首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Titanium is a rare, secondary nucleus among Galactic cosmic rays. Using the Silicon matrix in the ATIC experiment, Titanium has been separated. The energy dependence of the Ti to Fe flux ratio in the energy region from 5 GeV per nucleon to about 500 GeV per nucleon is presented. The article was translated by the authors.  相似文献   

2.
A balloon borne counter telescope with a gas Cerenkov counter is used to measure the energy of primary cosmic ray electrons between 2 and 200 GeV. Electrons are identified by the characteristic electron-photon shower which they produce in a 15 radiation length deep stack of high-Z material interleaved with scintillation counters. Calibrations with monoenergetic electrons up to 14 GeV and monoenergetic protons up to 28 GeV from accelerators are used to develop criteria to statistically separate electrons from proton induced events. The results from six balloon flights (total exposure time 63 hours) are combined to obtain the electron energy spectrum. Up to about 30 GeV the spectrum measured in this experiment can be directly checked with calibrations and agrees well with results from other experiments. Above this energy the flux reported here is somewhat higher than the determinations reported by most other authors. We do not attach significance to an apparent flattening of the energy spectrum above 50 GeV. There is no evidence for a steepening of the spectrum at energies below 200 GeV.Work supported in part by the National Aeronautics and Space Administration grant NGL 14-001-005.Also Department of Physics.NSF trainee (1965–1969).  相似文献   

3.
A Large Isotopic Composition Experiment (ALICE) is a balloon-borne spectrometer which can determine the elemental and isotopic composition of galactic cosmic rays with energies near 1 GeV/nucleon. ALICE was flown from Prince Albert, Canada in August 1987, and remained at float altitude (120000 feet) for 14.7 hours. In this paper, we describe the experimental methods and analysis which will be used for subsequent isotopic analysis. We obtained very precise charge resolution over the entire designed range: 0.10 and 0.16 charge units at neon and iron, respectively. Results on the galactic cosmic ray abundances and absolute fluxes of the elements from neon through nickel are reported.  相似文献   

4.
Recent direct measurements of the energy spectra of the major mass components of cosmic rays have indicated the presence of a ‘kink’ in the region of 200 GeV per nucleon. The kink, which varies in magnitude from one element to another, is much sharper than predicted by our cosmic ray origin model in which supernova remnants are responsible for cosmic ray acceleration and it appears as though a new, steeper component is responsible.The component amounts to about 20 percent of the total at 30 GeV/nucleon for protons and helium nuclei and its magnitude varies with nuclear charge; the unweighted fraction for all cosmic rays being 36%.The origin of the new component is subject to doubt but the contenders include O, B, A, supergiant and Wolf-Rayet stars, by way of their intense stellar winds. Another explanation is also in terms of these particles as the sources but then being trapped, and even further accelerated, in the Local Bubble.  相似文献   

5.
Resonant photo-pion production with the cosmic microwave background predicts a suppression of extragalactic protons above the famous Greisen–Zatsepin–Kuzmin cutoff at about EGZK ≈ 5 × 1010 GeV. Current cosmic ray data measured by the AGASA and HiRes Collaborations do not unambiguously confirm the GZK cutoff and leave a window for speculations about the origin and chemical composition of the highest energy cosmic rays. In this work we analyze the possibility of strongly interacting neutrino primaries and derive model-independent quantitative requirements on the neutrino–nucleon inelastic cross section for a viable explanation of the cosmic ray data. Search results on weakly interacting cosmic particles from the AGASA and RICE experiments are taken into account simultaneously. Using a flexible parameterization of the inelastic neutrino–nucleon cross section we find that a combined fit of the data does not favor the Standard Model neutrino–nucleon inelastic cross section, but requires, at 90% confidence level, a steep increase within one energy decade around EGZK by four orders of magnitude. We illustrate such an enhancement within some extensions of the Standard Model. The impact of new cosmic ray data or cosmic neutrino search results on this scenario, notably from the Pierre Auger Observatory soon, can be immediately evaluated within our approach.  相似文献   

