首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chris D. Parkinson   《Lithos》2000,52(1-4):215-233
Coarse-grained whiteschist, containing the assemblage: garnet+kyanite+phengite+talc+quartz/coesite, is an abundant constituent of the ultrahigh-pressure metamorphic (UHPM) belt in the Kulet region of the Kokchetav massif of Kazakhstan.

Garnet displays prograde compositional zonation, with decreasing spessartine and increasing pyrope components, from core to rim. Cores were recrystallized at T=380°C (inner) to 580°C (outer) at P<10 kbar (garnet–ilmenite geothermometry, margarite+quartz stability), and mantles at T=720–760°C and PH20=34–36 kbar (coesite+graphite stability, phengite geobarometer, KFMASH system reaction equilibria). Textural evidence indicates that rims grew during decompression and cooling, within the Qtz-stability field.

Silica inclusions (quartz and/or coesite) of various textural types within garnets display a systematic zonal distribution. Cores contain abundant inclusions of euhedral quartz (type 1 inclusions). Inner mantle regions contain inclusions of polycrystalline quartz pseudomorphs after coesite (type 2), with minute dusty micro-inclusions of chlorite, and more rarely, talc and kyanite in their cores; intense radial and concentric fractures are well developed in the garnet. Intermediate mantle regions contain bimineralic inclusions with coesite cores and palisade quartz rims (type 3), which are also surrounded by radial fractures. Subhedral inclusions of pure coesite without quartz overgrowths or radial fractures (type 4) occur in the outer part of the mantle. Garnet rims are silica-inclusion-free.

Type 1 inclusions in garnet cores represent the low-P, low-T precursor stage to UHPM recrystallization, and attest to the persistence of low-P assemblages in the coesite-stability field. Coesites in inclusion types 2, 3, and 4 are interpreted to have sequentially crystallized by net transfer reaction (kyanite+talc=garnet+coesite+H2O), and were sequestered within the garnet with progressively decreasing amounts of intragranular aqueous fluid.

During the retrograde evolution of the rock, all three inclusion types diverged from the host garnet PT path at the coesite–quartz equilibrium, and followed a trajectory parallel to the equilibrium boundary resulting in inclusion overpressure. Coesite in type 2 inclusions suffered rapid intragranular H2O-catalysed transformation to quartz, and ruptured the host garnet at about 600°C (when inclusion P27 kbar, garnet host P9 kbar). Instantaneous decompression to the host garnet PT path, passed through the kyanite+talc=chlorite+quartz reaction equilibrium, resulting in the dusty micro-assemblage in inclusion cores. Type 3 inclusions suffered a lower volumetric proportion transformation to quartz at the coesite–quartz equilibrium, and finally underwent rupture and decompression when T<400°C, facilitating coesite preservation. Type 4 coesite inclusions are interpreted to have suffered minimal transformation to quartz and proceeded to surface temperature conditions along or near the coesite–quartz equilibrium boundary.  相似文献   


2.
Eclogite, orthogneiss and, by association, metapelite from an island at 78°N in North‐East Greenland experienced ultrahigh‐pressure (UHP) metamorphism at approximately 970 °C and 3.6 GPa, at the end of the Caledonian collision, 360–350 Ma. Hydrous metapelites contain abundant leucocratic layers and lenses composed of medium‐grained, anhedral, equigranular quartz, antiperthitic plagioclase and K‐feldspar with minor small garnet and kyanite crystals. Leucosomes are generally parallel to the matrix foliation, are interlayered with residual quartz bands, anastomose around residual garnet and commonly cross‐cut micaceous segregations. Textures suggest that the leucosomes crystallized from a syntectonic melt, but crystallized at the end of local high‐grade deformation. The metapelite outcrop is < 1.5 km from kyanite eclogites with confirmed coesite, but the metapelites lack coesite and palisade textures diagnostic of coesite pseudomorphs. They do contain highly fractured garnet megacrysts with polycrystalline quartz inclusions (some surrounded by radial fractures) and Ti‐rich phengite inclusions that suggest the former presence of coesite. Polyphase inclusions in garnet contain reactants and products of the inferred dehydration melting reaction: Phe + Qtz = Ky + Kfs + Rt + melt. The reactants are thought to have been early inclusions of hydrous phases within garnet that melted and then crystallized new phases. Garnet surrounding these inclusions has patchy zoning with elevated Ca, consistent with experiments that produced similar patchy microstructures in garnet around inclusions with an unequivocal melt origin. The peak UHP metamorphic assemblage in these rocks is inferred to have been phengite, coesite, garnet, kyanite, rutile, fluid ± omphacite ± epidote. Phase diagrams indicate that dehydration melting of phengite in this assemblage would have occurred after decompression from peak pressure, but still above the coesite to quartz transition. Unusual crown‐ and moat‐like textures in garnet around some polycrystalline quartz inclusions are also consistent with the inference that melting took place at UHP conditions.  相似文献   

