首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several scenarios for the formation of accretion and decretion disks in single and binary Ae and Be stars are proposed. It is shown that, in order for a rapidly rotating main-sequence Be star to lose mass via a disk, the star’s rotation must be quasi-rigid-body. Estimates show that such rotation can be maintained by the star’s magnetic field, which is probably a relict field. The evolution of single Be main-sequence stars is numerically simulated allowing for mass loss via the stellar wind and rotational mass loss assuming rigid-body rotation. The stellar wind is the factor that determines the maximum mass of Be stars, which is close to 30M . The evolution of Be stars in close binaries is analyzed in the approximation adopted in our scenario. Long gamma-ray bursts can be obtained as a result of the collapse of rapidly rotating oxygen—neon degenerate dwarfs—the accreting companions of Be stars—into neutron stars.  相似文献   

2.
Marsakov  V. A.  Gozha  M. L.  Koval’  V. V. 《Astronomy Reports》2019,63(3):203-211

The surface gravities and effective temperatures have been added to a compilative catalog published earlier, which includes the relative abundances of several chemical elements for 100 field RR Lyrae stars. These atmoshperic parameters and evolutionary tracks from the Dartmouth database are used to determine the masses of the stars and perform a comparative analysis of the properties of RR Lyrae stars with different chemical compositions. The masses of metal-rich ([Fe/H] > −0.5) RR Lyrae stars with thin disk kinematics are in the range (0.51−0.60)M. Only stars with initial masses exceeding 1M can reach the horizontal branch during the lifetime of this subsystem. To become an RR Lyrae variable, a star must have lost approximately half of its mass during the red-giant phase. The appearance of such young, metal-rich RR Lyrae stars is possibly due to high initial helium abundances of their progenitors. According to the Dartmouth evolutionary tracks for Y = 0.4, a star with an initial mass as low as 0.8 M could evolve to become an RR Lyrae variable during this time. Such stars should have lost (0.2−0.3)M in the red-giant phase, which seems quite realistic. Populations of red giants and RR Lyrae stars with such high helium abundances have already been discovered in the bulge; some of these could easily be transported to the solar neighborhood as a consequence of perturbations due to inhomogeneities of the Galaxy’s gravitational potential.

  相似文献   

3.
Usingthe “Scenario Machine” (a specialized numerical code formodeling the evolution of large ensembles of binary systems), we have studied the physical properties of rapidly rotating main-sequence binary stars (Be stars) with white-dwarf companions and their abundance in the Galaxy. The calculations are the first to take into account the cooling of the compact object and the effect of synchronization of the rotation on the evolution of Be stars in close binaries. The synchronization time scale can be shorter than the main-sequence lifetime of a Be star formed during the first mass transfer. This strongly influences the distribution of orbital periods for binary Be stars. In particular, it can explain the observed deficit of short-period Be binaries. According to our computations, the number of binary systems in the Galaxy containing a Be star and white dwarf is large: 70–80% of all Be stars in binaries should have degenerate dwarf companions. Based on our calculations, we conclude that the compact components in these systems have high surface temperatures. Despite their high surface temperatures, the detection of white dwarfs in such systems is hampered by the fact that the entire orbit of the white dwarf is embedded in the dense circumstellar envelope of the primary, and all the extreme-UV and soft X-ray emission of the compact object is absorbed by the Be star’s envelope. It may be possible to detect the white dwarfs via observations of helium emission lines of Be stars of not very early spectral types. The ultraviolet continuum energies of these stars are not sufficient to produce helium line emission. We also discuss numerical results for Be stars with other evolved companions, such as helium stars and neutron stars, and suggest an explanation for the absence of Be-black-hole binaries.  相似文献   