6.
An empirical formula for the cross section for inelastic hadronic interaction of antihelium with nuclei for the projectile energy range from 0.3 GeV/n to 80 GeV/n and target atomic mass number A from 4 to 120 has been developed. It is based on the available experimental data of nucleon (antinucleon) — nucleus and helium — nucleus inelastic cross sections. Such a formula is needed by experiments designed to search for antihelium in cosmic rays. With this formula one can estimate the efficiency of antihelium detection and correct for antihelium attenuation in the atmosphere for the balloon-borne experiments. A byproduct of this work is an empirical formula for antiproton-nucleus inelastic cross.  相似文献   

7.
We present measurements of fragmentation cross sections of relativistic nuclei and upper limits for the production probability of nuclear fragments with fractional charge using CR39 nuclear track detectors and an automated scanning system. The measurements of the total and partial charge changing fragmentation cross sections concern 16 GeV/nucleon oxygen ions, 14.5 GeV/nucleon silicon ions and 200 GeV/nucleon sulphur ions interacting in copper and CR39 targets. No evidence for fractionally charged fragments was found requiring a minimum track length of 7 mm in CR39 detectors placed after a 14 mm copper target. The combined upper limit for the production probability of fractionally charged fragments relative to ordinary ones is at the level of 1.2–2.3 × 10–4 (90% C.L.). The charge resolution of the CR39 detectors for an average of 10 measurements of the same track is σ = 0.05e at Z = 6.  相似文献   

8.
We have re-examined and extended the measurements of the primary cosmic ray proton and helium nuclei intensities in the range from a few MeV nuc–1 to 100 GeV nuc–1 using a considerable body of recently published data. The differential spectra obtained from this data are determined as a function of both energy and rigidity. The exponents of the energy spectra of both protons and helium nuclei are found to be different at the same energy/nucleon and to increase with increasing energy between 1 and 100 GeV nuc–1 reaching a value=–2.70 at higher energies and in addition, theP/He ratio changes from a value 5 at 1 GeV nuc–1 and below to a value 30 at 100 GeV nuc–1. On a rigidity representation the spectral exponent for each species is nearly identical and remains virtually constant above several GV at a value of –2.70, and in addition, theP/He ratio is also a constant 7 above 3 GeV. The changingP/He ratio and spectral exponent on an energy representation occur at energies well above those at which interplanetary modulation effects or interstellar ionization energy loss effects can significantly affect the spectra. In effect by comparing energy spectra and rigidity spectra in the intermediate energy range above the point where solar modulation effects and interstellar energy loss effects are important, but in the range where there are significant differences between energy and rigidity spectra, we deduce that the cosmic ray source spectra are effectively rigidity spectra. This fact has important implications regarding the mechanism of acceleration of this radiation and also with regard to the form of the assumed galactic spectrum at low energies. The relationship between the proton and helium spectra derived here and the heavier nuclei spectral differences recently reported in the literature is also examined.If rigidity spectra are adopted for protons and helium nuclei, then the source abundance ratio of these two components is determined to be 7:1. Some cosmological implications of this ratio are discussed.  相似文献   

9.
We investigate the problem of transition from galactic cosmic rays to extragalactic ultra-high energy cosmic rays. Using the model for extragalactic ultra-high energy cosmic rays and observed all-particle cosmic ray spectrum, we calculate the galactic spectrum of iron nuclei in the energy range 108–109 GeV. The flux and spectrum predicted at lower energies agree well with the KASCADE data. The transition from galactic to extragalactic cosmic rays is distinctly seen in spectra of protons and iron nuclei, when they are measured separately. The shape of the predicted iron spectrum agrees with the Hall diffusion.  相似文献   

