首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The impacts of long-term pumping on groundwater chemistry remain unclear in the Manas River Basin, Northwest China. In this study, major ions within five surface water and 105 groundwater samples were analyzed to identify hydrogeochemical processes affecting groundwater composition and evolution along the regional-scale groundwater flow paths using the multivariate techniques of hierarchical cluster analysis (HCA) and principal components analysis (PCA) and traditional graphical methods for analyzing groundwater geochemistry. HCA classified the groundwater samples into four clusters (C1 to C4). PCA reduced the dimensionality of geochemical data into three PCs, which explained 86% of the total variance. The results of HCA and PCA were used to identify three zones: “recharge,” “transition,” and “discharge.” In the recharge zone the groundwater type is Ca-HCO3-SO4 and is primarily impacted by the dissolution of calcite and silicate weathering. In the transition zone the groundwater type is Ca-HCO3-SO4-Cl and is impacted by rock dissolution and reverse ion exchange. In the discharge zone the groundwater type is Na-Cl and is impacted by evaporation and reverse ion exchange. In addition, anthropogenic activities impact the groundwater chemistry in the study area. The groundwater type generally changes from Ca-HCO3-SO4 in the recharge area to Na-Cl in the discharge area along the regional-scale groundwater flow paths. This study provides a process-based knowledge for understanding the interaction of groundwater flow patterns and geochemical evolution within the Manas River Basin.  相似文献   

2.
Hydrochemical, inverse geochemical modelling and isotopic approaches are used to assess the hydrogeochemical evolution of groundwater from the basement aquifers in the southeastern part of the Plateaux Region, Togo. Groundwater originates from present-day rainwater infiltration and is mostly fresh and slightly acidic to neutral. Hydrochemical facies are predominantly mixed cations-HCO3 associated with Ca/Mg-Cl, Na-HCO3 and Na-Cl water types in equilibrium with kaolinite and Ca/Mg-smectites. They are related to silicates hydrolysis, anthropogenic contamination, nitrification/denitrification, mixing along flowpaths and dissolution/precipitation of secondary minerals. The pattern of flow paths is in accordance with an increasing trend in total dissolved solids (TDS) toward the potentiometric depression located in the central and southern parts of the aquifer system. Inverse geochemical modelling using the NETPATH-WIN model showed the relative importance of biotite, plagioclase and amphibole weathering and dissolution of secondary carbonate minerals along the flowpath, suggesting that an abundance of minerals is not necessarily the main factor controlling the groundwater chemistry evolution.  相似文献   

3.
In the Youngcheon Diversion Tunnel area, South Korea, 46 samples of tunnel seepage water (TSW) and borehole groundwater were collected from areas with sedimentary rocks (mainly sandstone and shale) and were examined for hydrogeochemical characteristics. The measured SO4 concentrations range widely from 7·7 to 942·0 mg/l, and exceed the Korean Drinking Water Standard (200 mg/l) in about half the samples. The TDS (total dissolved solid) content generally is high (171–1461 mg/l) from more shale‐rich formations and also reflects varying degrees of water–rock interaction. The water is classified into three groups: Ca? SO4 type (61% of the samples collected), Ca? SO4? HCO3 type (15%) and Ca? HCO3 type (24%). The Ca? HCO3 type water (mean concentrations=369 mg/l Ca, 148 mg/l HCO3 and 23 mg/l SO4) reflected the simple reaction between CO2‐recharged water and calcite, whereas the more SO4‐rich nature of Ca? SO4 type water (mean concentrations=153 mg/l Ca, 66 mg/l HCO3 and 416 mg/l SO4) reflected the oxidation of pyrite in sedimentary rocks and fracture zones. Pyrite oxidation resulted in precipitation of amorphous iron hydroxide locally within the tunnel as well as in high concentrations of Ca (mean 153 mg/l) and Na (mean 49 mg/l) for TSW, and is associated with calcite dissolution resulting in pH buffering. The pyrite oxidation required for the formation of Ca? SO4 type water was enhanced by the diffusion of oxygenated air through the fractures related to the tunnel's construction. The subsequent outgassing of CO2 into the tunnel resulted in precipitation of iron‐bearing carbonate. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
Pumped waters from 14 Pennsylvania wells, located in shallow sandstone, siltstone and shale aquifers, were continuously monitored for dissolved oxygen (D. O.), nitrate (NO3), pH, electrical conductivity (EC) and water temperature in a discharge manifold at the well head. The amount of pumping or purging required to stabilize these parameter readings varied by well site and parameter being analyzed. However, the purging required was generally greatest for D. O. and least for water temperature where: D. O. < NO3 pH < EC < water temperature. Wells located near the siltstone-shale interface generally required far more purging than did wells located elsewhere. Although parameter stability was often achieved within purging one bore volume, the complexity, diversity, and variability in the data and these well-ground water systems, suggest that no single purging rule is appropriate. Instead, the extent of purging required before sampling these shallow aquifers should be determined by incorporating on-site monitoring of target or related parameters into the purging process.
From a sampling perspective, the relationship between NO3 and D. O. concentrations during purging were analyzed relative to aquifer type. For most wells located in sandstone or siltstone, NO3 concentrations remained relatively constant during purging irrespective of changes in D. O. For most wells located in shale, these two were positively and similarly correlated, suggesting that a general relationship exists.  相似文献   