4.
We consider the evolutionary status of observed close binary systems containing black holes and Wolf-Rayet (WR) stars. When the component masses and the orbital period of a system are known, the reason for the formation of a WR star in an initial massive system of two main-sequence stars can be established. Such WR stars can form due to the action of the stellar wind from a massive OB star (MOB≥50M), conservative mass transfer between components with close initial masses, or the loss of the common envelope in a system with a large (up to ~25) initial component mass ratio. The strong impact of observational selection effects on the creation of samples of close binaries with black holes and WR stars is demonstrated. We estimate theoretical mass-loss rates for WR stars, which are essential for our understanding the observed ratio of the numbers of carbon and nitrogen WR stars in the Galaxy \(\dot M_{WR} (M_ \odot yr^{ - 1} ) = 5 \times 10^{ - 7} (M_{WR} /M_ \odot )^{1.3} \). We also estimate the minimum initial masses of the components in close binaries producing black holes and WR stars to be ~25M. The spatial velocities of systems with black holes indicate that, during the formation of a black hole from a WR star, the mass loss reaches at least several solar masses. The rate of formation of rapidly rotating Kerr black holes in close binaries in the Galaxy is ~3×10?6 yr?1. Their formation may be accompanied by a burst of gamma radiation, possibly providing clues to the nature of gamma-ray bursts. The initial distribution of the component mass ratios for close binaries is dNdq=dM2/M1 in the interval 0.04?q0≤1, suggesting a single mechanism for their formation.  相似文献   

5.
Possible paths for the formation of Ap/Bp stars—massive main-sequence stars with strong magnetic fields—are analyzed based on modern theories for the evolution of single and binary stars. Assuming that the strong magnetic fields of these stars are the main reason for their comparatively slow axial rotation and the observed anomalies in the chemical compositions of their atmospheres, possible origins for these high magnetic fields are considered. Analysis of several possible scenarios for the formation of these stars leads to the conclusion that their surface magnetic fields are probably generated in the convective envelopes of the precursor stars. These precursors may be young, single stars with masses 1.5–3 M that formed at the peripheries of forming star clusters and ended their accretion at the Hayashi boundary, or alternatively close binaries whose components have convective envelopes, whose merger leads to the formation of an Ap/Bp star. Arguments are presented supporting the view that the merger of close binaries is the main channel for the formation of Ap/Bp stars, and a detailed analysis of this scenario is presented. The initial major axes of the merging binary systems must be in the range 6–12 R , and the masses of their components in the range 0.7–1.5 M . When the merging components possess developed convective envelopes and fairly strong initial magnetic fields, these can generate powerful magnetic fields “inherited” by the products of the merger—Ap/Bp stars. The reason the components of the close binaries merge is a loss of angular momentum via the magnetic stellar winds of the components.  相似文献   

6.
We have analyzed the evolution of the components of the unique massive binary system WR 20a, which consists of a Wolf-Rayet nitrogen star and an Of star with an extremely small separation. The estimated masses of the components are 83 and 82 M , which are among the highest stellar mass inferred. We have carried out numerical modeling of the evolution of the components, taking into account the mass loss due to the stellar wind inherent to massive stars. In a scenario in which the systemis detached from the time the components reach the main sequence until its present state, the initial component masses are inferred to be close to 110 M , if the initial masses of the stars were equal, or 120 and 100 M , if they were different. Currently, the components are evolved main-sequence stars, whose surfaces are relatively little enriched by helium. The further evolution of the system will result in one of the components filling its Roche lobe and evolution within a common envelope. As a result, the components may coalesce, leading to the formation of a single massive black hole the supernova explosion. Otherwise, depending on the masses of the resulting black holes, either a binary system with two black holes or two free black holes will be formed. In the latter case, gamma-ray bursts will be observed.  相似文献   

7.
The evolution of the components of the unique, massive, close binary system NGC 3603-A1, which consists of stars of spectral types WN6ha and WN6h, is analyzed. The component masses are estimated to be 116 and 89M , close to the highest measured stellar masses. Numerical modeling of the evolution of the components has been carried out, taking into account mass loss via the stellar winds of the two massive stars. It is shown that the maximum possible initial component masses are close to 140 and 125M . The components are currently slightly evolved main-sequence stars, with a comparative low degree of helium enrichment at their surfaces. Further evolution of the system will lead to filling of the Roche lobe of the primary and subsequent evolution in a common envelope. This may lead to the merger of the components, with the evolution of the system ending in the formation of a singlemassive black hole after the second supernova explosion. Otherwise, depending on the masses of the resulting black holes, either a binary system of two black holes or two unbound black holes may form, accompanied by gamma-ray bursts.  相似文献   