3.
Both the coarse- and fine-grained varieties of the partly coesite-bearing pyrope-quartzites, their interlayered jadeite-kyanite rocks, and the biotite-phengite gneiss country rock common to all of them were subjected to detailed petrographic and textural studies in order to determine the sequence of crystallisation of their mineral constituents, which were also studied analytically by microprobe. Prior to pyrope and coesite growth, the Mg-rich metapelites were talc-kyanite-chlorite-rutile-ellenbergerite schists which — upon continued prograde metamorphism — developed first pyrope megacrysts in silica-deficient local environments at the expense of chlorite + talc + kyanite, and subsequently the smaller pyrope crystals with coesite inclusions from reacting talc + kyanite. Based on geobarometrically useful mineral inclusions as well as on experimentally determined phase relations, a prograde PT-path — simplified for water activity = 1 — is constructed which passes through the approximate PT-conditions 16 kbar and 560° C, 29 kbar and 720° C, and finally up to 37 kbar at about 800° C, where the Mg-rich metapelite was a pyrope-coesite rock with phengite, kyanite, and talc still present. During the retrograde path, pyrope was altered metasomatically either into phlogopite + kyanite + quartz or, at a later stage, to chlorite + muscovite + quartz. Both assemblages yield PT-constraints, the latter about 7–9 kbar, 500–600° C. The country rock gneisses have also endured high-pressures of at least 15 kbar, but they provide mostly constraints on the lowest portion of the uplift conditions within the greenschist facies (about 5 kbar, 450° C). Microprobe data are presented for the following minerals: pyrope, ellenbergerite, dumortierite (unusually MgTi-rich), jadeite, vermiculite (formed after Na-phlogopite?), paragonite, and for several generations of phengite, chlorite, talc, phlogopite, dravite, and glaucophane in the high-pressure rocks, as well as for biotite, chlorite, phengites, epidote, garnet, albite, and K-feldspar in the country rock gneisses. An outstanding open problem identified in this study is the preservation of minerals as inclusions within kyanite and pyrope beyond their PT-stability limits.  相似文献   

4.
Rare centimeter-sized superzoned garnets (SZGs) were discovered in two coesite-bearing whiteschists of the Brossasco-Isasca Unit (BIU), southern Dora-Maira massif (DMM), Western Alps. The superzoned garnet consists of a reddish-brown almandine core crowded with inclusions of staurolite, chloritoid, kyanite, chlorite and paragonite, and of a pinkish pyrope rim with sporadic inclusions of kyanite, and magnesian chlorite. The core–rim contact is relatively sharp and marks the termination of the inclusion-rich portion. The core composition of the superzoned garnet is almost identical to, or slightly richer in Mg, than that of the rim of porphyroblastic garnet in metapelites from the same unit. In the rim of the superzoned garnet, Mg–Fe ratio increases abruptly towards the outermost rim, whose composition is identical to that of the common pyrope in the whiteschist. At the core–rim boundary, there is no chemical gap. Chloritoid and staurolite are common inclusions in the core of the superzoned garnet in the whiteschist and in the porphyroblastic garnet in the metapelite. The staurolite composition (Si=2.00 and total R2+<2.0 for O=23 basis) and its reverse Fe–Mg distribution with respect to garnet suggest a HP origin. The Fe–Mg distribution between chloritoid and garnet is reverse in the superzoned garnet, but normal in the garnet of metapelite. Because normal Fe–Mg distribution was reported from other eclogite-facies metapelites, a model petrogenetic grid was constructed in the FMASH model system considering St, Cld, Ky, Chl, Grt, and assuming the following Fe–Mg partitioning of St>Grt>Cld>Chl. The resulting petrogenetic grid suggests that the core of the superzoned garnet contains incompatible assemblages, such as St–Cld–Chl vs. Cld–Chl–Ky. New and literature data and results of experiments in the KFASH system suggest that: (1) the superzoned garnet was formed under a single prograde high-pressure/ultra high-pressure (HP/UHP) Alpine metamorphism, (2) the almandine inclusion-rich core of the superzoned garnet crystallized at disequilibrium in a pelitic composition system at around 600°C and less than 16 kbar, probably from a former metapelite xenolith included in a Variscan granitoid, and (3) the chemical environment of the host rock suddenly changed from the normal pelite to the whiteschist composition by a metasomatic process during the rim growth, i.e., at a stage close to the UHP climax.  相似文献   