5.
The present work examines the possible use of major ion chemistry and multivariate statistical techniques as a rapid and relatively cost‐effective method of identifying the extent of groundwater and surface water (GW–SW) interaction in an urban setting. The original hydrogeochemical dataset consists of groundwater (n = 114), stream water (n = 42) and drain water (n = 24) samples, collected twice in a year for the pre‐ and post‐monsoon seasons, for three successive years along an 8 km reach of the Delhi segment of River Yamuna, India. The dynamic and similar seasonal changes of hydro‐geochemical facies and major ion trends of river, drain and groundwater samples indicate the existence of an empirical relationship between GW and SW. Results of both R‐ and Q‐mode factor and cluster analyses highlight multi‐scale control of the fluid exchange distributions, with distinct seasonal alteration in mode and extent of GW–SW interaction, namely, the influence of the mixing zones between urban river and groundwater and the pattern of groundwater flow through the river bed. Hierarchical cluster analysis (HCA) of sampling locations efficiently illustrates different groups that comprise samples severely influenced by contaminated surface water downstream and the upstream fresh water samples. These results substantiate the strong exchange processes between GW and SW all along the stretch. The study shows that the combination of an empirical and statistical relationship between different ionic species and sampling locations can provide greater confidence in identifying the extent of GW–SW interaction/exchange processes. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
Permian coal measure sandstone fissure water (referred to as “coal measure water,” that is, water in coal measures) is one of the important water sources for industrial and agricultural activities in mining areas. However, the regional high-pressure grouting, one of the most widely used floor control methods, may affect the coal measure water which is connected with limestone aquifer. This study used Taoyuan mine, a typical coal mine in Huaibei coalfield, as the research area to study the influencing mechanism of a grouting treatment on the hydrogeochemical evolution of coal measure water. The hydrogeochemical characteristics and water-rock interaction mechanism of the coal measure water before and during the treatment were evaluated using a Piper trigram, ion combination ratio, and hydrogen-oxygen stable isotope. The anions and cations in the coal measure water before and during the treatment had the same trends at SO42− > HCO3 > Cl and Na+ > Ca2+ > Mg2+, respectively. Hydrochemical types of coal measure water before treatment were mainly SO4·Cl-Ca·Mg, SO4·Cl-Na, and HCO3-Na, and during treatment they were mainly SO4·Cl-Na and HCO3-Na. The formation of chemical components of coal measure water before treatment was mainly caused by carbonate dissolution, sulfate dissolution, and pyrite oxidation. During the treatment, sulfate dissolution and pyrite oxidation were the main geochemical processes, and ion exchange was enhanced. Atmospheric precipitation was the source of all water samples, and all showed an obvious 18O drift.  相似文献   