8.
The “Scenario Machine” (a computer code designed for studies of the evolution of close binaries) was used to carry out a population synthesis for a wide range of merging astrophysical objects: main-sequence stars with main-sequence stars; white dwarfs with white dwarfs, neutron stars, and black holes; neutron stars with neutron stars and black holes; and black holes with black holes. We calculate the rates of such events, and plot the mass distributions for merging white dwarfs and main-sequence stars. It is shown that Type Ia supernovae can be used as standard candles only after approximately one billion years of evolution of galaxies. In the course of this evolution, the average energy of Type Ia supernovae should decrease by roughly 10%; the maximum and minimum energies of Type Ia supernovae may differ by no less than by a factor of 1.5. This circumstance must be taken into account at estimating the parameters of the Universe expansion acceleration. According to theoretical estimates, the most massive—as a rule, magnetic—white dwarfs probably originate from mergers of white dwarfs of lower mass. At least some magnetic Ap and Bp stars may form in mergers of low-mass main-sequence stars (M ? 1.5 M ) with convective envelopes.  相似文献   

9.
The evolution of rapidly rotating 8, 4, and 2 M main-sequence stars is considered together with hydrodynamical transfer in their interiors. The conditions under which turbulent erosion, semiconvection, and shear turbulence lead to partial mixing of the matter in the radiative envelope and central regions of the stars are determined. The enhancement of the surface helium abundance with time depends on both the intensity of partial mixing in their interiors and mass loss by the stellar wind. The ratio of the number densities of helium and hydrogen at the surface can rise by the end of main-sequence stage by ~30% for a 8 M star and ~10?20% for a 4 M star, depending on the mass-loss rate. Partial mixing of the matter in the radiative envelope and in the central region of the star can provide an explanation for the observed enhancement of the atmospheric helium abundances of early B stars toward the end of their main-sequence evolution. The enhancement of the surface helium abundance in a 2 M star is so small that it cannot be detected, and is appreciably lower than the enhancement beneath the surface.  相似文献   

10.
The conditions for the acceleration of the spatial motions of stars by close-binary supermassive black holes (SMBHs) in galactic nuclei are analyzed in order to derive the velocity distribution for stars ejected from galaxies by such black holes. A close binary system consisting of two SMBHs in circular orbits was subject to a spherically symmetrical “barrage” of solar-mass stars with various initial velocities. The SMBHs were treated as point objects with Newtonian gravitational fields. Models with binary component-mass ratios of 1, 0.1, 0.01, and 0.001 were studied. The results demonstrate the possibility of accelerating neutron stars, stellar-mass black holes, and degenerate dwarfs to velocities comparable to the relative orbital velocities of the binary-SMBH components. In the stage when the binary components are merging due to the action of gravitational-wave radiation, this velocity can approach the speed of light. The most massive binary black-holes (M ? 109M) can also accelerate main-sequence stars with solar or subsolar masses to such velocities.  相似文献   

11.
We analyze models for quasi-stationary, ultraluminous X-ray sources (ULXs) with luminosities 1038–1040 erg/s exceeding the Eddington limit for a ~1.4M neutron star. With the exception of relatively rare stationary ULXs that are associated with supernova remnants or background quasars, most ULXs are close binary systems containing a massive stellar black hole (BH) that accretes matter donated by a stellar companion. To explain the observed luminosities of ~1040 erg/s, the mass of the BH must be ~40M if the accreted matter is helium and ~60M if the accreted matter has the solar chemical composition. We consider donors in the form of main-sequence stars, red giants, red supergiants, degenerate helium dwarfs, heavy disks that are the remnants of disrupted degenerate dwarfs, helium nondegenerate stars, and Wolf-Rayet stars. The most common ULXs in galaxies with active star formation are BHs with Roche-lobe-filling main-sequence companions with masses ~7M or close Wolf-Rayet companions, which support the required mass-exchange rate via their strong stellar winds. The most probable candidate ULXs in old galaxies are BHs surrounded by massive disks and close binaries containing a BH and degenerate helium-dwarf, red-giant, or red-supergiant donor.  相似文献   

12.
The conditions for the formation of close-binary black-hole systems merging over the Hubble time due to gravitational-wave radiation are considered in the framework of current ideas about the evolution of massive close-binary systems. The original systems whose mergers were detected by LIGO consisted of main-sequence stars with masses of 30–100M . The preservation of the compactness of a binary black hole during the evolution of its components requires either the formation of a common envelope, probably also with a low initial abundance of metals, or the presence of a “kick”—a velocity obtained during a supernova explosion accompanied by the formation of a black hole. In principle, such a kick can explain the relatively low frequency of mergers of the components of close-binary stellar black holes, if the characteristic speed of the kick exceeds the orbital velocities of the system components during the supernova explosion. Another opportunity for the components of close-binary systems to approach each other is related to their possible motion in a dense molecular cloud.  相似文献   

