al gabbro-dolerite varieties. Their geochemistry suggests that the older suite was sourced from a primitive depleted MORB mantle (DMM)-type mantle, whereas the younger suite from an enriched mantle II (EM2)-type mantle domain. The transition in source type from DMM to EM2 occurred during the Jurassic-earliest Cretaceous time, probably by a strong influence of a mantle plume onto the long-continuing subduction-related magmatism. The plume influence reached the maximum when the unique meimechite-picrite complex formed in the region.  相似文献   

11.
Sung Hi  Choi  Sung-Tack  Kwon 《Island Arc》2005,14(3):236-253
Abstract   The mantle-derived xenoliths entrained in the Pliocene basanite from Baengnyeong Island, South Korea, are spinel lherzolites and spinel harzburgites. The overall compositional range of the Baengnyeong xenoliths matches that of the post-Archean xenoliths of lithospheric mantle origin from eastern China, but without any compositional evidence for a refractory Archean mantle root. Mineral compositions of the xenoliths have been used to estimate the equilibrium temperatures and pressures, and to construct a paleogeothermal gradient of the source region. The xenolith-derived paleogeotherm is constrained from about 820°C at 7.3 kbar to 1000°C at 20.6 kbar. Like those from the post-Archean Chinese xenoliths of lithospheric mantle origin, the Baengnyeong geotherm is considerably elevated relative to the conductive models at the depth of the crust–mantle boundary, reflecting a thermal perturbation probably related to lithospheric thinning. There is no significant P / T difference between harzburgite and lherzolite, which suggests that the harzburgites are interlayered with lherzolites within the depth interval beneath Baengnyeong Island.  相似文献   

12.
Yasushi  Mori  Tadao  Nishiyama  Takeru  Yanagi 《Island Arc》2007,16(1):28-39
Abstract   Reaction zones of 0.5–10.0 m thick are commonly observed between serpentinite and pelitic schist in the Nishisonogi metamorphic rocks, Kyushu, Japan. Each reaction zone consists of almost monomineralic or bimineralic layers of talc + carbonates, actinolite (or carbonates + quartz), chlorite, muscovite and albite from serpentinite to pelitic schist. Magnesite + quartz veins extend into the serpentinite from the talc + carbonates layer, while dolomite veins extend into the pelitic schist from the muscovite layer. These veins are filled by subhedral minerals with oriented growth features. Primary fluid inclusions yield the same homogenization temperatures (145–150°C) both in the reaction zone and in the veins, suggesting their simultaneous formation. Mass-balance calculations using the isocon method indicate that SiO2, MgO, H2O and K2O are depleted in the reaction zone relative to the protoliths. These components were probably extracted from the reaction zone as fluids during the formation of the reaction zone.  相似文献   

13.
The Os isotopic compositions of mantle rocks generally are considered to be established during melt-depletion events and to be robust to subsequent disturbances (e.g. metasomatism). Consequently, Os isotopes are used to date the main melting event that a mantle section has undergone, i.e. transformation of fertile asthenospheric material into a depleted, buoyant lithosphere. However, Os resides almost entirely in Fe-Ni-Cu sulphides, which can be very mobile under mantle conditions. In situ laser ablation multi-collector ICP-MS measurement of Re/Os isotopic ratios in sulphides from spinel peridotite xenoliths demonstrates that whole-rock Os-isotope signatures record the mixing of multiple sulphide populations. Sulphides residual after melting events have unradiogenic Os isotopic compositions reflecting ancient melt depletion; those introduced by later metasomatism events contain more radiogenic Os. Therefore, the whole-rock Os isotopic signature can be strongly altered by metasomatic processes, and studies of mantle-derived xenoliths show that such disturbance is quite common in the lithospheric mantle. Because melt-depletion ages estimated from individual sulphide inclusions are systematically older than those obtained from whole-rock analysis, caution is essential in the interpretation of the Os model ages derived from whole-rock analysis, and their use and abuse in geodynamic models. This work suggests that sulphide could become a key phase in unravelling the formation and evolution of the lithosphere.  相似文献   