7.
Xiaohu Wen  Meina Diao  De Wang  Meng Gao 《水文研究》2012,26(15):2322-2332
Groundwater salinization has become a crucial environmental problem worldwide and is considered the most widespread form of groundwater contamination in the coastal zone. In this study, a hydrochemical investigation was conducted in the eastern coastal shallow aquifer of Laizhou Bay to identify the hydrochemical characteristics and the salinity of groundwater using ionic ratios, deficit or excess of each ions, saturation indices and factor analysis. The results indicate that groundwater in the study area showed wide ranges and high standard deviations for most of hydrochemical parameters and can be classified into two hydrochemical facies, Ca2+‐Mg2+‐Cl facies and Na+‐Cl facies. The ionic ratio, deficit or excess of each ions and SI were applied to evaluate hydrochemical processes. The results obtained indicate that the salinization processes in the coastal zones were inverse cation exchange, dissolution of calcite and dolomite, and intensive agricultural practices. Factor analysis shows that three factors were determined (Factor 1: TDS, EC, Cl, Mg2+, Na+, K+, Ca2+ and SO42‐; Factor 2: HCO3 and pH; Factor 3: NO3 and pH), representing the signature of seawater intrusion in the coastal zone, weathering of water–soil/rock interaction, and nitrate contamination, respectively. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
More above-ground biomass (kg m−2) grows in the northern Appalachian Mountains (USA) in forests on shale than on sandstone at all landscape positions other than ridgetops. This has been tentatively attributed to physical (rather than chemical) attributes of the substrates, such as elevation, particle size, and water capacity. However, shales have generally similar phosphorus (P) concentrations to sandstones and, in the Valley and Ridge province, they erode more quickly. This led us to hypothesize that faster replenishment of the lithogenic nutrient P in shale soils through erosion + soil production could instead control the differences in biomass. To test this, soils and foliage from 10 sites on shales and sandstones in the northern Appalachians from roughly the same elevation and aspect were analysed. We discovered that, when controlling for location, concentrations of bioavailable P in soils and P in foliage were higher and P resorbed from senescing red oak leaves was lower on slower-eroding sandstone than on faster-eroding shale. Lower resorption generally can be attributed to lower P limitation for trees. Further investigation of weathering and erosion on one of the sandstone–shale pairs within a larger, paired watershed study revealed that the differences in P concentrations in biomass and foliage between lithologies likely developed because sandstones act as ‘collectors’ that trap nutrients from residual and exogenous sources, while shales erode quickly and thus promote production of soil from bedrock that releases P to ecosystems. We concluded that the combined effects of differential rates of dust collection and erosion results in roughly equal biomass growing on sandstone and shale ridgetops. This work emphasizes the balance between a landscape's capacity to collect dust versus produce soil in controlling bioavailability of nutrients.  相似文献   

9.
Variations in lake seepage were studied along a 130 m shoreline of Mirror Lake NH. Seepage was downward from the lake to groundwater; rates measured from 28 seepage meters varied from 0 to ?282 cm/d. Causes of this variation were investigated using electrical resistivity surveys and lakebed sediment characterization. Two‐dimensional (2D) resistivity surveys showed a transition in lakebed sediments from outwash to till that correlated with high‐ and low‐seepage zones, respectively. However, the 2D survey was not able to predict smaller scale variations within these facies. In the outwash, fast seepage was associated with permeability variations in a thin (2 cm) layer of sediments at the top of the lakebed. In the till, where seepage was slower than that in the outwash, a three‐dimensional resistivity survey mapped a point of high seepage associated with heterogeneity (lower resistivity and likely higher permeability). Points of focused flow across the sediment–water interface are difficult to detect and can transmit a large percentage of total exchange. Using a series of electrical resistivity geophysical methods in combination with hydrologic data to locate heterogeneities that affect seepage rates can help guide seepage meter placement. Improving our understanding of the causes and types of heterogeneity in lake seepage will provide better data for lake budgets and prediction of mass transfer of solutes or contaminants between lakes and groundwater.  相似文献   

10.
利用毛管模型研究泥质砂岩电化学测井响应机理   总被引:5,自引:0,他引:5       下载免费PDF全文
自然电位和激发极化电位测井响应所涉及的离子导体激发极化电位的微观机理解释,主要依据双电层形变假说和浓差极化假说,缺少定量描述的数学模型和理论体系.本文利用孔隙介质的微观毛管模型,给出了毛管模型中双电层理论和阳离子交换量与Zeta电位的关系,推导出毛管中离子流量和电流强度表达式.由电荷守恒定律和物质守恒定律,推导出毛管中离子浓度分布的解析表达式,建立了描述含水泥质砂岩激发极化电位和自然电位的数学模型.从而系统地严格证明了含水泥质砂岩激发极化现象是在电流场和浓度梯度场的共同作用下,由孔隙中离子浓度浓差极化电位和双电层形变电位形成的.并且证明了描述泥质砂岩自然电位的数学方程和描述激发极化电位的数学方程及形成机理是一致的.计算结果表明:激发极化极化率随孔隙度和渗透率的增大而减小;极化率随溶液浓度的增加而减小,随阳离子交换量的增加而增加;证明了地层水浓度、阳离子交换量是影响自然电位大小的主要因素.  相似文献   

