共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
3.
Since the 1970s, multiple reconstruction techniques have been proposed and are currently used, to extrapolate and quantify eruptive parameters from sampled tephra fall deposit datasets. Atmospheric transport and deposition processes strongly control the spatial distribution of tephra deposit; therefore, a large uncertainty affects mass derived estimations especially for fall layer that are not well exposed. This paper has two main aims: the first is to analyse the sensitivity to the deposit sampling strategy of reconstruction techniques. The second is to assess whether there are differences between the modelled values for emitted mass and grainsize, versus values estimated from the deposits. We find significant differences and propose a new correction strategy. A numerical approach is demonstrated by simulating with a dispersal code a mild explosive event occurring at Mt. Etna on 24 November 2006. Eruptive parameters are reconstructed by an inversion information collected after the eruption. A full synthetic deposit is created by integrating the deposited mass computed by the model over the computational domain (i.e., an area of 7.5 × 104 km 2). A statistical analysis based on 2000 sampling tests of 50 sampling points shows a large variability, up to 50 % for all the reconstruction techniques. Moreover, for some test examples Power Law errors are larger than estimated uncertainty. A similar analysis, on simulated grain-size classes, shows how spatial sampling limitations strongly reduce the utility of available information on the total grain size distribution. For example, information on particles coarser than ?(?4) is completely lost when sampling at 1.5 km from the vent for all columns with heights less than 2000 m above the vent. To correct for this effect an optimal sampling strategy and a new reconstruction method are presented. A sensitivity study shows that our method can be extended to a wide range of eruptive scenarios including those in which aggregation processes are important. The new correction method allows an estimate of the deficiency for each simulated class in calculated mass deposited, providing reliable estimation of uncertainties in the reconstructed total (whole deposit) grainsize distribution. 相似文献
4.
Celine Longchamp C. Bonadonna O. Bachmann A. Skopelitis 《Bulletin of Volcanology》2011,73(9):1337-1352
Explosive eruptions associated with tephra deposits that are only exposed in proximal areas are difficult to characterize.
In fact, the determination of physical parameters such as column height, mass eruption rate, erupted volume, and eruption
duration is mainly based on empirical models and is therefore very sensitive to the quality of the field data collected. We
have applied and compared different modeling approaches for the characterization of the two main tephra deposits, the Lower
Pumice (LP) and Upper Pumice (UP) of Nisyros volcano, Greece, which are exposed only within 5 km of the probable vent. Isopach
and isopleth maps were compiled for two possible vent locations (on the north and on the south rim of the caldera), and different
models were applied to calculate the column height, the erupted volume, and the mass eruption rate. We found a column height
of about 15 km above sea level and a mass eruption rate of about 2 × 107 kg/s for both eruptions regardless of the vent location considered. In contrast, the associated wind velocity for both UP
and LP varied between 0 and 20 m/s for the north and south vent, respectively. The derived erupted volume for the south vent
(considered as the best vent location) ranges between 2 and 27 × 108 m3 for the LP and between 1 and 5 × 108 m3 for the UP based on the application of four different methods (integration of exponential fit based on one isopach line,
integration of exponential and power-law fit based on two isopach lines, and an inversion technique combined with an advection–diffusion
model). The eruption that produced the UP could be classified as subplinian. Discrepancies associated with different vent
locations are smaller than the discrepancies associated with the use of different models for the determination of erupted
mass, plume height, and mass eruption rate. Proximal outcrops are predominantly coarse grained with ≥90 wt% of the clasts
ranging between −6ϕ and 0ϕ. The associated total grainsize distribution is considered to result from a combination of turbulent
fallout from both the plume margins and the umbrella region, and as a result, it is fines-depleted. Given that primary deposit
thickness observed on Nisyros for both LP and UP is between 1 and 8 m, if an event of similar scale were to happen again,
it would have a significant impact on the entire island with major damage to infrastructure, agriculture, and tourism. Neighboring
islands and the continent could also be significantly affected. 相似文献
5.
