首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
发生在地球浅层的2008年汶川地震驱动了龙门山及前陆地区的地表同震垂向位移.根据冲断带-前陆盆地弹性挠曲模型理论,在进行弹性挠曲模拟反演的基础上,结合对深部地球物理特征(泊松比、电性结构)的分析,发现龙门山前陆盆地现今岩石圈有效弹性厚度(T_e)具有自东向西逐渐减薄的趋势,自川中地区的30~40 km减至龙门山地区的10~20 km.在对晚三叠世以来前陆盆地各阶段盆地结构进行刻画的基础上,进行弹性挠曲模拟反演,推断龙门山前陆盆地的前渊地区(四川盆地西部)岩石圈的T_e值自晚三叠世以来具有逐渐减薄的趋势.这可能与松潘一甘孜地块下方广泛存在的软流圈热物质对四川盆地西部岩石圈下部的长期加热而导致的熔融有关,反映了地球深部动力学过程与地球表层盆地演化之间的耦合关系.  相似文献   

2.
基于SIO(Scripps Institute of Oceanography)最新全球重力和高程模型,计算了巴颜喀拉地块东部及邻区的布格重力异常、均衡重力异常、岩石圈有效弹性厚度及荷载比.结合大地热流、地震速度结构、地震活动和断裂构造分布等,分析了地壳均衡状态和岩石圈有效弹性厚度、地质构造单元间的差异及与地震活动的相关性特征.研究结果表明,该区域布格重力变化范围约为-500~0mGal(1mGal=10~(-5)m·s~(-2),下同),在巴颜喀拉块体东部区域形成弧形重力梯度带,近年来的中强地震活动频发于该梯度带不同部位,应与其应力依次释放有关;均衡重力异常结果表明,其变化范围约为-80~+100mGal,且大部分区域处于±20mGal以内的被认为处于重力均衡的状态,重力非均衡(正或负)多出现于块体边界带附近,地震多发生在靠近块体边界的均衡重力异常(正或负,主要为正)区域内;巴颜喀拉地块东部及邻区岩石圈有效弹性厚度(T_e)为10~65km,不同构造单元之间T_e空间分布差异明显,较低的T_e值出现在龙门山构造带附近,T_e值为20km左右,岩石圈荷载加载比为0.5~0.8,表明现今的岩石圈挠曲状态主要由莫霍面加载形成.进一步分析表明,巴颜喀拉地块东部挤压增生与横向流动同时发生,是造成该区域地震发生与重力均衡异常高值重合、岩石圈有效弹性厚度和大地热流值较低的主要原因.本文获得的地壳均衡特征及岩石圈有效弹性强度结果,加深了对巴颜喀拉东部及邻区岩石圈构造演化过程的认识.  相似文献   

3.
本文综合利用EIGEN6C4布格重力异常、SIO V15.1地形和流动重力观测数据,研究2021年玛多Ms7.4地震的重力挠曲均衡背景和震前重力变化特征.首先,基于岩石圈挠曲均衡模型,结合布格重力异常和地形数据,采用有限差分方法计算了震中及周边地区(青藏高原东北部)岩石圈有效弹性厚度(Te)和挠曲均衡重力异常.结果表明,青藏高原东北部Te为0~100 km,横向差异明显,且与块体构造关系密切.巴颜喀拉块体以北的柴达木块体Te值高达50~80 km,以南的羌塘块体大部分区域的Te大于20 km,五道梁以南出现局部大于30 km的高值区,玉树—德格地区出现局部大于40 km的高值区.巴颜喀拉块体Te为0~20 km,较其南北块体明显偏小,更易于发生形变,从而在南北"夹持"下发生物质东向运动,是青藏高原中部物质东流的主要区域.地震易发生在岩石圈强弱变化的过渡地带(Te变化梯度带),以及Te较小区域的断裂带上.本次地震即发生在巴颜喀拉块体内部Te低值区,震中附近有效弹性厚度约为15 km.震前流动重力变化分析表明,2015年以来3~5年的累积重力变化自西向东呈负-正-负的区域性变化特征,大致以震中为界形成了垂直于断裂带的重力变化高梯度带,主要反映了震前青藏高原物质东流过程中出现的深部构造运动态势.2018年以来的重力变化主要呈围绕震中形成西正-东负的弱区域性变化特征,显示震中地区已处于高应力应变的"固化"状态,地震即发生在重力变化零值线拐弯部位.  相似文献   