14.
Using secondary spinel standard method, we have measured precisely the compositions of spinels of amphibole-bearing mantle peridotite xenoliths from Nüshan in eastern China, and calculated the mantle oxygen fugacities recorded by the xenoliths. Results indicate that the mantle metasomatism for forming amphiboles in Nüshan region of Anhui has resulted in the decrease of mantle redox, which is in contrast with theoretical estimation and previous research results from other areas around the world. Combining with related studies on the mantle of eastern China, we give a reasonable explanation to the ‘new finding’ and further elucidate the compositions and nature of mantle fluids in eastern China.  相似文献   

15.
This paper describes the significant depositional setting information derived from well and seismic survey data for the Upper Cretaceous to Lower Eocene forearc basin sediments in the central part of the Sanriku‐oki basin, which is regarded as a key area for elucidating the plate tectonic history of the Northeast Japan Arc. According to the results of well facies analysis utilizing cores, well logs and borehole images, the major depositional environments were of braided and meandering fluvial environments with sporadically intercalated marine incursion beds. Seismic facies, reflection terminations and isopach information provide the actual spatial distributions of fluvial channel zones flowing in a north–south trending direction. The transgression and regression cycles indicate that the Upper Cretaceous to Lower Eocene successions can be divided into thirteen depositional sequences (Sequences SrCr‐0 to SrCr‐5, and SrPg‐1 to SrPg‐7). These depositional sequences demonstrate three types of stacking patterns: Types A to C, each of which shows a succession mainly comprising a meandering fluvial system, a braided fluvial system with minor meandering aspects in the upper part, and major marine incursion beds in the middle part, respectively, although all show an overall transgressive to regressive succession. The Type C marine incursion beds characteristically comprise bay center and tidal‐dominated bay margin facies. Basin‐transecting long seismic sections demonstrate a roll up structure on the trench slope break (TSB) side of the basin. These facts suggest that during the Cretaceous to Eocene periods, the studied fluvial‐dominated forearc basin was sheltered by the uplifted TSB. The selective occurrences of the Type C sequences suggest that when a longer‐scale transgression occurred, especially in Santonian and early Campanian periods, a large bay basin was developed, creating accommodation space, which induced the deposition of the Cretaceous Kuji Group along the arc‐side basin margin.  相似文献   

16.
In-Chang Ryu 《Island Arc》2002,11(3):149-169
Abstract Carbonate breccias occur sporadically in the Lower–Middle Ordovician Maggol Limestone exposed in the Taebacksan Basin in the northeastern part of the northeast–southwest‐trending Ogcheon Belt, South Korea. These carbonate breccias have been previously interpreted as intraformational or fault‐related breccias. Thus, little attention has been focused on tectonic and stratigraphic significance of these carbonate breccias. The present study, however, indicates that the majority of these carbonate breccias are solution–collapse breccias, which are causally linked to paleokarstification. Carbonate facies analysis in conjunction with conodont biostratigraphy suggests that an overall regression toward the top of the Maggol Limestone probably culminated in subaerial exposure of platform carbonates during the early Middle Ordovician (earliest Darriwilian). Extensive subaerial exposure of platform carbonates resulted in paleokarst‐related solution–collapse breccias in the upper Maggol Limestone. This subaerial exposure event is manifested as a major paleokarst unconformity at the Sauk–Tippecanoe sequence boundary elsewhere beneath the Middle Ordovician succession and its equivalents, most notably North America and North China. Due to its global extent, this paleokarst unconformity has been viewed as a product of second‐ or third‐order eustatic sealevel drop during the early Middle Ordovician. Although a paleokarst breccia zone is recognized beneath the Middle Ordovician succession in South Korea, the Sauk–Tippecanoe sequence boundary appears to be a conformable transgressive surface on the top of the paleokarst breccia zone in the upper Maggol Limestone. The paleokarst breccia zone beneath the conformable transgressive surface is represented by a thinning‐upward stack of exposure‐capped tidal flat‐dominated cycles that are closely associated with multiple occurrences of paleokarst‐related solution–collapse breccias. This paleokarst breccia zone was a likely consequence of repeated fourth‐ and fifth‐order sealevel fluctuations. It suggests that second‐ and third‐order eustatic sealevel drop may have been significantly tempered by substantial tectonic subsidence near the end of the Maggol deposition. The tectonic subsidence in the basin is also evidenced by the occurrence of coeval off‐platform lowstand siliciclastic quartzite lenses as well as debris flow carbonate breccias (i.e. the Yemi Breccia). With the continued tectonic subsidence, subsequent rise in the eustatic cycle caused drowning and deep flooding of carbonate platform, forming a transgressive surface on the top of the paleokarst breccia zone. This tectonic implication contrasts notably with the slowly subsiding carbonate platform model for the basin as has been previously interpreted. Thus, it is proposed that the Taebacksan Basin in the northeastern part of the Ogcheon Belt evolved from a slowly subsiding carbonate platform to a rapidly subsiding intracontinental rift basin during the early Middle Ordovician. The proposed tectonic model in the basin gives much better insight to unravel the stratigraphic response to tectonic evolution of the Ogcheon Belt, which remains an enigmatic feature in formulating a tectonic framework of the Korean peninsula. The present study also provides a good example that the falling part of the eustatic sealevel cycle may not produce a significant event in a rapidly subsiding basin where the rate of eustatic fall always remained lower than the rate of subsidence.  相似文献   