F. Barberi M. Coltelli A. Frullani M. Rosi E. Almeida 《Journal of Volcanology and Geothermal Research》1995,69(3-4)
Cotopaxi, the highest active volcano on earth and one of the most dangerous of Ecuador is constituted by a composite cone made up of lava and tephra erupted from the summit crater. The activity of the present volcano begun with large-volume plinian eruptions followed by a succession of small-volume lava emissions and pyroclastic episodes which led to the edification of a symmetrical cone. The growth of the cone was broken by an episode of slope failure, the scar of which is now obliterated by recent and historical products. Volcanic history, eruptive frequency and characteristics of the activity were investigated by studying the stratigraphy of tephra and carrying out fifteen new 14C dating on paleosols and charcoals. The investigated period is comprised between the slope failure and the present. The deposit of the volcanic landside (dry debris avalanche of Rio Pita), previously believed to be between 13,000 and 25,000 yr B.P., is now considered to have an age slightly older than 5000 yr B.P. The stratigraphy of tephra of the last 2000 years reveals the existence of 22 fallout layers. Seven of them were dated with 14C whereas three were ascribed to the eruptions of 1534, 1768 and 1877 on the basis of comparison with historical information.Maximum clast size distribution (isopleths) of 9 tephra layers points out that the sustained explosive eruptions of Cotopaxi during the last 2000 years are characterized by very high dispersive power (plinian plumes with column heights between 28 and 39 km) and high intensity (peak mass discharges from 1.1 to 4.1 × 108kg/s). The magnitude (mass) of tephra fallout deposits calculated from distribution of thickness (isopaches) are, however, moderate (from 0.8 to 7.2 × 1011 kg). The limited volume of magma erupted during each explosive episode is consistent with the lack of caldera collapses. Small-volume pyroclastic flows and surges virtually accompanied all identified tephra fallouts. During such an activity large scale snow/ice melting of the summit glacier produced devastating mudflows comparable in scale to those of 1877 eruption. By assuming a 1:1 correspondence between fallout episodes and generation of large-scale lahar, we have estimated an average recurrence of one explosive, lahartriggering event every 117 years over the last two millennia. This value compares well with that calculated by considering the period since Spanish Conquest. The probability of having an eruption like this in 100 or 200 years is respectively of 0.57 and 0.82. Such an high probability underscores the need for quick actions aimed at the mitigation of Cotopaxi lahar hazard along all the main valleys which originate from the volcano. 相似文献
6.
Batur volcanic field (BVF) in Bali, Indonesia, underwent two successive caldera-forming eruptions, CI and CII (29,300 and 20,150 years b.p., respectively) that resulted in the deposition of dacitic ignimbrites. The respective ignimbrites show contrasted stratigraphies, exemplify the variability of dynamics associated with caldera-forming eruptions and provide insights into the possible controls exerted by caldera collapse mechanisms. The Ubud Ignimbrite is widespread and covers most of southern Bali. The deposits consist dominantly of pyroclastic flow with minor pumice fall deposits. The intra-caldera succession comprises three distinct, partially to densely welded cooling units separated by non-welded pyroclastic flow and fall deposits. The three cooling units consist of pyroclastic flow deposits only and together represent up to 16 distinct flow units, each including a thin, basal, lithic-rich breccia. This eruption was related to a 13.5×10 km caldera (CI) with a minimum collapsed volume of 62 km3. The floor of caldera CI is inferred to have a piecemeal geometry. The Ubud Ignimbrite is interpreted as the product of a relatively long-lasting, pulsating, collapsing fountain that underwent at least two time breaks. A stable column developed during the second time break. Discharge rate was high overall, but oscillatory, and increased toward the end of the eruption. These dynamics are thought to reflect sequential collapse of the CI structure. The Gunungkawi Ignimbrite is of more limited extent outside the source caldera and occurs only in central southern Bali. The Gunungkawi Ignimbrite proximal deposits consist of interbedded accretionary lapilli-bearing ash surge, ash fall, pumice lapilli fall and thin pyroclastic flow deposits, overlain by a thick and massive pyroclastic flow deposit with a thick basal lag breccia. The caldera (CII) is 7.5×6 km in size, with a minimum collapsed volume of 9 km3. The CII eruption included two distinct phases. During the first, eruption intensity was low to moderate and an unstable, essentially phreatomagmatic column developed. During the second phase, the onset of caldera collapse drastically increased the eruption intensity, resulting in column collapse. The caldera floor is believed to have subsided rapidly, producing a single, short-lived burst of high eruption intensity that resulted in the deposition of the uppermost massive pyroclastic flow.Editorial responsibility: T. Druitt 相似文献
7.