4.
本文利用卡罗琳板块及其附近地区的自由空气重力异常和海水深度数据,结合滑动窗口导纳技术(MWAT),计算了该地区的岩石圈有效弹性厚度T_e.本文使用Multitaper(多窗谱)方法对功率谱密度进行估计,基于实际的海底地形,通过模拟计算得到了MWAT方法较真值的改正,MWAT方法计算的结果偏小20%左右.研究结果显示卡罗琳板块及其附近地区的T_e变化范围为1~34km.研究区域包括了海山、海底高原、俯冲带、扩张洋脊等多种构造,对它们的岩石圈强度的研究为认识西太平洋地区岩石圈的构造和演化提供了重要的依据.T_e与加载时的岩石圈年龄、地表热流相关.T_e与海底地壳年龄之间的关系显示T_e主要位于板块冷却模型的450℃的等温线深度以上.西太平洋的Magellan海山和Marcus-Wake Guyots(MWG)地区的T_e主要分布在加载形成时板块冷却模型的200℃的等温线深度附近,较低的等温线可能受太平洋超级地幔柱的影响.我们的研究结果也显示在研究区域内海洋地壳的热流与T_e之间存在一定的反相关性.  相似文献   

5.
西北太平洋岩石圈有效弹性厚度及其构造意义   总被引:4,自引:3,他引:1       下载免费PDF全文
本文引入滑动窗口导纳技术(MWAT),计算西北太平洋岩石圈有效弹性厚度(Te).首先,基于SIO V15.1海底地形模型,模拟研究了MWAT法计算Te的精度,表明当Te5km时,误差在±1km以内,当Te≥5km时,相对误差在10%以内.分别采用GEBCO、SIO V15.1和BAT_VGG海底地形模型,构建了西北太平洋Te,通过对获得的洋壳密度参数和实测导纳与模型导纳之差的均方根进行分析,结果表明,BAT_VGG模型更适用于Te计算.西北太平洋Te均值为13.2km,标准差为6.9km,以板块冷却模型为参考,主要分布在150℃~450℃等温线深度范围内.白垩纪和侏罗纪时期岩石圈Te分布在150℃~300℃等温线深度范围内,且未随海山加载时岩石圈年龄增大而增大,说明海山加载时岩石圈年龄不是影响其强度的唯一因素.南太平洋超级海隆活动,以及研究区域广泛存在的断裂带构造,都曾对本区域岩石圈演化产生过重要影响,可能是本地区岩石圈Te较小的构造原因.  相似文献   

6.
由于海底环境和海底地震仪(OBS)结构的特殊性,用OBS远震记录进行接收函数岩石圈反演研究因为存在一定的困难,所以还很少见.在深入分析问题的基础上,以国产I-4C型宽频带OBS在南海西南次海盆记录的天然地震为实例,我们将傅里叶变换和小波变换相结合以压制海底地震仪记录中的非平稳干扰,获得了信噪比较高、震相清晰的地震记录,进而成功开展了远震记录的岩石圈结构接收函数反演.主要结论是:(1)OBS接收函数的求取是可行的,关键是压制非平稳干扰.(2)西南次海盆的Moho面埋深为海底下10~12km(地壳厚6~8km),沉积物厚度为1~2km,浅部地壳存在低速区,与沉积物和海底扩张停止后的岩浆喷发产生的岩石碎屑和裂隙有关.(3)在扩张脊中央Moho面上方6~12km存在S波低速区,推测扩张中心可能存在下地壳熔融或岩浆房,在17~30km区间S波速度呈负梯度,我们认为扩张中心更深的地方存在热物质的供给.  相似文献   