11.
To investigate the hydrogeochemical characteristics of groundwater 23 shallow, 30 intermediate and 38 deep wells samples were collected from Sylhet district of Bangladesh, and analyzed for temperature, pH, Eh, EC,DO, DOC, Na^+, K^+, Ca2+, Mg2+, Cl^-, SO_42-, NO_3^-,HCO_3^-, SiO_2^-, Fe, Mn and As. Besides, 12 surface water samples from Surma and Kushiyara Rivers were also collected and analyzed to understand the influence into aquifers. Results revealed that, most of the groundwater samples are acidic in nature, and Na–HCO_3 is the dominant groundwater type. The mean value of temperature, EC,Na^+, K^+, Ca2+, Mg2+, Cl^-, NO_3^- and SO_42- were found within the range of permissible limits, while most of the samples exceeds the allowable limits of Fe, Mn and As concentrations. However, relatively higher concentration of Fe and Mn were found in deep water samples and reverse trend was found in case of As. The mean concentrations of As in shallow, intermediate and deep wells were 39.3, 25.3and 21.4 lg/L respectively, which varied from 0.03 to148 lg/L. From spatial distribution, it was found that Fe,Mn and As concentrations are high but patchy in northern,north-western, and south-western part of Sylhet region. The most influential geochemical process in study area were identified as silicate weathering, characterized by active cation exchange process and carbonate weathering, which thereby can enhance the elemental concentrations in groundwater. Pearson's correlation matrix, principal component analysis and cluster analysis were also employed to evaluate the controlling factors, and it was found that, both natural and anthropogenic sources were influencing the groundwater chemistry of the aquifers. However, surface water has no significant role to contaminate the aquifers,rather geogenic factors affecting the trace elemental contamination. Thus it is expected that, outcomes of this study will provide useful insights for future groundwater monitoring and management of the study area.  相似文献   

12.
Rainwater, groundwater and soil-water samples were analysed to assess groundwater geochemistry and the origin of salinity in the Ochi-Narkwa basin of the Central Region of Ghana. The samples were measured for major ions and stable isotopes (δ18O, δ2H and δ13C). The Cl? content in rainwater decreased with distance from the coast. The major hydrochemical facies were Na-Cl for the shallow groundwaters and Ca-Mg-HCO3, Na-Cl and Ca-Mg-Cl-SO4 for the deep groundwaters. Groundwater salinization is caused largely by halite dissolution and to a minor extent by silicate weathering and seawater intrusion. Stable isotope composition of the groundwaters followed a slope of 3.44, suggesting a mixing line. Chloride profiles in the soil zone revealed the existence of salt crusts, which support halite dissolution in the study area. A conceptual flow model developed to explain the mechanism of salinization showed principal groundwater flow in the NW–SE direction.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR K. Heal  相似文献   

13.
利用水文地球化学数据建立温泉水文循环模型, 探讨温泉水文地球化学变化与地震的关系, 对中强地震短临流体异常判断具有重要的意义。 通过对石棉公益海温泉水常量元素、 微量元素和氢氧同位素以及锶同位素的测量, 探讨了该区域水文地球化学时空变化特征。 因此, 于2008年10月至2019年9月, 共对公益海温泉采集水样206个, 并对温泉水中离子组分和浓度, 温泉逸出气组分、 温泉气体同位素、 碳同位素和氢氧同位素含量进行测量。 分析结果表明: ① 公益海温泉主要为Na-HCO3·Cl型水, δD、 δ18O同位素测值分别为-14.19‰~-14.83‰和-108.67‰~-110.47‰, 分布于大气降水线附近, 说明温泉水主要源于大气降水; ② 据SiO2地温计计算热储温度约94.12℃, 循环深度约4.3 km, 表明大气降水入渗地下, 在热源加热后, 沿着断层和裂隙循环到地表, 形成温泉补给; 并且, 锶同位素和微量元素研究发现, 87Sr和86Sr主要来自硅酸盐类矿物, 微量元素含量较低, 水岩反应程度较弱; ③ 通过对研究区进行长时间连续观测发现, 在公益海周围300 km范围内的3个五级以上的地震使温泉水中常量元素的浓度, 分别出现了震前异常、 同震响应和震后效应。 推测这可能是因为公益海温泉位于公益海断裂和安宁河断裂的交会区, 推测周围的地震会触发公益海温泉水中的离子地球化学特征产生变化。 结合已有地质资料与公益海温泉水文地球化学数据, 建立公益海断裂带温泉水文循环模型, 这些对公益海断裂带周围未来中强地震短临流体异常判断具有重要的意义。  相似文献   