Review of eruptive activity at Tianchi volcano, Changbaishan, northeast China: implications for possible future eruptions 总被引:8,自引:0,他引:8
One of the largest explosive eruptions in the past several thousand years occurred at Tianchi volcano, also known as Changbaishan, on the China–North Korea border. This historically active polygenetic central volcano consists of three parts: a lower basaltic shield, an upper trachytic composite cone, and young comendite ash flows. The Millennium Eruption occurred between 938 and 946?ad, and was preceded by two smaller and chemically different rhyolitic pumice deposits. There has been at least one additional, small eruption in the last three centuries. From 2002 to 2005, seismicity, deformation, and the helium and hydrogen gas contents of spring waters all increased markedly, causing regional concern. We attribute this event to magma recharge or volatile exhalation or both at depth, followed by two episodes of addition of magmatic fluids into the overlying aquifer without a phreatic eruption. The estimated present magma accumulation rate is too low by itself to account for the 2002–2005 unrest. The most serious volcanic hazards are ash eruption and flows, and lahars. The available geological information and volcano monitoring data provide a baseline for comprehensive assessment of future episodes of unrest and possible eruptive activity. 相似文献
8.
L. M. Courtland S. E. Kruse C. B. Connor L. J. Connor I. P. Savov K. T. Martin 《Bulletin of Volcanology》2012,74(6):1409-1424
Most tephra fallout models rely on the advection–diffusion equation to forecast sedimentation and hence volcanic hazards. Here, we test the application of the advection–diffusion equation to tephra sedimentation using data collected on the proximal (350 to ~1,200?m from the vent) to medial (greater than ~1,200?m from the vent) tephra blanket of a basaltic cinder cone, Cerro Negro volcano, located in Nicaragua. Our understanding of tephra depositional processes at this volcano is significantly improved by combination of sample pit data in the medial zone and high-resolution ground-penetrating radar (GPR) data collected in the near vent and proximal zones. If the advection–diffusion equation applies, then the thickness of individual tephra deposits should have Gaussian crosswind profiles and exponential decay with distance away from the vent. At Cerro Negro, steady trade winds coupled with brief eruptions of relatively low energy (VEI 2–3) create relatively simple deposits. GPR data were collected along three crosswind profiles at distances of 700–1,600?m from the vent; sample pits were used to estimate thickness of the 1992 tephra deposit up to 13?km from the vent. Horizons identified in proximal GPR profiles exhibit Gaussian distributions with a high degree of statistical confidence, with diffusion coefficients of ~500?m2?s?1 estimated for the deposits, confirming that the advection–diffusion equation is capable of modeling sedimentation in the proximal zone. The thinning trend downwind of the vent decreases exponentially from the cone base (350?m) to ~1,200?m from the vent. Beyond this distance, deposit overthickening occurs, identified in both GPR and sample pit datasets. The combined data reveal three depositional regimes: (1) a near-vent region on the cone itself, where fallout remobilizes in granular flows upon deposition; (2) a proximal zone in which particles fall from a height of less than ~2?km; and (3) a medial zone, in which particles fall from ~4 to 7?km and the deposit is thicker than expected based on thinning trends observed in the proximal zone of the deposit. This overthickening of the tephra blanket, defining the transition from proximal to medial depositional facies, is indicative of transition from sedimentation dominated by fallout from plume margins to that dominated by fallout from the buoyant eruption cloud—a feature of deposits previously identified in larger-volume eruptions. We interpret this change to represent a change in diffusion law, occurring at total particle fall times (the fall time threshold of numerical models) of ~400?s. Thus, the detailed GPR profiles and pit data collected at Cerro Negro help to validate current numerical models of tephra sedimentation. 相似文献
9.