7.
西太平洋地区板块间相互作用强烈,热演化和构造演化过程复杂.为了揭示构造相互作用对岩石圈强度的影响,本文使用自由空气重力异常模型WGM2012和地形模型ETOPO1,基于小波变换的导纳法计算得到了该地区的岩石圈有效弹性厚度(Te).西太平洋区域的Te主要分布在5~85 km之间,南海等张裂环境地区Te普遍小于20 km,俯冲带附近Te一般大于80 km,与俯冲板片年龄呈正相关.参照平板冷却模型,弹性岩石圈底界面主要分布在200~500 ℃等温面之间,随洋壳年龄增大逐渐趋于平稳,热点及年轻洋壳部分地区弹性岩石圈底界面处于200℃等温面之上.西太平洋海山与年轻海盆等区域Te与居里点深度一般呈正相关,与地表热流一般呈负相关,但由于强烈的构造运动、热液循环、岩浆活动、地幔流变性等因素的影响,整体Te与居里点深度和地表热流所反映的岩石圈热结构相关性不高.  相似文献   

8.
通过横穿青藏高原北部东昆仑-羌塘地区的格尔木-唐古拉山口(西段)和共和-玉树(东段)两条天然地震探测剖面的综合研究, 揭示东昆仑-羌塘地区岩石圈结构的如下特征: (1)地壳厚度自南往北由70~75 km减小至55~60 km, 西段厚度变化幅度(10 km)较东段(20 km)小; (2)地壳具高速与低速转换界面相间组成的层状结构, 东段中地壳为透镜状低速层; (3)在150 km深度范围内岩石圈的物理状态具高速体和低速体相间特征; (4)岩石圈结构不连续性表明地体边界及地体内部存在150~250 km深度的3条主要的岩石圈剪切断层带: 昆南-阿尼玛卿岩石圈剪切断裂带、金沙江岩石圈剪切断裂带和鲜水河岩石圈剪切断裂带. 推测青藏高原北部存在岩石圈规模的向东挤出作用.  相似文献   

9.
云南腾冲火山区地壳及岩石圈厚度研究   总被引:2,自引:1,他引:1       下载免费PDF全文
使用云南腾冲火山监测台网9个宽频带地震台站的远震数据,采用P波和S波接收函数的方法研究了腾冲火山区的地壳厚度、泊松比值以及岩石圈和软流圈分界面(LAB)深度.研究结果表明:1)云南腾冲火山区的地壳厚度约在33.5~38.0km之间;2)火山区的泊松比主要集中范围为0.26~0.32,其中6个台站均大于0.29,推测与地壳镁铁质成分的增加有关并且可能存有2个岩浆囊;3)火山区的岩石圈厚度在78.2~88.0km,较周边地区明显隆起且横向差异较大.腾冲火山区岩石圈的明显穹隆,由软流圈上涌(地幔热物质上升)引起岩石圈的拉张与减薄所致.  相似文献   

10.
磁异常揭示的峨眉山大火成岩省的深部结构   总被引:1,自引:0,他引:1       下载免费PDF全文
峨眉山大火成岩省位于中国西南部,在晚二叠纪约260 Ma喷发出巨量的大陆溢流型玄武岩.对于大火成岩省的岩浆喷发,在地下必定有一个相应的大规模岩浆聚集和运移系统.地球物理方法是探测岩石圈内部的有效方式.峨眉山大火成岩省为镁铁质岩浆喷发,由于镁铁质-超镁铁质岩石一般具有强磁性,因此,在喷发结束之后,地下岩浆系统如果被镁铁质岩浆填充,冷却固化成为岩石圈的一部分,很有可能会引起磁异常.本文使用区域磁异常数据来对峨眉山大火成岩省的深部构造进行研究.该区域的磁异常由一系列离散的异常组成,通过3D磁化率反演可以得到磁性体的空间分布.由于磁异常中具有明显的剩磁,直接使用经典的反演方法会有较大误差,我们首先将磁异常转换为弱敏感于磁化方向的磁异常模量,再使用模量数据进行3D反演,得到地下空间内磁异常源的分布.经过分析认为这些离散分布的磁异常源反映了岩石圈内部的镁铁质-超镁铁质侵入体.侵入体的位置可能反映了底侵和内侵的镁铁质岩浆固化形成的侵入体,代表镁铁质岩浆房位置或者岩浆运移的主要通道.  相似文献   