13.
The observed properties of Wolf-Rayet stars and relativistic objects in close binary systems are analyzed. The final masses M CO f for the carbon-oxygen cores of WR stars in WR + O binaries are calculated taking into account the radial loss of matter via stellar wind, which depends on the mass of the star. The analysis includes new data on the clumpy structure of WR winds, which appreciably decreases the required mass-loss rates $\dot M_{WR}$ for the WR stars. The masses M CO f lie in the range (1–2)M –(20–44)M and have a continuous distribution. The masses of the relativistic objects M x are 1–20M and have a bimodal distribution: the mean masses for neutron stars and black holes are 1.35 ± 0.15M and 8–10M , respectively, with a gap from 2–4M in which no neutron stars or black holes are observed in close binaries. The mean final CO-core mass is $\overline M _{CO}^f = 7.4 - 10.3M_ \odot$ , close to the mean mass for the black holes. This suggests that it is not only the mass of the progenitor that determines the nature of the relativistic object, but other parameters as well-rotation, magnetic field, etc. One SB1R Wolf-Rayet binary and 11 suspected WR + C binaries that may have low-mass companions (main-sequence or subgiant M-A stars) are identified; these could be the progenitors of low-mass X-ray binaries with neutron stars and black holes.  相似文献   

14.
We list and analyze the main currently known mechanisms for accelerating the space motions of stars. A high space velocity of a star can be a consequence of its formation in the early stages of the evolution of a massive galaxy, when it was spheroidal and non-stationary, so that stars were born with velocities close to the escape velocity for the galaxy. Another possibility is that the star arrived from another galaxy with a velocity that is high for our Galaxy. The decay of unstable close multiple stars or supernova explosions in close binaries can also provide velocities of up to several hundreds of km/s to main-sequence stars and velocities of up to ∼1000 km/s to degenerate stars, neutron stars, and stellar-mass black holes. The merger of components of a binary system containing two neutron stars or a neutron star and a black hole due to gravitational-wave radiation can accelerate the nascent black hole to a velocity∼1000 km/s. Hypervelocity relativistic stars can be born due to asymmetric neutrino ejection during a supernova explosion. Stars can be efficiently accelerated by single and binary supermassive black holes (with masses from several millions to several billions of solar masses) in the nuclei of galaxies. Thanks to their gravitational field and fast orbital motion (in the case of binary objects), supermassive black holes are able to accelerate even main-sequence stars to relativistic velocities.  相似文献   

15.
Variability of the photospheric radiation of 40 (dKe-dMe) dwarfs in the solar neighborhood due to variations in the spottedness of their surfaces is analyzed based on the behavior of their mean annual brightnesses over long time intervals. The amplitudes and characteristic time scales of the variations of the mean annual brightness are taken to be indicators of photospheric activity and were used to infer the levels of photospheric activity in the stars studied. The influence of axial rotation on the development of cyclic activity in young red dwarfs and F-M main-sequence stars is analyzed. The durations and amplitudes of the photospheric variability of rapidly rotating (dK0e-dK5e) stars testifies to a higher level of photospheric activity among red dwarfs and solar-type stars. The X-ray luminosities of these stars grow with the amplitude of the variations of the mean annual brightness. However, this is not typical of rapidly rotating M dwarfs, for which the X-ray emission varies by more than two orders of magnitude, although their degrees of spottedness are all virtually the same. A linear relationship between the X-ray and bolometric luminosities is observed for young (dKe-dMe) stars, with their ratios log(L x/L bol) being about ?3. These properties can be used to determine whether a red dwarf is a young star or is already on the main sequence.  相似文献   

16.

The conditions for the formation of close binaries containing main-sequence stars, degenerate dwarfs of various types, neutron stars, and black holes of various masses are considered. The paper investigates the evolution of the closest binary systems under the influence of their gravitational-wave radiation. The conditions under which the binary components can merge on a time scale shorter than the Hubble time as a result of their emission of gravitational waves are estimated. A self-consistent scenario model is used to estimate the frequency of such events in the Galaxy, their observable manifestations, the nature of the merger products, and the role of these events in the evolution of stars and galaxies. The conditions for the formation and evolution of supermassive binary black holes during collisions andmergers of galaxies in their dense clusters are studied.