Natalia Pardo Shane Cronin Alan Palmer Jonathan Procter Ian Smith 《Bulletin of Volcanology》2012,74(5):1161-1185
New tephro-stratigraphic studies of the Tongariro Volcanic Centre (TgVC) on the North Island (New Zealand) allowed reconstruction of some of the largest, andesitic, explosive eruptions of Mt. Ruapehu. Large eruptions were common in the Late Pleistocene, before a transition to strombolian-vulcanian and phreatomagmatic eruptive styles that have predominated over the past 10,000?years. Considering this is the most active volcano in North Island of New Zealand and the uppermost hazard limits are unknown, we identified and mapped the pyroclastic deposits corresponding to the five largest eruptions since ~27?ka. The selected eruptive units are also characterised by distinctive lithofacies associations correlated to different behaviours of the eruptive column. In addition, we clarify the source of the ~10–9.7?ka Pahoka Tephra, identified by previous authors as the product of one of the largest eruptions of the TgVC. The most common explosive eruptions taking place between ~13.6 and ~10?ka?cal?years BP involved strongly oscillating, partially collapsing eruptive columns up to 37?km high, at mass discharge rates up to 6?×?108?kg/s and magnitudes of 4.9, ejecting minimum estimated volumes of 0.6?km3. Our results indicate that this volcano (as well as the neighbouring andesitic Mt. Tongariro) can generate Plinian eruptions similar in magnitude to the Chaitén 2008 and Askja 1875 events. Such eruptions would mainly produce pyroclastic fallout covering a minimum area of 1,700?km2 ESE of the volcano, where important touristic, agricultural and military activities are based. As for the 1995/1996 eruption, our field data indicate that complex wind patterns were critical in controlling the dispersion of the eruptive clouds, developing sheared, commonly bilobate plumes. 相似文献
10.
D. Andronico R.A. CorsaroA. Cristaldi M. Polacci 《Journal of Volcanology and Geothermal Research》2008
Stromboli is well known for its persistent, normal explosive activity, consisting of intermittent, mild to moderate, Strombolian explosions that typically occur every 10–20 min. All tephras erupted during this activity usually fall back into the crater terrace, and consist of volatile-poor scoriae fed by Highly Porphyritic (HP) magma. More occasionally, large explosions or “paroxysms” eject a greater quantity of tephra, mainly consisting of HP scoriae and pumice clasts of Low Porphyritic (LP) magma, but also including large lithic blocks. In addition to this activity, between 2004 and 2006 high energy explosions, displaying an intermediate eruptive style between that of normal and paroxysmal explosions in terms of column height, duration and tephra dispersal, were observed to occur at a frequency of one to eight events per year. While many volcanological, geochemical and geophysical studies have focused in the last few years on the two end-members of activity, i.e. normal or paroxysmal, a detailed investigation on these intermediate types of events has not been carried out yet. Here we report of a study on the 9 January 2005 explosion, one of the high energy explosions during which the main fountaining phase lasted nearly a minute causing ejection of coarse bombs up to a height of 120 m, and of ash and lapilli to > 200 m. An accompanying ash plume rose up to 500 m at the end of the explosion. We present a multidisciplinary approach that integrates the results from analysis of live-camera images with compositional and textural characterization of the erupted products. Major element composition of glassy groundmass and 3D views of textures in the erupted scoriae support the hypothesis based on volcanological observations that this explosion falls between normal and paroxysmal activity, for which we use the term “intermediate”. By comparing the video-camera images of the 9 January 2005 explosion with volcanological features of other high energy explosions that occurred at Stromboli between June 2004 and October 2006, we find that three additional events can be considered intermediate explosions, suggesting that this type of activity may be fairly common on this volcano. The results of this study, although preliminary given our limited dataset, clearly indicate that the methodology used here can be successfully applied to better define the range of eruptive styles typifying the normal explosive activity, potentially improving our capability of eruption forecasting and assessing volcanic hazard at Stromboli. 相似文献
11.
