共查询到5条相似文献,搜索用时 0 毫秒
1.
The relationship between the slip activity and occurrence of historical earthquakes along the Median Tectonic Line (MTL), together with that of the fault systems extending eastward has been examined. The MTL is divided into three segments, each containing diagnostic active faults. No historical earthquakes have been recorded along the central segment, although the segment has faster Quaternary slip rates compared with the other segments that have generated historical earthquakes. This discrepancy between earthquake generation and slip rate can be explained by a microplate model of southwest Japan. The microplate model also provides spatial and temporal coupling of slip on adjacent fault systems. In the context of this model, slip on adjacent faults reduces the normal stress on the MTL. Historical data and paleoseismic evidence indicate that slip on this segment occurs without significant strong ground motion. We interpret this as indicating anomalously slow seismic slip or aseismic slip. Slip on the central segment of the MTL creates transpressional regions at the eastern and western segments where historical earthquakes were recorded. Alternatively, the earthquakes at the eastern and western segments were triggered and concentrated shear stress at the edge of the segments resulted in postseismic slip along the central segment. The sequence of historical events suggests that the MTL characteristically does not produce great earthquakes. The microplate model also provides a tectonic framework for coupling of events among the MTL, the adjacent fault systems and the Nankai trough. 相似文献
2.
Abstract Mylonites along the Median Tectonic Line, southwest Japan commonly contain shear bands comprising S(-C)-Ss fabrics. This paper stresses the lithologic control on the orientation, dimension and development of shear bands by comparing the microstructure of the shear bands in different rock types (P mylonites, F mylonites, micaceous phyllonite and quartzose phyllonite). There is no significant change of the α angles (average 21–24°) between Ss and S toward the centre of the shear zone (viz. increasing the intensity of mylonitization) and it is different from the S-C relationship in a narrow sense.
The generation of the composite planar fabric can be classified into four different strain partitioning models: S only type without any slip surface (model A); S-C type (model B); S-Ss type with Ss-slip precedence (model C), and S-Ss type with S-slip precedence (model D). Model C is proposed in this paper and is similar to the model for the generation of Riedel shears in brittle shear zones. An unstable slip between porphyroclasts and the matrix during ductile flow can easily initiate shear bands. Formation of a composite planar fabric is initiated according to model A, followed by model C in conditions of increasing strain, and then model D when the angle between S and the shear zone boundary becomes small enough (α/2 = 10°) to produce S-slip. Thus the generation of the shear bands probably begins in the early stages of shear deformation and continues until the latest stages. 相似文献
The generation of the composite planar fabric can be classified into four different strain partitioning models: S only type without any slip surface (model A); S-C type (model B); S-Ss type with Ss-slip precedence (model C), and S-Ss type with S-slip precedence (model D). Model C is proposed in this paper and is similar to the model for the generation of Riedel shears in brittle shear zones. An unstable slip between porphyroclasts and the matrix during ductile flow can easily initiate shear bands. Formation of a composite planar fabric is initiated according to model A, followed by model C in conditions of increasing strain, and then model D when the angle between S and the shear zone boundary becomes small enough (α/2 = 10°) to produce S-slip. Thus the generation of the shear bands probably begins in the early stages of shear deformation and continues until the latest stages. 相似文献
3.