5.
苏鲁地体超高压矿物的三维空间分布   总被引:31,自引:9,他引:31       下载免费PDF全文
刘福来  张泽明  许志琴 《地质学报》2003,77(1):T004-T006
采用激光拉曼技术,配备电子探针和阴极发光测试,确认苏鲁地体大多数花岗质片麻岩,所有类型片麻岩、斜长角闪岩、蓝晶石英岩和大理岩的锆石中均隐藏以柯石英为代表的超高压包体矿物组合。其中花岗质片麻岩典型超高压包体矿物为柯石英±多硅白云母;副片麻岩为柯石英+石榴子石+绿辉石、柯石英±石榴子石+硬玉+多硅白云母+磷灰石、柯石英+多硅白云母±磷灰石;斜长角闪岩为柯石英+石榴子石+绿辉石±金红石;蓝晶石英岩为柯石英+蓝晶石+金红石+磷灰石、柯石英+蓝晶石+多硅白云母+金红石;大理岩为柯石英+透辉石、柯石英+橄榄石。表明苏鲁地体由榴辉岩及其围岩所组成的巨量陆壳物质曾普遍发生深俯冲,并经历了超高压变质作用。锆石的矿物包体分布特征及相应的阴极发光图像研究表明,在同一样品中,锆石的成因特征存在明显差异。有的锆石显示继承性(碎屑)锆石的核(core)、超高压变质的幔(mantle)和退变质的边(rim);有的锆石则具有超高压的核、幔和退变质的边;而有的锆石却记录了深俯冲的核、超高压的幔和退变质的边。标志着苏鲁超高压变质带各类岩石副矿物锆石均具有十分复杂的结晶生长演化历史。因此,在充分研究锆石中矿物包体性质、分布特征以及相应阴极发光图像的基础上,采用SHRIMP离子探针技术,在锆石晶体的不同  相似文献   

6.
Abstract Paragonite in textural equilibrium with garnet, omphacite and kyanite is found in two eclogites in the ultrahigh-pressure metamorphic terrane in Dabie Shan, China. Equilibrium reactions between paragonite, omphacite and kyanite indicate a pressure of about 19 kbar at c . 700° C. However, one of the paragonite eclogites also contains clear quartz pseudomorphs after coesite as inclusions in garnet, suggesting minimum pressures of 27 kbar at the same temperature. The disparate pressure estimates from the same rock suggest that the matrix minerals in the ultrahigh-pressure eclogites have recrystallized at lower pressures and do not represent the peak ultrahigh-pressure assemblages. This hypothesis is tested by calibrating a garnet + zoisite/clinozoisite + kyanite + quartz/coesite geobarometer and applying it to the appropriate eclogite facies rocks from ultrahigh- and high-pressure terranes. These four minerals coexist from 10 to 60 kbar and in this wide pressure range the grossular content of garnet reflects the equilibrium pressure on the basis of the reaction zoisite/clinozoisite = grossular + kyanite + quartz/coesite + H2O. The results of the geobarometer agree well with independent pressure estimates from eclogites from other orogenic belts. For the paragonite eclogites in Dabie Shan the geobarometer indicates pressures in the quartz stability field, confirming that the former coesite-bearing paragonite-eclogite has re-equilibrated at lower pressures. On the other hand, garnets from other coesite-bearing but paragonite-free kyanite-zoisite eclogites show a very wide variation in grossular content, corresponding to a pressure variation from coesite into the quartz field. This wide variation, partly due to a rimward decrease in grossular component in garnet, is caused by partial equilibration of the mineral assemblage during the exhumation.  相似文献   

7.
Abstract In the Su-Lu ultrahigh- P terrane, eastern China, many coesite-bearing eclogite pods and layers within biotite gneiss occur together with interlayered metasediments now represented by garnet-quartz-jadeite rock and kyanite quartzite. In addition to garnet + omphacite + rutile + coesite, other peak-stage minerals in some eclogites include kyanite, phengite, epidote, zoisite, talc, nyböite and high-Al titanite. The garnet-quartz-jadeite rock and kyanite quartzite contain jadeite + quartz + garnet + rutile ± zoisite ± apatite and quartz + kyanite + garnet + epidote + phengite + rutile ± omphacite assemblages, respectively. Coesite and quartz pseudomorphs after coesite occur as inclusions in garnet, omphacite, jadeite, kyanite and epidote from both eclogites and metasediments. Study of major elements indicates that the protolith of the garnet-quartz jadeite rock and the kyanite quartzite was supracrustal sediments. Most eclogites have basaltic composition; some have experienced variable 'crustal'contamination or metasomatism, and others may have had a basaltic tuff or pyroclastic rock protolith.
The Su-Lu ultrahigh- P rocks have been subjected to multi-stage recrystallization and exhibit a clockwise P-T path. Inclusion assemblages within garnet record a pre-eclogite epidote amphibolite facies metamorphic event. Ultrahigh- P peak metamorphism took place at 700–890° C and P >28 kbar at c . 210–230 Ma. The symplectitic assemblage plagioclase + hornblende ± epidote ± biotite + titanite implies amphibolite facies retrogressive metamorphism during exhumation at c . 180–200 Ma. Metasedimentary and metamafic lithologies have similar P-T paths. Several lines of evidence indicate that the supracrustal rocks were subducted to mantle depths and experienced in-situ ultrahigh- P metamorphism during the Triassic collision between the Sino-Korean and Yangtze cratons.  相似文献   