An extremely large magnitude eruption of the Ebisutoge-Fukuda tephra, close to the Plio-Pleistocene boundary, central Japan, spread volcanic materials widely more than 290,000 km2 reaching more than 300 km from the probable source. Characteristics of the distal air-fall ash (>150 km away from the vent) and proximal pyroclastic deposits are clarified to constrain the eruptive style, history, and magnitude of the Ebisutoge-Fukuda eruption.Eruptive history had five phases. Phase 1 is phreatoplinian eruption producing >105 km3 of volcanic materials. Phases 2 and 3 are plinian eruption and transition to pyroclastic flow. Plinian activity also occurred in phase 4, which ejected conspicuous obsidian fragments to the distal locations. In phase 5, collapse of eruption column triggered by phase 4, generated large pyroclastic flow in all directions and resulted in more than 250–350 km3 of deposits. Thus, the total volume of this tephra amounts over 380–490 km3. This indicates that the Volcanic Explosivity Index (VEI) of the Ebisutoge-Fukuda tephra is greater than 7. The huge thickness of reworked volcaniclastic deposits overlying the fall units also attests to the tremendous volume of eruptive materials of this tephra.Numerous ancient tephra layers with large volume have been reported worldwide, but sources and eruptive history are often unknown and difficult to determine. Comparison of distal air-fall ashes with proximal pyroclastic deposits revealed eruption style, history and magnitude of the Ebisutoge-Fukuda tephra. Hence, recognition of the Ebisutoge-Fukuda tephra, is useful for understanding the volcanic activity during the Pliocene to Pleistocene, is important as a boundary marker bed, and can be used to interpret the global environmental and climatic impact of large magnitude eruptions in the past. 相似文献
12.
13.
Physical and chemical analyses of distal tephra from the 1912 eruption of Novarupta, Alaska, show considerable variations in glass and mineral compositions. A combination of a 150°C range in temperature deduced from iron-titanium oxide geothermometry, and curved patterns in bivariant element plots of glass compositions indicate that a chamber of compositionally zoned magma existed prior to the eruption. Magma-mixing cannot explain these features. The magma chamber may have resembled the model recently proposed by McBirney (1980). A highly silicic, quartz-phyric magma with mean phenocryst compositions of An25 plagioclase, Fs42 orthopyroxene, at a temperature of 880°C and a water pressure of 1.4 kbar, was located above a more mafic, hotter magma, bearing phenocrysts of An45 plagioclase and Fs35, orthopyroxene.Our results on distal tephras compare favorably with those from a recently completed study at source by Hildreth (1983), suggesting that useful petrologic information about distant volcanoes can be obtained from both types of deposits. Compositionally heterogeneous abyssal tephra layers are common in the Gulf of Alaska. Eruptions from chambers of zoned magma may account for many of these layers. 相似文献
14.