  相似文献   

17.
We show that semi-detached close binary systems with massive (4–25M) black holes are formed in the evolution of massive stellar binaries in which the initial mass of the primary exceeds ~25M. The mass exchange in such systems is maintained by the nuclear evolution of the donor and by its magnetic and induced stellar winds. The donor in such systems can be a main-sequence star, subgiant, non-degenerate helium star, or white dwarf. The evolution of corresponding systems with black-hole masses of 10M is investigated.  相似文献   

18.
We consider the formation of massive stars under the assumption that a young star accretes material from the protostellar cloud through its accretion disk while losing gas in the polar directions via its stellar wind. The mass of the star reaches its maximum when the intensity of the gradually strengthening stellar wind of the young star becomes equal to the accretion rate. We show that the maximum mass of the forming stars increases with the temperature of gas in the protostellar cloud T 0, since the rate at which the protostellar matter is accreted increases with T 0. Numerical modeling indicates that the maximum mass of the forming stars increases to ~900 M for T 0 ~ 300 K. Such high temperatures of the protostellar gas can be reached either in dense star-formation regions or in the vicinity of bright active galactic nuclei. It is also shown that, the lower the abundance of heavy elements in the initial stellar material Z, the larger the maximum mass of the star, since the mass-loss rate due to the stellar wind decreases with decreasing Z. This suggests that supermassive stars with masses up to 106 M could be formed at early stages in the evolution of the Universe, in young galaxies that are almost devoid of heavy elements. Under the current conditions, for T 0 = (30–100) K, the maximum mass of a star can reach ~100M , as is confirmed by observations. Another opportunity for the most massive stars to increase their masses emerges in connection with the formation and early stages of evolution of the most massive close binary systems: the most massive stars can be produced either by coalescence of the binary components or via mass transfer in such systems.  相似文献   

19.
Partial mixing of material in the radiative envelopes and convective cores of rotating main sequence stars with masses of 8 and 16 M is considered as a function of the inital angular momentum of the stars. Losses of rotational kinetic energy to the generation of shear turbulence in the radiative envelope and the subsequent mixing of material in the envelope are taken into account. With an initial equatorial rotational velocity of 100 km/s, partial mixing develops in the upper part of the layer with variable chemical composition and the lower part of the chemically homogeneous radiative envelope. When the initial equatorial rotational velocity is 150–250 km/s, the joint action of shear turbulence and semi-convection leads to partial mixing in the radiative envelope and central parts of the star. The surface abundance of helium is enhanced, with this effect increasing with the angular momentum of the star. With an initial equatorial rotational velocity of 250 km/s, the ratio of the surface abundances of helium and hydrogen grows by ~30% and ~70% toward the end of the main-sequence evolution of an 8 M and 16 M star, respectively. The transformation of rotational kinetic energy into the energy of partial mixing increases with the angular momentum of the star, but does not exceed ~2%?3% in the cases considered.  相似文献   

20.
An analysis of the basic parameters of a sample of radio and X-ray pulsars that are members of close binary systems is used to separate them into several families according to the nature of the pulsar companions and the previous evolution of the systems. To quantitatively describe the main parameters of close binaries containing neutron stars, we have performed numerical modeling of their evolution. The main driving forces of the evolution of these systems are the nuclear evolution of the donor, the magnetically coupled and radiation-induced stellar winds of the donor, and gravitational-wave radiation. We have considered donors that are low-mass stars in various stages of their evolution, nondegenerate helium stars, and degenerate stars. The systems studied are either the products of the normal evolution of close binaries with large initial component-mass ratios or result from inelastic collisions of old neutron stars with single and binary low-mass, main-sequence stars in the dense cores of globular clusters. The formation of single millisecond pulsars requires either the dynamical disruption of a low-mass (?0.1M) donor or its complete evaporation under the action of the X-ray radiation of the millisecond pulsar. The observed properties of binary radio pulsars with eccentric orbits combined with the bimodal spatial-velocity distribution of single radio pulsars suggest that it may be possible to explain the observed rotational and spatial motions of all radio pulsars as a result of their formation in close binaries. In this case, neutron stars formed from massive single stars or the components of massive wide binaries probably cannot acquire the high spatial velocities or rapid rotation rates that are required for the birth of a radio pulsar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号