11.
阿尔山火山群自更新世至近代持续活动,具有潜在喷发的危险,因此加强对阿尔山火山群岩浆系统的研究,评价火山群的活动性具有重要的意义。在获得阿尔山火山群地区大地电磁测深数据的基础上,对其进行标准化处理后经二维非线性共轭梯度反演,获得二维电性结构成像,发现阿尔山地区岩石圈内部存在大规模的"拱桥式"中、低阻异常(电阻率320Ω·m),并在伊尔施镇西侧和柴河镇东侧分别存在明显的高导异常(电阻率40Ω·m);前者体积相对较小,埋藏深度在40~60km,后者体积较大,埋藏深度在60~90km,甚至更深。结合地质、地球化学资料,推断"拱桥式"异常为新生代来自两侧盆地软流圈的玄武质岩浆运移的通道,其所包含的2处高导异常,极可能为未冷凝或正在聚集的岩浆房,因此阿尔山岩浆系统由"拱桥式"通道和来自软流圈的玄武质岩浆组成,火山群具有统一的岩浆系统。进一步分析表明,"拱桥式"通道物质熔融百分比≥0.5%,岩石圈结构总体趋于稳定,其所包含的2处岩浆房熔融程度为2.5%~11.5%,颗粒边界可能已被溶体全部润湿,岩石的流动强度相对较低,岩石圈结构稳定性较差。区域地震分布、温泉的形成与阿尔山火山群岩浆系统也具有一定的相关性。综合迹象表明阿尔山群正处于休眠期,并非死火山,有再次喷发的可能,应密切监测。  相似文献   

12.
华北地区中东部涵盖北京、天津以及即将建设的雄安新区等大型城市,区内发育了张渤地震带等多条大型活动断裂,地震活动性较强,历史上发生过多次6级以上地震.本文利用Fan小波的布格重力异常一致性方法研究该区的岩石圈有效弹性厚度和均衡调整初始加载比分布,同时基于均衡调整方法计算该区垂向构造应力分布,并将以上结果与历史地震活动进行统计分析.岩石圈挠曲分析表明,华北地区中东部的岩石圈有效弹性厚度为10~65 km,分布特征为自东南向西北逐渐减小.均衡调整初始加载比为0.5~0.8,表明现今的岩石圈挠曲状态主要由莫霍面加载形成.该区地壳承载的垂向构造应力约为-20~20 MPa,中西部地区垂向构造应力向上,东北和西南地区向下.统计分析结果显示,华北地区中东部的地震活动性随着岩石圈有效弹性厚度和均衡调整初始加载比的增加而减弱,垂向构造应力零值区域地震活动性较弱.雄安新区的岩石圈有效弹性厚度大约为15 km,均衡调整初始加载比为0.5~0.6,垂向构造应力为15~20 MPa,岩石圈参数对应的地震活动性较强,相关结果对于新区建设具有一定参考价值.  相似文献   