Cynthia A. Gardner Katharine V. Cashman Christina A. Neal 《Bulletin of Volcanology》1998,59(8):537-555
The 1992 eruption of Crater Peak, Mount Spurr, Alaska, involved three subplinian tephra-producing events of similar volume
and duration. The tephra consists of two dense juvenile clast types that are identified by color, one tan and one gray, of
similar chemistry, mineral assemblage, and glass composition. In two of the eruptive events, the clast types are strongly
stratified with tan clasts dominating the basal two thirds of the deposits and gray clasts the upper one third. Tan clasts
have average densities between 1.5 and 1.7 g/cc and vesicularities (phenocryst free) of approximately 42%. Gray clasts have
average densities between 2.1 and 2.3 g/cc, and vesicularities of approximately 20%; both contain abundant microlites. Average
maximum plagioclase microlite lengths (13–15 μm) in gray clasts in the upper layer are similar regardless of eruptive event
(and therefore the repose time between them) and are larger than average maximum plagioclase microlite lengths (9–11 μm) in
the tan clasts in the lower layer. This suggests that microlite growth is a response to eruptive processes and not to magma
reservoir heterogeneity or dynamics. Furthermore, we suggest that the low vesicularities of the clasts are due to syneruptive
magmatic degassing resulting in microlitic growth prior to fragmentation and not to quenching of clasts by external groundwater.
Received: 5 September 1997 / Accepted: 1 February 1998 相似文献
15.
A. B. Belousov M. G. Belousova D. N. Kozlov 《Journal of Volcanology and Seismology》2017,11(4):285-294
We studied the distribution of tephra deposits discharged by the basaltic (52–54% SiO2) explosive eruption of 1973 on Tyatya Volcano (Kunashir I., Kuril Islands). We made maps showing lines of equal tephra thickness (isopachs) and lines of maximum size of pyroclastic particles (isopleths). These data were used to find the parameters of explosive activity using the standard techniques for each of the two phases of this eruption separately. The first, phreatomagmatic, phase discharged 0.008 km3 of tephra during the generation of maars on the volcano’s northern slope. The tephra mostly consisted of fragmented host rocks with admixtures of fragments of low vesiculated juvenile basalt. The phase lasted 20 hours, the rate of pyroclastic discharge was 2 × 105 kg/s; the eruptive plume reached heights of 4–6 km with wind speeds within 10 m/s. The second, magmatic, phase discharged 0.07 km3 of tephra during the generation of the Otvazhnyi scoria cone on the volcano’s southeastern slope. The tephra mostly consisted of juvenile basaltic scoria. The highly explosive Plinian part of this phase lasted 36 hours, the rate of pyroclastic discharge was 8 × 105 kg/s; the eruptive plume reached heights of 6–8 km with wind speeds of 10–20 m/s. The total tephra volume discharged by the eruption was approximately 0.08 km3; the total amount of ejected pyroclastic material (including the resulting monogenic edifices) was 0.11 km3; the volume of erupted magma was 0.05 km3 (the conversion was based on 2800 kg/m3 density); the volcanic explosivity index, or VEI, was 3. The production rate of the Tyatya plumbing system is estimated as 3 × 105 m3 magma per annum. 相似文献
16.
To investigate the physical controls on volcano-tectonic (VT) precursors to eruptions and intrusions at basaltic volcanoes,
we have analyzed the spatial and temporal patterns of VT earthquakes associated with 34 eruptions and 23 dyke intrusions that
occurred between 1960 and 1983 at Kilauea, in Hawaii. Eighteen of the 57 magmatic events were preceded by an acceleration
of the mean rate of VT earthquakes located close to the main shallow magma reservoir. Using a maximum-likelihood technique
and the Bayesian Information Criterion for model preference, we demonstrate that an exponential acceleration is preferred
over a power-law acceleration for all sequences. These sequences evolve over time-scales of weeks to months and are consistent
with theoretical models for the approach to volcanic eruptions based on the growth of a population of fractures in response
to an excess magma pressure. Among the remaining 40 magmatic events, we found a significant correlation between swarms of
VT earthquakes located in the mobile south-flank of Kilauea and eruptions and intrusions. The behaviour of these swarms suggests
that at least some of the magmatic events are triggered by transient episodes of elevated rates of aseismic flank movement,
which could explain why many eruptions and intrusions are not preceded by longer-term precursory signals. In none of the 57
cases could a precursory sequence be used to distinguish between the approach to an eruption or an intrusion, so that, even
when a precursory sequence is recognized, there remains an empirical chance of about 40% (24 intrusions from 57 magmatic events)
of issuing a false alarm for an imminent eruption. 相似文献
17.