8.
韩庆森  彭松柏  焦淑娟 《地球科学》2020,45(6):1986-1998
首次报道了扬子克拉通黄陵穹隆北部崆岭杂岩古元古代水月寺混杂岩带中发现特征性石榴石-蓝晶石-硬绿泥石组合低温-高压(LT-HP)榴辉岩相变泥质岩,其变质峰期矿物组合为石榴石+蓝晶石+硬绿泥石+多硅白云母+金红石+石英.相平衡模拟计算得到一条近等温减压的顺时针型变质P-T轨迹,其峰期变质条件为571~576℃,19.2~21.8 kbar.LA-ICP-MS锆石U-Pb年代学研究获得变泥质岩中碎屑锆石核部年龄集中于2.1~2.2 Ga,变质增生边年龄为1 991±20 Ma.Grt-Ky-Cld组合榴辉岩相变泥质岩原岩形成构造环境和变质峰期条件指示,其形成于较低地温梯度(dT/dP≈300℃/GPa)下的活动大陆边缘冷俯冲构造环境,进一步表明至少从古元古代开始具有“冷俯冲”构造特征的现代板块构造体制已经启动.   相似文献   

9.
In Eurasia, the Qinling-Dabie-Sulu belt of eastern China, the Kokchetav Complex of northern Kazakhstan, the Maksyutov Complex of the southern Urals, the Dora-Maira massif of the Western Alps, and the Western Gneiss Region of Norway mark profound intracontinental collisional sutures. Adjacent regions exhibit scant evidence of contemporaneous calc-alkaline volcanism/plutonism. Each ultrahigh-pressure (UHP) metamorphic complex contains mineralogic and textural relics of coesite ± diamond as well as other very high P, moderate-T phases such as K-rich clinopyroxene, Mg-rich garnet, ellenbergerite, lawsonite, Al-rutile, glaucophane, high-Si phengite, and the phase assemblages coesite + dolomite, magnesite + diopside, and talc + kyanite, diopside, jadeite, or phengite. In each of these well-studied Eurasian complexes, maximum pressures approached or exceeded 2.8 GPa. Deep-seated recrystallization of old, cool continental crust took place during Phanerozoic time. Subduction zones constitute the only known plate-tectonic environment where such high-P, low-T conditions exist. Disaggregated, exhumed ultrahigh-pressure terranes consist of relatively thin sialic sheets 5 ± 3 km thick. After cessation of UHP recrystallization, tectonic slices ascended largely because of buoyancy to shallow depths along stress guides provided by the subduction zones themselves. Collisional sheets that retain UHP relics (micro-inclusions enclosed in strong, impermeable, unreactive mineralogic host grains) lost heat by conduction across both upper, normal-fault and lower, reverse-fault contacts. These sheets rose to mid-crustal levels rapidly at exhumation rates approaching 10 mm/yr. Backreaction attending decompression in all cases was nearly complete; where UHP relics survive, retrogression evidently was limited by the coarse grain size and relative impermeability of the rocks, as well as by declining temperature and lack of aqueous fluids.  相似文献   

10.
严溶  杨建军 《岩石学报》2013,29(5):1621-1633
青龙山部分榴辉岩以含绿帘石、蓝晶石和滑石变斑晶为特征,但是其峰变质矿物组合由基质中细粒的石榴石+绿辉石+多硅白云母+柯石英+金红石+绿帘石构成,它们定向分布形成片理构造。相图中石榴石组成等值线温压计确定的峰变质组合为:石榴石+绿辉石+多硅白云母+蓝晶石+金红石+柯石英+硬柱石+滑石,与岩相学观察结果不符。这可能是超高压变质流体显著偏离计算相图假设的流体相为纯水所致。无定向的变斑晶切割片理,晚于峰变质组合结晶于弱剪切应力的环境。岩相学观察和相图模拟结果显示,变斑晶的形成顺序为蓝晶石-绿帘石-滑石。绿帘石在<2GPa大量生长形成变斑晶,它包含柯石英并不一定说明二者平衡共生,更可能是温压快速下降后峰变质组合被绿帘石变斑晶包含。由矿物组合限定的青龙山变斑状榴辉岩P-T路径为典型的"发卡式"。含水矿物出现于岩石的各个变质组合,并且沿退变质P-T路径陆续结晶数量增多,表明在退变质过程中不断有流体渗入岩石。  相似文献   