Abstract Alteration of reservoir rocks in the Yurihara Oil and Gas Field, hereafter referred to as the ‘Yurihara field’, have been examined by using samples from six wells. These rocks are basalts in the lowermost part of the basin-fills (‘green tuff’ Formation). These basalts were produced in many eruptions in a submarine environment during the early to middle Miocene, and they underwent continuous intensive alteration genetically associated with Miocene submarine volcanism. The alteration of the basalts is of two types: low grade metamorphism and hydrothermal. The former belongs to the type of ocean floor metamorphism and comprises two subgroups: zeolite (zone I) and prehnite-pumpellyite (zones IIa: vein and amygdule occurrence, and IIb: replacing plagioclase). The latter is characterized by potassic metasomatism accompanied by adularia, quartz and calcite veins (zones IIIa: center and IIIb: margin of the metasomatism). This overprints the low grade metamorphic alteration. The central zone of hydrothermal alteration coincides with a major estimated fault, so that fluids probably assent along the fault. The basalts erupted during 16.5-15.5 Ma, determined by planktonic foraminifera assemblages of inter-bedded shales, then underwent successive low grade metamorphism. In time, the hydrothermal alteration that overprints low grade metamorphism occurred. Adularia veins of the altered rocks located in the hydrothermal alteration zones (zone IIIa and IIIb) have been dated as 9 Ma determined by the K-Ar method. This fact indicates that the activity of low grade metamorphism had already crossed the peak before hydrothermal alteration occurred at 9 Ma. The shape of isotherms of fluid inclusion homogenization temperatures (Th) and that of isolines of apparent salinity (Tm) almost coincide with each other, and these also coincide with the distribution of hydrothermal alteration (zones IIIa and IIIb). This indicates that the fluid inclusions formed at the same time as ascending fluids produced the potassic metasomatism. The maximum Th of the fluid inclusions is 222°C and Tm indicates trapped fluids of up to 3.3 wt% equivalent NaCl (i.e. almost the same as seawater). A Th versus Tm plot indicates mixing occurred between hydrothermal fluids and formation water that has low salinity. Corrensite and chlorite form veins, and the temperatures of their formation, estimated by the extent of aluminium substitution into the tetrahedral site of chlorite, ranges between 165 and 245°C in the centre of the hydrothermal alteration zone (zone IIIa). This is consistent with the result of Th analyses. The deposition temperature of chlorite associated with prehnite in veins ranges between 190 and 215°C in zones IIa and IIb. 相似文献
4.
Hideki Mukoyoshi Tetsuro Hirono Hidetoshi Hara Kotaro Sekine Noriyoshi Tsuchiya Arito Sakaguchi Wonn Soh 《Island Arc》2009,18(2):333-351
To understand the characteristics of deformation of an out-of-sequence thrust (OST) and the style of fluid flow along it, we investigated the Nobeoka Tectonic Line, which has been interpreted as a deep OST (7–9 km), in the Shimanto accretionary complex, Southwest Japan. The shear zone in the footwall differs significantly in the along-strike direction not only in thickness, which varied from 100 to 300 m, but also in lithology and mineral vein development. These variations might reflect primarily differences in lithology; that is, the sandstone-dominant shear zone with a large amount of mineral veins precipitated in microcracks is relatively thick, whereas the shale-dominant shear zone with a small amount of veins and with textures indicating highly pressurized pore fluid, is thinner. By comparison with characteristics of a shallow OST (3–5 km), we conclude that the shallow OST has experienced repeated brittle failure with rapid slip and focused fluid flow whereas the deep OST has experienced both brittle and ductile deformation, followed by fluid flow of various styles, depending on the lithology. 相似文献
5.
The 1995 Northern Niigata Earthquake (M 6.0) occurred at a shallow depth in the Niigata seismic gap. The anomaly areas in temperature, electrical conductivity and Cl- concentration of groundwater trend northeast as linear distribution in the epicentral area and are approximately coincident with the area of the seismic intensity 6 (JMA scale). The distributions of seismic intensity 6 and groundwater anomalies convincingly imaged the presence of a buried active fault beneath the epicentral area. The occurrence of this earthquake and the anomalies of groundwater were related to the expulsion of geopressured hydrothermal system (GHS). All epicenters of the destructive earthquakes along the Shinanogawa seismic belt are actually located in the buried active fault zones characterized by the areas of temperature and geochemical anomalies of groundwater. These earthquakes might have been triggered by the activity of GHS. The expulsion of GHS along an active fault in combination with the thermal softening of fault 相似文献