Edyta Puskarczyk Paulina Krakowska Mariusz Jędrychowski Magdalena Habrat Paweł Madejski 《Acta Geophysica》2018,66(6):1453-1461
The main goal was the analysis of parameters describing the structure of the pore space of carbonate rocks, based on tomographic images. The results of CT images interpretation, made for 17 samples of Paleozoic carbonate rocks were shown. The qualitative and quantitative analysis of a pore system was performed. Objects were clustered according to the pore size. Within the clusters, the geometry parameters were analysed. The following dependences were obtained for carbonate rocks, also for individual clusters (due to the volume): (1) a linear relationship (on a bilogarithmic scale) between the specific surface and the Feret diameter and (2) a strong linear relationship between specific surface area and Feret diameter and average diameter of the objects calculated for the sphere. The results were then combined with available results from standard laboratory tests, including NMR and MICP. 相似文献
18.
Usu volcano has erupted nine times since 1663. Most eruptive events started with an explosive eruption, which was followed by the formation of lava domes. However, the ages of several summit lava domes and craters remain uncertain. The petrological features of tephra deposits erupted from 1663 to 1853 are known to change systematically. In this study, we correlated lavas with tephras under the assumption that lava and tephra samples from the same event would have similar petrological features. Although the initial explosive eruption in 1663 was not accompanied by lava effusion, lava dome or cryptodome formation was associated with subsequent explosive eruptions. We inferred the location of the vent associated with each event from the location of the associated lava dome and the pyroclastic flow deposit distribution and found that the position of the active vent within the summit caldera differed for each eruption from the late 17th through the 19th century. Moreover, we identified a previously unrecognized lava dome produced by a late 17th century eruption; this dome was largely destroyed by an explosive eruption in 1822 and was replaced by a new lava dome during a later stage of the 1822 event at nearly the same place as the destroyed dome. This new interpretation of the sequence of events is consistent with historical sketches and documents. Our results show that petrological correlation, together with geological evidence, is useful not only for reconstructing volcanic eruption sequences but also for gaining insight into future potential disasters. 相似文献
19.
20.
Additional data from proximal areas enable a reconstruction of the stratigraphy and the eruptive chronology of phases III
and IV of the 1982 eruption of El Chichón Volcano. Phase III began on 4 April at 0135 GMT with a powerful hydromagmatic explosion
that generated radially fast-moving (∼100 ms–1) pyroclastic clouds that produced a surge deposit (S1). Due to the sudden reduction in the confining pressure the process
continued by tapping of magma from a deeper source, causing a new explosion. The ejected juvenile material mixed with large
amounts of fragmented dome and wall rock, which were dispersed laterally in several pulses as lithic-rich block-and-ash flow
(F1). Partial evacuation of juvenile material from the magmatic system prompted the entrance of external water to generate
a series of hydromagmatic explosions that dispersed moisture-rich surge clouds and small-volume block-and-ash flows (IU) up
to distances of 3 km from the crater. The eruption continued by further decompression of the magmatic system, with the ensuing
emission of smaller amounts of gas-rich magma which, with the strong erosion of the volcanic conduit, formed a lithic-rich
Plinian column that deposited fallout layer B. Associated with the widening of the vent, an increase in the effective density
of the uprising column took place, causing its collapse. Block-and-ash flows arising from the column collapse traveled along
valleys as a dense laminar flow (F2). In some places, flow regime changes due to topographic obstacles promoted transformation
into a turbulent surge (S2) which attained minimum velocities of approximately 77 ms–1 near the volcano. The process continued with the formation of a new column on 4 April at 1135 GMT (phase IV) that emplaced
fall deposit C and was followed by hydromagmatic explosions which produced pyroclastic surges (S3).
Received: 13 May 1996 / Accepted: 12 November 1996 相似文献