11.
The North Qaidam Orogenic Belt (NQOB), lying at the northern margin of the Tibet Plateau, records two orogenic cycles: A Proterozoic cycle related to the amalgamation and breakup of the supercontinent Rodinia, and an Early Palaeozoic cycle including oceanic subduction and continental deep subduction. At present, the only information about the Proterozoic cycle is the concurrent c. 1,000–900 Ma magmatic and metamorphic events, which limited the understanding of the Proterozoic evolution of NQOB and the relationship between the Qaidam Block and other Rodinia fragments. In this study, a kyanite‐bearing eclogite was identified in Yuka terrane. It has positive‐slope chondrite‐normalized rare earth element distribution patterns, similar to present‐day N‐MORB. LA–ICP–MS zircon U–Pb dating obtained a protolith age of 1,273 Ma and an eclogite facies metamorphic age of 437 Ma, which is similar to the continental deep subduction age of the Yuka terrane. Zircon Lu–Hf analysis show that the magmatic zircon cores have high εHf(t) of 8.36–15.98 and TDM1 of 1,450–1,131 Ma (M = 1,303 ± 55 Ma, consistent with its protolith age within error), indicating a juvenile crust protolith of the eclogite. The MORB‐like whole‐rock composition and zircon U–Pb and Lu–Hf analysis indicate that the protolith of the kyanite‐bearing eclogite was a Mesoproterozoic oceanic slice. P–T pseudosection analysis shows that the kyanite‐bearing eclogite experienced four metamorphic stages: (1) a prograde stage with the assemblage garnet+omphacite+talc+lawsonite+phengite+quartz at 22.4–23.2 kbar and 585°C; (2) a peak stage with the assemblage garnet+omphacite+lawsonite+phengite+coesite at 32.5 kbar and 670°C; (3) an early retrograde stage with the assemblage garnet+omphacite+kyanite+phengite+coesite/quartz±lawsonite at 27.1–30.0 kbar and 670–690°C; and (4) a late retrograde stage with the assemblage garnet+omphacite+epidote+hornblende+phengite+quartz at <18.0 kbar. The established clockwise P–T path is similar with other continental‐type eclogites in this area. On the basis of the geochemical and geochronological data, as well as the P–T path, we suggest that the protolith of the kyanite‐bearing eclogite was emplaced in the active margin of the Qaidam Block during the assembly of Rodinia and underwent continental deep subduction in the Early Palaeozoic. We conclude that (1) the Qaidam Block participated in the assembly of the Rodinia supercontinent. It was situated at or proximal to the margin of the supercontinent and probably close to India, east Antarctica and Tarim; and (2) both Mesoproterozoic and Early Palaeozoic oceanic crust slices occur in the NQOB. Thus, special caution is needed when using the metamorphic ages of oceanic affinity eclogites without protolith ages to constrain the evolution history of the North Qaidam UHPM belt.  相似文献   

12.
Pressure–temperature conditions for formation of the peak metamorphic mineral assemblages in phengite-bearing eclogites from Dabieshan have been assessed through a consideration of Fe2+–Mg2+ partitioning between garnet–omphacite and garnet–phengite pairs and of the reaction equilibrium celadonite+pyrope+grossular=muscovite+diopside, which incorporates an evaluation of the extent of the strongly pressure-dependent inverse Tschermak's molecule substitution in the phengites. For the latter equilibrium, the calibration and recommended activity–composition models indicated by 45 ) have been employed and importantly yield results consistent with petrographic evidence for the stability at peak conditions of coesite in certain samples and quartz in others. Confirmation that in some phengite-eclogite samples peak silicate mineral assemblages have equilibrated at confining pressures sufficient for the stability of coesite (and in some cases even diamond) rather negates previous suggestions that coesite may have been stabilized in only very localized, possibly just intracrystalline, domains. Inherent difficulties in the evaluation of peak metamorphic temperatures from Fe2+–Mg2+ partitioning between mineral phases, due to uncertainties over Fe3+/Fe2+ ratios in the minerals (especially omphacites), and to re-equilibration during extensive retrograde overprinting in some samples, are also assessed and discussed. Our results indicate the existence in south-central Dabieshan of phengite eclogites with markedly different equilibration conditions within two structurally distinct tectonometamorphic terranes. Thus our data do not support earlier contentions that south-central Dabieshan comprises a structurally coherent continental-crust terrane with a regional P–T gradient signalling previous deepest-level subduction in the north. Instead, we recognize the Central Dabie ultra-high-pressure (coesite eclogite-bearing) terrane to be structurally overlain by a Southern Dabie high-pressure (quartz eclogite-bearing) terrane at a major southerly dipping shear zone along which late orogenic extensional collapse appears to have eliminated at least 20 km of crustal section.  相似文献   