17.
Basement rocks that occur along the northern margin of the South Kitakami Terrane in Japan consist of Ordovician ultramafic rocks (Hayachine ultramafic complex), gneissose amphibolite (Kuromoriyama amphibolite), and mafic rocks (Kagura igneous rocks, KIR). The KIR are composed of metagabbro, metadolerite, metabasalt, and minor felsic–intermediate dikes. Although the KIR contain green hornblende due to metamorphism of greenschist to epidote–amphibolite facies, they rarely retain primary brown hornblende. Approximately 30% of the metabasalt shows porphyritic textures, with phenocrysts of saussuritized plagioclase and/or altered mafic minerals. The geochemistry of the common metadolerite and metabasalt of the KIR shows a tholeiite trend, a low TiO2 content, and high Th/Nb and Ti/V ratios. The KIR are therefore indicative of a supra‐subduction zone tectonic setting, which implies a backarc origin (as also indicated by discrimination diagrams). Trace element patterns of the KIR resemble those of the backarc‐basin basalt of the Japan and Yamato basins in the Japan Sea. We propose that the KIR formed during backarc spreading from the Ordovician to Early Silurian. This view is supported by the geochemical data, the tectonic setting of the Hayachine ultramafic rocks, and the provenance of clastics within Silurian sedimentary rocks.  相似文献   

18.
在青藏高原东北缘祁连山造山带至阿拉善地块之间完成了一条372 km的大地电磁剖面,通过二维反演计算,获得了沿剖面180 km深的壳幔电性结构模型,结合研究区地质和地球物理资料开展综合分析,研究结果表明:(1)剖面自南向北所经过的祁连山造山带、走廊过渡带和阿拉善地块对应3种壳幔电性结构模型:东祁连壳幔高-低-高阻似层状电性结构、河西走廊壳幔低阻带状电性结构和阿拉善南缘壳幔高-低-高阻层状电性结构.(2)剖面所经过的主要断裂带在电性结构上表现为低阻异常带或电性梯度带,并且止于中上地壳或消失于下地壳低阻层中.除这些分布于中上地壳的断裂系统以外,在下地壳至上地幔顶部还存在两条切割莫霍面的壳幔韧性剪切带:西华山北缘壳幔韧性剪切带和阿拉善南缘壳幔韧性剪切带.其中,西华山北缘壳幔韧性剪切带可能是1920年海原8.6级地震发生的深部背景之一;而阿拉善南缘壳幔剪切带可能是卫宁北山燕山晚期和喜山期幔源岩浆上升到地壳浅部或喷出到地表的通道,为在该区域寻找晚中生代至新生代含矿隐伏岩体提供了深部电性结构依据.(3)由若干形状不规则、彼此不相连的"碎块状"极高阻块体组成的中上地壳与"似层状"的中下地壳低阻层共同构成的地壳电性结构,是引起青藏高原东北缘强烈破坏性地震最佳的地壳电性结构组合之一.印度板块向欧亚板块俯冲碰撞楔入引起青藏高原块体向北东方向运移与阿拉善地块向南的俯冲碰撞楔入,是青藏高原东北缘强震活动带产生的动力学背景.  相似文献   