10.
Here we outline some recent activities in the theory and phenomenology of Galactic cosmic rays, in the light of the great precision of direct cosmic ray measurements reached in the last decade. In the energy domain of interest, ranging from a few GeV/nucleon to tens of TeV/nucleon, data have revealed some novel features requiring an explanation. We shall emphasize the importance of a more refined modeling, of achieving a better assessment of theoretical uncertainties associated to the models, and of testing key predictions specific of different models against the rich datasets available nowadays. Despite the still shaky theoretical situation, several hints have accumulated suggesting the need to go beyond the approximation of a homogeneous and non-dynamical diffusion coefficient in the Galaxy.  相似文献   

11.
The intensity and energy spectrum of cosmic ray VH-nuclei (20Z30) has been measured in a stack of nuclear emulsions exposed over Fort Churchill in 1968. The integral intensity above 300 MeV/nucleon was 1.04±0.04 nuclei m–2 sr–1 s–1 and three differential intensities were measured below 750 MeV/nucleon. Because of the current controversy regarding the true intensities of helium nuclei at this phase of the solar cycle we have also measured these nuclei, obtaining results intermediate between those quoted by other workers. Comparison of these results on the VH-and helium nuclei with those obtained in previous observations made at times of low solar modulation leads to the conclusion that there is no significant charge dependence in the modulation process. This conclusion is in conflict with an earlier analysis but depends on results of improved statistical weight and greater reliability for the VH nuclei and on our measurement of the helium nuclei in the same detector.Supported by the Office of Naval Research under Contract No. N00014-67-A-0113-0021.  相似文献   

12.
A critical study of all available data on the energy dependence of the ratio ff the intensities of Li, Be, and B to C, N, O and F nuclei (L/M-ratio) in cosmic rays is made. It seems that in a recent experiment by Von Rosenvingeet al. (1969), the flux of M-nuclei has come out higher in the energy interval of 200–400 MeV/nucleon and that of L-nuclei lower in the energy interval 400–600 MeV/nucleon; as a result they obtained a value of the ratio of L/M which is about 50% lower than all other investigators. The results of all other studies yield the best estimate of the ratio of L/M as 0.26±0.03, 0.41±0.03 and 0.26±0.02 in the energy interval 50–150, 200–600 and>1500 MeV/nucleon respectively.  相似文献   

13.
The Telescope Array experiment studies ultra high energy cosmic rays using a hybrid detector. Fluorescence telescopes measure the longitudinal development of the extensive air shower generated when a primary cosmic ray particle interacts with the atmosphere. Meanwhile, scintillator detectors measure the lateral distribution of secondary shower particles that hit the ground. The Middle Drum (MD) fluorescence telescope station consists of 14 telescopes from the High Resolution Fly’s Eye (HiRes) experiment, providing a direct link back to the HiRes measurements. Using the scintillator detector data in conjunction with the telescope data improves the geometrical reconstruction of the showers significantly, and hence, provides a more accurate reconstruction of the energy of the primary particle. The Middle Drum hybrid spectrum is presented and compared to that measured by the Middle Drum station in monocular mode. Further, the hybrid data establishes a link between the Middle Drum data and the surface array. A comparison between the Middle Drum hybrid energy spectrum and scintillator Surface Detector (SD) spectrum is also shown.  相似文献   

14.
The First Spacelab mission, launched on Space ShuttleFlight STS-9 in November 1983 carried a multidisciplinary payload which was intended to demonstrate that valuable scientific results can be achieved from such short duration missions. The payload complement included a spectrometer to undertake observations of the brighter cosmic X-ray sources. The primary scientific objectives of this experiment were the study of detailed spectral features in cosmic X-ray sources and their associated temporal variations over a wide energy range from about 2 up to 30 keV. The instrument based on the gas scintillation proportional counter had an effective area of some 180 cm2 with an energy resolution of 9% at 7 keV.The instrument parameters and the performance, using data from the flight and ground calibration, are discussed.  相似文献   