14.
ABSTRACT

Hydrogeochemical investigations were carried out with an objective to identify the processes affecting the chemistry of groundwater in the Coimbatore district of Tamil Nadu, India. Thirty-three groundwater samples were collected from representative wells for chemical analysis. Groundwater types identified from piper plots were Ca-Mg-Cl and Na-Cl. The dominance of ions was in the order of Na>Ca>Mg>K and Cl>HCO3>SO4>CO3. Spatial variation diagrams of ions were generated using the geostatistical analyst tool ArcGIS 9.3. According to these diagrams, most of the ions were higher in the northeast and southeast regions. This is attributed to the flow direction of the groundwater and high residence times. Gibbs diagrams identified rock–water interaction as an important geochemical process in the district. Evaporation, ion exchange, silicate weathering and dissolution of carbonate minerals were identified as other important hydrogeochemical processes which influence the groundwater chemistry of the study area.
EDITOR D. Koutsoyiannis ASSOCIATE EDITOR M. Besbes  相似文献   

15.
Rock fragments in the regolith are a persistent property that reflects the combined influences of geologic controls, erosion, deposition, bioturbation, and weathering. The distribution of rock fragments in regoliths of the Ouachita Mountains, Arkansas, shows that sandstone fragments are common in all layers, even if sandstone is absent in parent material. Shale and sandstone fragments are produced at the bedrock weathering front, but the shale weathers rapidly and intact fragments are rare in the solum. Sandstone is weathered from ridgetop outcrops and transported downslope. Some of these fragments are moved downward, by faunalturbation and by transport into pits associated with rotting tree stumps. Upward movement by treethrow is common, resulting in a net concentration of rocks near the surface. However, the highest fragment concentrations are in the lower regolith, indicating active production at the weathering front. The regolith is a dynamic feature, reflecting the influences of vertical and horizontal processes, of active weathering at the bedrock interface, and of surficial sediment movements. The role of trees in redistributing rock fragments suggests that significant regolith mixing occurs over time scales associated with forest vegetation communities, and that forest soils have likely been extensively mixed within Holocene and historic time. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
Intense agricultural and industrial activities in any area are likely to make groundwater vulnerable with respect to its quality. In one such area which is a part of Sabarmati river basin of Gujarat, factors influencing the groundwater hydrochemistry in pre‐ and post‐monsoon season were evaluated. Groundwater samples were collected from 5 km × 5 km grids on the basis of spectral signature of vegetation and soil, observed on satellite image. Integration of Conventional graphical plots, Piper plot, saturation index values (estimated using PHREEQC) and GIS was helpful not only to create the database for analysis of spatial variation in respective water quality parameters but also to decipher the hydrogeochemical process occurring in such a large area. USSL diagram and % sodium were used to characterise the suitability of groundwater for irrigation. It was observed that leaching of wastes disposed from anthropogenic activities and agrichemicals is the major factor influencing the groundwater quality, in addition to the natural processes such as weathering, dissolution and ion exchange. Sea water relics are also impacting the groundwater quality. Control of indiscriminate and unplanned exploitation of groundwater, application of fertilizers and disposal of industrial wastes in the affected areas can possibly ensure groundwater protection from further pollution and depletion. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Abstract

This study was carried out from 2003 to 2007 to understand the hydrogeochemical processes and the solute sources of the meltwaters of the Chhota Shigri Glacier, Himalaya. The meltwater is almost neutral to slightly alkaline in nature: bicarbonate and sulphate are the dominant anions, while calcium and magnesium are the dominant cations. Bicarbonate is found to be derived from carbonate weathering and partly from silicate weathering. Rock weathering followed by precipitation are the main controlling factors that influence the meltwater chemistry of this region. The relatively high values of pCO2 reflect a higher rate of solubility in comparison to release of excess CO2 gas to the atmosphere. The presence of active hydrogeochemical processes and sediment–water interaction results in excess solute transport through the meltwater to the Chandra River that feeds the Chenab, one of the great Himalayan river systems, and ultimately flows into the ocean. This study is the first of its kind to understand in detail the hydrogeochemical process and resultant solute load transport in this Himalayan glacier.

Citation Sharma, P., Ramanathan, A.L., and Pottakkal, J., 2013. Study of solute sources and evolution of hydrogeochemical processes of the Chhota Shigri Glacier meltwaters, Himachal Himalaya, India. Hydrological Sciences Journal, 58 (5), 1128–1143.