19.
Makoto Takeuchi 《Island Arc》2013,22(4):477-493
In this study, the chemical and optical features of detrital garnets from the Middle Permian to Upper Triassic sandstones in the South Kitakami Belt, Northeast Japan, were examined to reveal the tectonic movement in the provenance. The sandstones contain a large amount of detrital grandite garnet grains with a wide range of andradite content. Among them, some grandite garnet grains show optically anisotropic features and rarely oscillatory zoning and sector twinning. The proportion of the detrital anisotropic grandite garnet increases from the Permian to the Middle Triassic and decreases in the Late Triassic. Such grandite garnets with various andradite contents occur in skarn deposits. Isotropic grandite garnets in the early stage of skarn evolution are distributed widely around a pluton, which affects the thermal metamorphism of the surrounding strata. However, anisotropic grandite garnets are formed along veinlets and fractures in the middle to late hydrothermal stage as the pluton cools, and their distribution is limited to a narrower area near the pluton compared to the metamorphic aureoles formed in the early stage. Changes in the chemical and optical features of the detrital garnets indicate a progressive denudation of the plutonic body accompanying skarn deposits in the provenance. The proportion of detrital anisotropic grandite garnet grains among all of the detrital grandite garnet is considered to be a sensitive indicator of the denudation level in a deeper part of the volcanic arc in association with skarn deposits, together with traditional sandstone composition datasets. This newly proposed method should be useful for clarifying the paleogeography during the Permian to Triassic in the East Asian continental margin, associated with uplift and denudation of the Permian volcanic arc, which seems to have been induced by the collision of the North China and South China Blocks.  相似文献   

20.
Takahiro  Yamamoto 《Island Arc》2005,14(2):199-212
Abstract River incision into bedrock results in the decrease of burial depths, which can be of critical importance, for example, in the safe long‐term storage of high‐level radioactive waste. For the long‐term prediction of river erosion, it is essential to know the rate of incision during the Late Quaternary period. In the Abukuma Mountains on the forearc side of northeast Japan, a low‐relief peneplain that was uplifted in the Pliocene period is widely developed. Degradational fluvial terraces that are discontinuously distributed along draining rivers are scattered in the study area. The fluvial sediments were mainly transported from the summit regions as debris flows or hyperconcentrated flows. The terrace deposits are capped by a series of eolian veneers containing key tephra beds. From the oldest to the youngest, these tephra beds are the 150–125 ka Iizuna–Kamitaru tephra, the 135–125 ka Hiuchigatake–Tagashira tephra, the 120 ka Adatara–Dake tephra, the 70–80 ka Bandai–Hayama‐2 tephra, the 45 ka Numazawa–Mizunuma tephra and the 42 ka Bandai–Hayama‐1 tephra. Using tephrochronological data, the terraces are divided into three groups: higher, middle and lower. The ages of formation of the higher, middle and lower terraces are estimated to be within marine isotope stage (MIS) 6, MIS 5.4–5.2 and MIS 3 to MIS 2, respectively. The incision rate, calculated from the relative height between the terrace surface and present‐day valley floor fill, is 1.5–0.8 m/10 000 years in the elevations from 350 to 700 m. The calculated rate does not show significant differences between the higher, middle and lower terraces. All the relative heights decrease with increasing elevation, because the erosional rates of streams in the upper reaches are lower than those in downstream reaches where the discharge rates are higher. This value can be regarded as an estimate of the rate of incision in granitic mountains where there is no volcanic or distinct tectonic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号