15.
《Astroparticle Physics》2009,32(1):53-60
The High Resolution Fly’s Eye (HiRes) experiment has measured the flux of ultrahigh energy cosmic rays using the stereoscopic air fluorescence technique. The HiRes experiment consists of two detectors that observe cosmic ray showers via the fluorescence light they emit. HiRes data can be analyzed in monocular mode, where each detector is treated separately, or in stereoscopic mode where they are considered together. Using the monocular mode the HiRes collaboration measured the cosmic ray spectrum and made the first observation of the Greisen–Zatsepin–Kuzmin cutoff. In this paper we present the cosmic ray spectrum measured by the stereoscopic technique. Good agreement is found with the monocular spectrum in all details.  相似文献   

16.
A supernova remnant accelerates cosmic rays to energies somewhat above 105 GeV by the time that the free expansion phase of its evolution has come to an end. As the remnant's outer shock slows, these highest energy cosmic rays diffuse away from the shock along a magnetic flux tube with a radius comparable to that of the remnant at the end of its free expansion phase and which eventually (over a distance of the order of a kiloparsec) bends into the Galactic halo. A similarity solution exists for the temporal and spatial variations, in such a tube, of both the number density for these ~ 105 GeV cosmic rays and the energy density of the waves on which they resonantly scatter. Wave-wave interactions probably do not dominate the evolution of the energy density of these lowest frequency waves, but we assume that they do establish a Kraichnan wave spectrum at higher wavenumber. Although we cannot rigorously justify this assumption, it does receive some support from the analysis of pulsar signals. There is a large body of observations to which such a model can be applied, yielding constraints that must be met. With the model that we develop here we obtain the following results:
  1. The local intensity of ~ 105 GeV cosmic rays implies that the flux tube which currently surrounds the Solar System last contained a remnant in the free expansion phase several times 107 years ago. We comment on the rough agreement between this age and that inferred from Be10 data.
  2. The theoretical value of the cosmic ray diffusion coefficient at ~ 1 GeV in the tube corresponding to that time is in harmony with the value of the diffusion coefficient inferred from cosmic ray composition and synchrotron measurements.
In the light of our inhomogeneous cosmic ray acceleration/propagation model we re-examine our earlier work on the evidence for second order acceleration in a very old remnant. Such evidence is provided by the molecular compositions along several lines of sight to the Perseus OB2 association. We find as a third significant result that the model value of the diffusion coefficient at energies in the range of 1 MeV agrees within about an order of magnitude with that which we infer from the molecular data.  相似文献   

17.
This paper presents an overview of a number of the principal findings regarding the hot plasmas (E 50 keV) in Jupiter's magnetosphere by the HISCALE instrument during the encounter of the Ulysses spacecraft with the planet in February 1992. The hot plasma ion fluxes measured by HI-SCALE in the dayside magnetosphere are similar to those measured in the same energy range in this region by the Voyager spacecraft in 1979. Within the dayside plasma sheet, the hot-ion energy densities are comparable with, or larger than, the magnetic field energy densities; these hot ions are found to corotate at about one-half the planetary corotational speed. For ions of energies 500 keV/nucleon, the protons contributed from 50–60% to as much as 80% of the energy content of these plasmas. Strong, magnetic-field-aligned streaming was found for both the ions and electrons in the high-latitude duskside magnetosphere. The ion and electron pitch-angle distributions could be characterized by cos25 α throughout many of the high anisotropy intervals of the outbound pass. There is some evidence in the ion pitch-angle distributions for a corotational component in the hot plasmas at high Jovian latitudes. While there are limitations owing to the finite geometries of the detector telescope systems on the determination of the angular spreads of the ion and electron beams, the measurements show that there are intervals when the particle distributions are not bidirectional. At such times, locally the hot plasmas could be carrying currents of 10−4μAm−2. The temporal variations in the streaming electron fluxes are substantially larger than the variations measured for the fluxes that are more locally mirroring. The temporal variations contain periodicities that may correspond to hydromagnetic wave frequencies in the magnetosphere as well as to larger scale motions of magnetospheric plasmas. On nearly half of the days for about a 130 day interval around the time of the Ulysses encounter with the planet, particles of Jovian origin were measured in the interplanetary medium. An event discussed herein shows evidence of an energy dependence of the particle release process from the planetary magnetosphere into the interplanetary medium.  相似文献   