13.
Eclogite boudins occur within an orthogneiss sheet enclosed in a Barrovian metapelite‐dominated volcano‐sedimentary sequence within the Velké Vrbno unit, NE Bohemian Massif. A metamorphic and lithological break defines the base of the eclogite‐bearing orthogneiss nappe, with a structurally lower sequence without eclogite exposed in a tectonic window. The typical assemblage of the structurally upper metapelites is garnet–staurolite–kyanite–biotite–plagioclase–muscovite–quartz–ilmenite ± rutile ± silli‐manite and prograde‐zoned garnet includes chloritoid–chlorite–paragonite–margarite, staurolite–chlorite–paragonite–margarite and kyanite–chlorite–rutile. In pseudosection modelling in the system Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O (NCKFMASH) using THERMOCALC, the prograde path crosses the discontinuous reaction chloritoid + margarite = chlorite + garnet + staurolite + paragonite (with muscovite + quartz + H2O) at 9.5 kbar and 570 °C and the metamorphic peak is reached at 11 kbar and 640 °C. Decompression through about 7 kbar is indicated by sillimanite and biotite growing at the expense of garnet. In the tectonic window, the structurally lower metapelites (garnet–staurolite–biotite–muscovite–quartz ± plagioclase ± sillimanite ± kyanite) and amphibolites (garnet–amphibole–plagioclase ± epidote) indicate a metamorphic peak of 10 kbar at 620 °C and 11 kbar and 610–660 °C, respectively, that is consistent with the other metapelites. The eclogites are composed of garnet, omphacite relicts (jadeite = 33%) within plagioclase–clinopyroxene symplectites, epidote and late amphibole–plagioclase domains. Garnet commonly includes rutile–quartz–epidote ± clinopyroxene (jadeite = 43%) ± magnetite ± amphibole and its growth zoning is compatible in the pseudosection with burial under H2O‐undersaturated conditions to 18 kbar and 680 °C. Plagioclase + amphibole replaces garnet within foliated boudin margins and results in the assemblage epidote–amphibole–plagioclase indicating that decompression occurred under decreasing temperature into garnet‐free epidote–amphibolite facies conditions. The prograde path of eclogites and metapelites up to the metamorphic peak cannot be shared, being along different geothermal gradients, of about 11 and 17 °C km?1, respectively, to metamorphic pressure peaks that are 6–7 kbar apart. The eclogite–orthogneiss sheet docked with metapelites at about 11 kbar and 650 °C, and from this depth the exhumation of the pile is shared.  相似文献   

14.
Zhang Zeming  Xu Zhiqin  Xu Huifen 《Lithos》2000,52(1-4):35-50
The 558-m-deep ZK703 drillhole located near Donghai in the southern part of the Sulu ultrahigh-pressure metamorphic belt, eastern China, penetrates alternating layers of eclogites, gneisses, jadeite quartzites, garnet peridotites, phengite–quartz schists, and kyanite quartzites. The preservation of ultrahigh-pressure metamorphic minerals and their relics, together with the contact relationship and protolith types of the various rocks indicates that these are metamorphic supracrustal rocks and mafic-ultramafic rock assemblages that have experienced in-situ ultrahigh-pressure metamorphism. The eclogites can be divided into five types based on accessory minerals: rutile eclogite, phengite eclogite, kyanite–phengite eclogite, quartz eclogite, and common eclogite with rare minor minerals. Rutile eclogite forms a thick layer in the drillhole that contains sufficient rutile for potential mining. Two retrograde assemblages are observed in the eclogites: the first stage is characterized by the formation of sodic plagioclase+amphibole symplectite or symplectitic coronas after omphacite and garnet, plagioclase+biotite after garnet or phengite, and plagioclase coronas after kyanite; the second stage involved total replacement of omphacite and garnet by amphibole+albite+epidote+quartz. Peak metamorphic PT conditions of the eclogites were around 32 to 40 kbar and 720°C to 880°C. The retrograde PT path of the eclogites is characterized by rapidly decreasing pressure with slightly decreasing temperature. Micro-textures and compositional variations in symplectitic minerals suggest that the decompression breakdown of ultrahigh-pressure minerals is a domainal equilibrium reaction or disequilibrium reaction. The composition of the original minerals and the diffusion rate of elements involved in these reactions controlled the symplectitic mineral compositions.  相似文献   