Editor Z.W. Kundzewicz  相似文献   

18.
Those factors controlling the weathering and erosion of sandstone on the field scale are still not well understood. In this study, a specific sandstone overhang (and its surroundings) with artificially induced and extremely high erosion rates was subjected to a complex investigation. Contrast between the erosion rate of the wet and dry portions of the same cliff enabled isolation of the factors responsible for rapid sandstone retreat. Erosion rates, moisture, and salt content, as well as suction were monitored in the field. Mineral phases and water chemistry were analyzed. The measurement of tensile strength, laboratory frost weathering tests, and numerical modeling of stress were performed. The acquired data show that an increase of moisture content in pores in the area of the studied overhang decreased tensile strength of the sandstone to 14% of its dry value, and increases the sandstone weathering and erosion rate, by nearly four orders of magnitude, compared to the same sandstone under natural moisture conditions outside of the cliff area. Consequently, frost weathering, in combination with wetting weakening was found to play a major role in weathering/erosion of the sandstone cliff and overhang. Frost weathering rate in both the laboratory and field increases up to 15 times with decreasing gravity‐induced stress. The results also indicate that sandstone landforms in temperate climates may potentially develop very rapidly if the pore space is nearly saturated with water, and will later remain relatively stable when the moisture content decreases. As a general implication, it is suggested that overhangs in Central Europe (and elsewhere) might be the result of rapid frost weathering of nearly saturated sandstone during the Last Glacial. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Ground water discharge is often a significant factor in the quality of fish spawning and rearing habitat and for highly biologically productive streams. In the present study, water temperatures (stream and hyporheic) and seepage fluxes were used to characterize shallow ground water discharge and recharge within thestreambed of Catamaran Brook, a small Atlantic salmon (Salmo salar) stream in central New Brunswick, Canada. Three study sites were instrumented using a total of 10 temperature sensors and 18 seepage meters. Highly variable mean seepage fluxes, ranging from 1.7 x 10(-4) to 2.5 cm3 m(-2) sec(-1), and mean hyporheic water temperatures, ranging from 10.5 degrees to 18.0 degrees C, at depths of 20 to 30 cm in the streambed were dependent on streambed location (left versus right stream bank and site location) and time during the summer sampling season. Temperature data were usefulfor determining if an area of the streambed was under discharge (positive flux), recharge (negative flux), or parallel flow (no flux) conditions and seepage meters were used to directly measure the quantity of water flux. Hyporheic water temperature measurements and specific conductance measurements of the seepage meter sample water, mean values ranging from 68.8 to 157.9 microS/cm, provided additional data for determining flux sources. Three stream banks were consistently under discharge conditions, while the other three stream banks showed reversal from discharge to recharge conditions over the sampling season. Results indicate that the majority of the water collected in the seepage meters was composed of surface water. The data obtained suggests that even though a positive seepage flux is often interpreted as ground water discharge, this discharging water may be of stream water origin that has recently entered the hyporheic zone.The measurement of seepage flux in conjunction with hyporheic water temperature or other indicators of water origin should be considered when attempting to quantify the magnitude of exchange and the source of hyporheic water.  相似文献   

20.
Abstract

A time series survey was carried out in 2002 to understand the hydrogeochemical processes taking place in the Achankovil River of the Western Ghats Range. The water is neutral with pH and EC ranges from 6.32 to 7.56 and 24–54 µS cm?1, respectively. Chloride and sodium are the dominant anion and cation in the water respectively. Correlation analysis of the chemical parameters of the water shows that few ions have additional sources. The majority of carbonate is derived from carbonate weathering followed by silicate weathering. Cation concentrations show decreasing trend from upstream to downstream in contrast to the increasing trend in the major world rivers. Dissolved silica in pre-monsoon water is low. The river chemistry is dominated by rock weathering induced by precipitation. Thermodynamic plots show that dolomite, kaolinite, albite and chlorite are in equilibrium with the river water. Chemical weathering is predominant here compared to physical weathering. The overall material transport seems to be lower compared to the other Indian rivers; nevertheless, the solute loads are comparable to certain large rivers such as the River Cauvery in southern India. The solute flux including the nutrient flux is very high among the Western Ghats rivers in relation to its size, which will certainly supplement the productivity of the lake/estuary and the coastal waters. Since this study is restricted to a one-year period, long-term data procurement and analysis along with micro nutrients studies are needed, which are lacking in the present study, to gain insight into the material flux by this river into the Arabian Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号