18.
Measurements of the flux of helium nuclei in the 24 January, 1971, event and of helium and (C, N, O) nuclei in the 1 September, 1971, event are combined with previous measurements to obtain the relative abundances of helium, (C, N, O), and Fe-group nuclei in these events. These data are then summarized together with previously reported results to show that, even when the same detector system using a dE/dx plus range technique is used, differences in the He/(C, N, O) value in the same energy/nucleon interval are observed in solar cosmic ray events. Further, when the He/(C, N, O) value is lower the He/(Fe-group nuclei) value is also systematically lower in these large events. When solar particle acceleration theory is analyzed, it is seen that the results suggest that, for large events, Coulomb energy loss probably does not play a major role in determining solar particle composition at higher energies (> 10 MeV). The variations in multicharged nuclei composition are more likely due to partial ionization during the acceleration phase.NASA/NAS Senior Resident Research Associate, on leave from Tata Institute of Fundamental Research, Bombay.  相似文献   

19.
When the thermal relativistic electrons with isotropic distribution of velocities move through a dense gas region or impinge upon the surface of a cloud of dense gas, the Cerenkov effect will produce peculiar atomic or ionic emission lines, which we call the “Cerenkov line-like radiation”. This prediction has been verified by the laboratory experiments in optical waveband. In this paper, the importance of the Cerenkov line-like radiation in the exploration of broad emission lines in quasars and Syf1 s is pointed out. By using this mechanism, some long standing and significant puzzles in the study of quasars could be solved. Furthermore, the magnitude orders of energy losses of various effects of a relativistic electron in cosmic gas are estimated and compared with each other to prove the effectiveness of this new mechanism in quasars.  相似文献   

20.
We have measured the chemical composition of cosmic rays withZ2 over an energy range from 100 MeV/nuc to >2 GeV/nuc using 2 new large area counter telescopes. One of these instruments was a 4 element dE/dx×E× Range telescope, the other a 4 element dE/dx×Cerenkov× ×Range telescope. Two balloon flights with these telescopes at Ft. Churchill in the summer of 1970 provided a total of nearly 1000 Fe nuclei with a charge resolution ranging from 0.10 charge unit at Carbon to 0.25 charge unit at Fe. A detailed charge spectrum is obtained at both high and low energies. Some important differences exist between the present results and those obtained earlier, due in part to the improved statistical accuracy and in part to the improved background rejection of the present data. In particular, the abundance of Cr and Mn are each found to be 0.10×Fe in contrast to the earlier ratio of 0.30 found by some workers for each of these nuclei. The abundance of these two nuclei, as well as others in the 15–25 range, shows no strong dependence on energy. We have extrapolated our composition data to the cosmic ray sources using a variety of interstellar path length distributions. The abundances ofall secondary nuclei withZ between 3–25 are consistent only with propagation models which have vacuum path length distributions which do not differ greatly from exponential. The source abundances of nuclei withZ=15, 17, 18, 19, 21, 22, 23, 24, and 25 are found to be <0.02×Fe. For the remaining nuclei, Na, Al, S, and Ca are found to have source abundances of 0.07, 0.11, 0.18 and 0.13 of Fe respectively. The source abundance of C and O relative to Fe is also much different than some earlier compilations. A comparison of solar and cosmic ray abundances reveals certain selective differences, rather than a systematic overabundance of heavy nuclei in cosmic rays, as has been suggested in the past. These differences are discussed in terms of a common nucleosynthesis origin of the two species of particles.Research sponsored by the National Aeronautics and Space Administration under Grant No. NGR-30-002-052.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号