15.
Abstract Widespread ultra-high-P assemblages including coesite, quartz pseudomorphs after coesite, aragonite, and calcite pseudomorphs after aragonite in marble, gneiss and phengite schist are present in the Dabie Mountains eclogite terrane. These assemblages indicate that the ultra-high-P metamorphic event occurred on a regional scale during Triassic collision between the Sino-Korean and Yangtze cratons. Marble in the Dabie Mountains is interlayered with coesite-bearing eclogite and gneiss and as blocks of various size within gneiss. Discontinuous boudins of eclogite occur within marble layers. Marble contains an ultra-high-P assemblage of calcite/aragonite, dolomite, clinopyroxene, garnet, phengite, epidote, rutile and quartz/coesite. Coesite, quartz pseudomorphs after coesite, aragonite and calcite pseudomorphs after aragonite occur as fine-grained inclusions in garnet and omphacite. Phengites contain about 3.6 Si atoms per formula unit (based on 11 oxygens). Similar to the coesite-bearing eclogite, marble exhibits retrograde recrystallization under amphibolite–greenschist facies conditions generated during uplift of the ultra-high-P metamorphic terrane. Retrograde minerals are fine grained and replace coarse-grained peak metamorphic phases. The most typical replacements are: symplectic pargasitic hornblende + epidote after garnet, diopside + plagioclase (An18) after omphacite, and fibrous phlogopite after phengite. Ferroan pargasite + plagioclase, and actinolite formed along grain boundaries between garnet and calcite, and calcite and quartz, respectively. The estimated peak P–T conditions for marble are comparable to those for eclogite: garnet–clinopyroxene geothermometry yields temperatures of 630–760°C; the garnet–phengite thermometer gives somewhat lower temperatures. The minimum pressure of peak metamorphism is 27 kbar based on the occurrence of coesite. Such estimates of ultra-high-P conditions are consistent with the coexistence of grossular-rich garnet + rutile, and the high jadeite content of omphacite in marble. The fluid for the peak metamorphism was calculated to have a very low XCO2 (<0.03). The P–T conditions for retrograde metamorphism were estimated to be 475–550°C at <7 kbar.  相似文献   

16.
Using a previously published, internally consistent thermodynamic dataset and updated models of activity–composition relations for solid solutions, petrogenetic grids in the model system KFMASH (K2O–FeO–MgO–Al2O3–SiO2–H2O) and the subsystems KMASH and KFASH have been calculated with the software THERMOCALC 3.1 in the PT range 5–36 kbar and 400–810 °C, involving garnet, chloritoid, biotite, carpholite, talc, chlorite, staurolite and kyanite/sillimanite with phengite, quartz/coesite and H2O in excess. These grids, together with calculated AFM compatibility diagrams and pseudosections, are shown to be powerful tools for delineating the phase equilibria and PT conditions of pelitic high-P assemblages for a variety of bulk compositions. The calculated equilibria and mineral compositions are in good agreement with petrological observation. The calculation indicates that the typical whiteschist assemblage kyanite–talc is restricted to the rocks with extremely high XMg values, decreasing XMg in a bulk composition favoring the stability of chloritoid and garnet. Also, the chloritoid–talc paragenesis is stable over 19–20 kbar in a temperature range of ca. 520–620 °C, being more petrologically important than the previously highlighted assemblage talc–phengite. Moreover, contours of the calculated Si isopleths in phengite in PT and PX pseudosections for different bulk compositions extend the experimentally derived phengite geobarometers to various KFMASH assemblages.  相似文献   

17.
Sodic metapelites with jadeite, chloritoid, glaucophane and lawsonite form a coherent regional metamorphic sequence, several tens of square kilometres in size, and over a kilometre thick, in the Orhaneli region of northwest Turkey. The low‐variance mineral assemblage in the sodic metapelites is quartz + phengite + jadeite + glaucophane + chloritoid + lawsonite. The associated metabasites are characterized by sodic amphibole + lawsonite ± garnet paragenesis. The stable coexistence of jadeite + chloritoid + glaucophane + lawsonite, not reported before, indicates metamorphic pressures of 24 ± 3 kbar and temperatures of 430 ± 30 °C for the peak blueschist facies conditions. These P–T conditions correspond to a geotherm of 5 °C km?1, one of the lowest recorded in continental crustal rocks. The low geotherm, and the known rate of convergence during the Cretaceous subduction suggest low shear stresses at the top of the downgoing continental slab.  相似文献   