13.
地震P波速度成像显示,西太平洋俯冲板片滞留在地幔过渡带,在中国东部形成"大地幔楔"结构.中国东部大陆玄武岩的Mg同位素调查揭示了该俯冲滞留板片携带大量碳酸盐交代地幔过渡带上覆的对流地幔,形成了碳酸盐化橄榄岩,它是中国东部晚白垩世和新生代大陆强碱性玄武岩的源岩.该玄武岩的Mg-Sr同位素组成与年龄关系显示自106Ma以来,该地幔源区的碳酸盐种属为菱镁矿+少量白云石,发生初熔的深度为300~360km.因此,该地幔源区的碳酸盐化交代作用应发生在大于360km的深度,即在106Ma以前俯冲板片已经开始滞留地幔过渡带,形成了大地幔楔结构.这一时代支持大地幔楔的俯冲板片后撤形成机制.根据高温高压实验结果,碳酸盐化橄榄岩熔融产生的含碳酸盐硅酸盐熔体在到达至华北克拉通初步减薄的岩石圈底部(180~120km)时仍可以有高达25~18wt%的CO_2含量,其SiO_2和含量及类似于强碱性的霞石岩和碧玄岩,并具有较高的εNd值(2~6).该熔体向上渗透并交代底部岩石圈地幔可形成碳酸盐化橄榄岩.由于克拉通地热增温线与碳酸盐化橄榄岩固相线相交于130km深度,则华北克拉通岩石圈底部的碳酸盐橄榄岩将发生部分熔融导致其物理性质类似软流圈且较容易被对流上地幔置换.其新生成的碳酸盐-硅酸盐熔体又可以向上渗透交代上覆的岩石圈地幔.如此重复这一碳酸盐化交代-熔融过程,可以使岩石圈减薄,而碳酸盐-硅酸盐熔体也转变呈较富硅和具有较低εNd值(低至-2)的碱性玄武岩.随着华北克拉通岩石圈的减薄,其地热增温线逐步向大洋岩石圈靠近,岩石圈碳酸盐化橄榄岩的初熔深度可小于130km和逐步接近70km.因此,富碳酸盐熔体与岩石圈相互作用是华北克拉通岩石圈减薄过程在晚白垩世和新生代的一种可能机制.据中国东部低玄武岩的年龄统计,106~25Ma区间岩石圈的碳酸盐化交代-熔融引发的减薄过程仅零星存在,而在25Ma以后才大规模发生.因此,华北克拉通岩石圈的减薄可能存在两个峰期:与克拉通破坏峰期(135~115Ma)同时发生的岩石圈减薄,和25Ma以后由富碳酸盐硅酸盐熔体与岩石圈相互作用引发的岩石圈进一步减薄,它使得华北克拉通东部岩石圈减薄至现今的约70km左右.  相似文献   

14.
华北克拉通热结构差异性特征及其意义   总被引:1,自引:1,他引:0       下载免费PDF全文
华北克拉通破坏存在空间上的差异性,至今其内在的动力学机制仍存在较大的争议,这种差异性在岩石圈热结构上必然有所表现.广义上岩石圈热结构包括热流结构、温度场结构和热岩石圈厚度,是揭示岩石圈演化及其内在动力学过程的重要基础.基于二维地震剖面和大地热流数据,建立二维稳态热传导有限元模型,对华北克拉通东部岩石圈热结构进行模拟计算并与西部进行对比分析,在此基础上对比热岩石圈与地震岩石圈厚度差异的变化.结果显示,华北克拉通东、西部岩石圈热结构有着较为明显的差异,地幔热流值波动范围分别在24~44/20.5~24.5mW·m~(-2),壳幔比1.61~0.70/1.84~1.51,以1300℃等温线计算得到的热岩石圈厚度变化范围在75~139km/128~162km.华北克拉通东部相对西部有着较高的深部地幔热流值和较小的地震/热岩石圈厚度差异,这可能意味着东部软流圈地幔有效黏度相比西部低,估算差异可达2~3个数量级.  相似文献   

15.
龙门山断裂带是青藏高原的东部边缘,也是高原最陡的边缘之一.跨龙门山断裂,在不到100km的空间尺度内,地形差异高达~4km,而对控制、维持这一地形差异的机制尚存在很大争议.文章基于地震波速度结构、地壳厚度、岩石圈有效弹性厚度等资料,结合岩石圈均衡和岩石圈挠曲分析,定量研究了地壳、岩石圈地幔对地形的贡献.结果表明,控制龙门山地区地形的主要机制包括岩石圈均衡和岩石圈挠曲的静态支撑,以及下地壳流及地幔对流的动力作用,不同机制在松潘-甘孜块体和四川盆地对地形贡献的权重不一.静态地形和动力地形对龙门山断裂两侧~4km的地形差异贡献相当,其中静态地形差异~2km,主要来自岩石圈均衡贡献;动力地形差异~2km,源自松潘-甘孜块体下下地壳流的物质堆积上隆作用和四川盆地下上地幔对流的向下应力拉拽的综合效应.因此,下地壳流与地幔对流是研究龙门山及其邻近地区动力学问题必需考虑的动力因素.  相似文献   