18.
Geothermometry of eclogites and other high pressure (HP)/ultrahigh‐pressure (UHP) rocks has been a challenge, due to severe problems related to the reliability of the garnet–clinopyroxene Fe–Mg exchange thermometer to omphacite‐bearing assemblages. Likewise, reliable geobarometers for eclogites and related HP/UHP rocks are scarce. In this paper, a set of internally consistent geothermobarometric expressions have been formulated for reactions between the UHP assemblage garnet–clinopyroxene–kyanite–phengite–coesite, and the corresponding HP assemblage garnet–clinopyroxene–kyanite–phengite–quartz. In the system KCMASH, the end members grossular (Grs) and pyrope (Prp) in garnet, diopside (Di) in clinopyroxene, muscovite (Ms) and celadonite (Cel) in phengite together with kyanite and coesite or quartz define invariant points in the coesite and quartz stability field, respectively, depending on which SiO2 polymorph is stable. Thus, a set of net transfer reactions including these end members will uniquely define equilibrium temperatures and pressures for phengite–kyanite–SiO2‐bearing eclogites. Application to relevant eclogites from various localities worldwide show good consistency with petrographic evidence. Eclogites containing either coesite or polycrystalline quartz after coesite all plot within the coesite stability field, while typical quartz‐bearing eclogites with no evidence of former coesite fall within the quartz stability field. Diamondiferous coesite–kyanite eclogite and grospydite xenoliths in kimberlites all fall into the diamond stability field. The present method also yields consistent values as compared with the garnet–clinopyroxene Fe–Mg geothermometer for these kinds of rocks, but also indicates some unsystematic scatter of the latter thermometer. The net transfer geothermobarometric method presented in this paper is suggested to be less affected by later thermal re‐equilibration than common cation exchange thermometers.  相似文献   

19.
Abstract A detailed study of garnet–chloritoid micaschists fom the Sesia zone (Western Alps) is used to constrain phase relations in high pressure (HP) metapelitic rocks. In addition to quartz, phengite, paragonite and rutile, the micaschists display two distinct parageneses, namely garnet + chloritoid + chlorite and garnet + chloritoid + kyanite. Talc has never been observed. Garnet and chloritoid are more magnesian when chlorite is present instead of kyanite. The distinction of the two equilibria results from different bulk rock chemistries, not from P–T conditions or redox state. Estimated P–T conditions for the eclogitic metamorphism are 550–600°C, 15–18 kbar.
The presence of primary chlorite in association with garnet and chloritoid leads us to construct two possible AFM topologies for the Sesia metapelites. The paper describes a KFMASH multisystem for HP pelitic rocks, which extends the grid of Harte & Hudson (1979) towards higher pressures and adds the phase talc. Observed parageneses in HP metapelites are consistent with predicted phase relations. Critical associations are Gt–Ctd–Chl and Gt–Ctd–Ky at relatively low temperatures and Gl–Chl–Ky and Gt–Tc–Ky at relatively high temperatures.  相似文献   

20.
Detailed X‐ray compositional mapping and microtomography have revealed the complex zoning and growth history of garnet in a kyanite‐bearing eclogite. The garnet occurs as clusters of coalesced grains with cores revealing slightly higher Ca and lower Mg than the rims forming the coalescence zones between the grains. Core regions of the garnet host inclusions of omphacite with the highest jadeite, and phengite with the highest Si, similar to values in the cores of omphacite and phengite located in the matrix. Therefore, the core compositions of garnet, omphacite, and phengite have been chosen for the peak pressure estimate. Coupled conventional thermobarometry, average P–T, and phase equilibrium modelling in the NCKFMMnASHT system yields P–T conditions of 26–30 kbar at 800–930°C. Although coesite is not preserved, these P–T conditions partially overlap the coesite stability field, suggesting near ultra‐high–pressure (UHP) conditions during the formation of this eclogite. Therefore, the peak pressure assemblage is suggested to have been garnet–omphacite–kyanite–phengite–coesite/quartz–rutile. Additional lines of evidence for the possible UHP origin of the Mi?dzygórze eclogite are the presence of rod‐shaped inclusions of quartz parallel to the c‐axis in omphacite as well as relatively high values of Ca‐Tschermak and Ca‐Eskola components. Late zoisite, rare diopside–plagioclase symplectites rimming omphacite, and minor phlogopite–plagioclase symplectites replacing phengite formed during retrogression together with later amphibole. These retrograde assemblages lack minerals typical of granulite facies, which suggests simultaneous decompression and cooling during exhumation before the crustal‐scale folding that was responsible for final exhumation of the eclogite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号