16.
西北次海盆是南海扩张早期形成的一个特殊的构造单元,其周边被西沙海槽、中沙海台、珠江海谷等裂谷和地块所围限,演化出一系列海山和断裂带等复杂地质构造,其深部构造伸展和岩浆活动均与岩石圈结构及其变形密切相关,但目前对其深部岩石圈结构的了解还较少.文章通过收集西北次海盆及其周边地区的声纳浮标、双船扩展剖面(ESP)、海底地震仪(OBS)、多波束和海陆联测等地震调查数据,详细获得其水深、基底、莫霍面的深度数据.根据热重力均衡方法精细计算得到南海西北次海盆及其周边地区的岩石圈基底埋深,结果表明其深度范围在25~110km之间,在海盆区最浅埋深为25~60km,陆缘增加至60~110km.其中,西沙海槽的南、北两侧的岩石圈结构明显对称,展现出具有夭折裂谷特点的岩石圈深部结构和热状态.中沙海槽和中沙海台的岩石圈基底埋深从60km向西南方向增加到70km,与地表形态一致.珠江海谷西侧岩石圈基底埋深在60~80km,该区岩石圈厚度的减薄与断层、凹陷的分布和岩浆活动有关.西北次海盆和东部次海盆岩石圈基底埋深均小于60km,最薄小于46km.结合大洋钻探、地震探测和浅部地形表明,南海西北次海盆的成熟洋盆范围位于岩石圈基底埋深在46km等深线以内的区域,海盆周围的裂谷和离散地块的演化过程,同时受到浅部构造运动和深部热物质活动的控制,其岩石圈结构表现出强烈不均一性.  相似文献   

17.
长白山天池火山岩浆系统分析   总被引:13,自引:1,他引:12       下载免费PDF全文
针对外媒报道长白山天池火山在近2年内有可能喷发的言论,在长白山天池火山区布测了一条长度约为103 km的二维大地电磁测深观测剖面,对火山区深部电性结构进行探测研究.由于研究区内不明来源的电磁干扰非常强,对数据采用了远参考处理、Robust处理、Rhoplus分析、张量阻抗分解和基于一维层状介质电阻率与相位互算方法等先进处理技术,获取到一批在强干扰区质量较为可靠的电磁数据,利用数据计算分析了长白山天池火山区二维构造走向和感应矢量特征,采用NLCG二维反演技术对资料进行了二维反演解释,并将反演结果与前人探测结果进行了对比分析.探测结果表明:在天池火山口下方存在明显的直立型岩浆通道,岩浆通道在下方约5~8 km位置形成关闭;在火山口下方往北方向附近,在埋深位置约7 km深处存在一个明显的低阻异常体,电阻率小于10 Ωm,且与岩浆通道对接,推测其可能是地表浅部发育的岩浆囊;在长白山山门附近C07-C09号测点之间和C04-C05号测点之间,在埋深约7~17 km深处发现近直立型低阻带,低阻带与下方低阻体直接相连,推测低阻带内赋存有活动的岩浆;随着埋深的增加,从天池火山口南部约20 km位置往北方向,在埋深13~30 km之间壳内广泛发育明显的低阻异常体,推测其可能是活动的岩浆囊.反演结果与前人探测结果整体电性特征相似,但又局部不同.  相似文献   

18.
盆地热历史可以为揭示深部动力学过程提供时间和空间上的连续信息. 本文利用镜质体反射率古温标模拟了鄂尔多斯盆地从东到西7口典型井的热历史, 并在此基础上计算了盆地中生代晚期、古近纪初期以及现今的"热"岩石圈厚度. 结果显示, 鄂尔多斯盆地在早白垩世末期经历了一次热流高峰, 热流值为73~78 mW/m2, 此后的热流值一直降低至今,现今的平均值61.8 mW/m2; 早白垩世末期盆地"热"岩石圈厚度也经历了一次减薄高峰, 平均"热"岩石圈厚度为65 km左右, 此后逐渐增厚至现今的125 km左右. 鄂尔多斯盆地现今"热"岩石圈厚度中等, 早古生代200 km的厚岩石圈已不存在; 早白垩世末期是其地质发展历史的一个重大变革期, 此时"热"岩石圈厚度发生减薄, 深部构造活动强烈导致浅部盆地抬升剥蚀剧烈, 周缘岩浆活动强烈, 多种能源矿产形成, 这与华北克拉通东部构造转折的时间以及华北克拉通破坏的高峰时限具有一致性.  相似文献   

19.
岩石圈黏度是大陆动力学研究中一个重要参数,但是岩石圈黏度,尤其是横向小尺度(<100 km)黏度结构的确定是一个挑战.本文根据电阻率和黏度与它们控制因素的相似关系,直接把一条跨过青藏高原东缘和四川龙门山断裂带的大地电磁(MT)探测的电阻率剖面转换成黏度结构作为输入,在GPS速度和地表地形数据的约束下,利用地球动力学数值模拟获得了该剖面的二维地壳/岩石圈黏度结构.本文推断的黏度与前人获得的区域尺度的黏度值一致,但揭示出了更多的细节.本文的黏度结构揭示出研究区域内的地壳/岩石圈黏度存在较大的空间变化范围(约5量级),黏度值分布在1.48×10^17~8.44×10^22 Pa·s之间;龙门山断裂带下的黏度存在强烈的小尺度横向变化,其中、下地壳的黏度分别为1.99×10^18~8.21×10^20 Pa·s(平均1.17×10^20 Pa·s)和4.09×10^19~7.08×10^20 Pa·s(平均1.77×10^20 Pa·s).基于该黏度结构的地球动力学模型表明驱动青藏高原中-下地壳物质流动的可能是热-化学浮力,以及上地壳和中-下地壳可能处于解耦状态.本文获得的黏度结构可以为龙门山断裂带地震成因和机制、岩石圈小尺度变形和构造应力状态的深入研究提供重要的帮助.  相似文献   

20.
济阳坳陷岩石圈热-流变学结构及其地球动力学意义   总被引:10,自引:0,他引:10  
利用该区油气勘探积累的大量地温资料和岩石热物性参数, 结合地热学方法, 给出了该区的深部地热状态. 在此基础上, 利用流变学模拟进一步给出了相应的岩石圈流变剖面. 结果表明, 沉积盖层底面温度在129~298℃之间, 基底热流为54.3~60.5 mW/m2; 上地壳底部温度为406~436℃, 相应热流为47.7~52.6 mW/m2; 中地壳底部温度为537~572℃, 热流为41.3~46.3 mW/m2; 莫霍面温度为669~721℃, 地幔热流为38.1~43.1 mW/m2, 热岩石圈厚度为71~90 km. 上述热状态参数与地壳厚度以及地表热流等因素密切相关, 地表热流越高, 则相应的深部温度和热流也越高, 热岩石圈厚度也越薄. 济阳坳陷较高的热状态与新生代期间太平洋板块向欧亚板块俯冲的弧后扩张动力学背景密切相关. 岩石圈纵向流变分层现象明显: 上、中地壳基本为脆性, 而中地壳底部及下地壳几乎均为韧性层, 壳下岩石圈为韧性. 此外, 也存在横向变化, 各凹陷岩石圈总强度不一. 济阳坳陷岩石圈总强度为1.52 × 1012 ~ 2.16 × 1012 N/m, 岩石圈有效弹性厚度Te约为24 km, 与力学强地壳(MSC)厚度基本一致. 太平洋板块俯冲过程中深部地壳矿物的脱水以及地幔楔热物质的上涌, 在地壳底部产生部分熔融, 并引发岩浆的底侵和向上侵入. 这一地球动力学过程可能是华北及东部地区下地壳的粘度降低、从而发生韧性流动的原因. 济阳坳陷岩石圈的上地壳脆性断裂变形和中下地壳的韧性流动这一分层变形特征决定了济阳坳陷新生代以来的成盆动力学机制.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号