首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
We present an improved version of the method of photometric mode identification based upon the inclusion of non-adiabatic eigenfunctions determined in the stellar atmosphere, according to the formalism recently proposed by Dupret et al. (2002).We apply our method to Cephei, Slowly Pulsating B, Scuti and Doradus stars. Besides identifying the degree of the pulsatingstars, our method is also a tool for improving the knowledge of stellar interiors and atmospheres, by imposing constraints on the metallicity for Cephei and SPBs, the characteristics of the superficial convection zone for Scuti and Doradus starsand the limb-darkening law.  相似文献   

2.
3.
4.
A cross-correlation study for time-lags of ±5 yrs between eleven ground based ozone stations (1957–1985) for = 40°N–75° N and = 30° E-114° W and five volcanic emissivity indices has shown their close connection: significant correlations well above 90% were obtained. Intepretation of these positive/negative correlations () was based on the global wind circulation (aided also by a 2-D, 3-D representation between, , ), and the types of volcanic aerosols leading to heterogeneous chemical reactions with ozone.  相似文献   

5.
The new class of -ray spectra from impulsive flares without nuclear -ray lines is compared with bremsstrahlung spectra of energetic electrons undergoing stochastic acceleration, Coulomb and synchrotron losses. The remarkable agreement of both the produced -spectra from the precipitated electrons and the electron spectra measured in the interplanetary space leads to the conclusion that seed population and acceleration process are identical for both classes of electrons. A new estimate of the electron bremsstrahlung contribution in -spectra of impulsive solar flares seems to be necessary.  相似文献   

6.
Durney  Bernard R. 《Solar physics》1998,180(1-2):1-17
The power in the different modes of an expansion of the solar radial magnetic field at the surface in terms of Legendre polynomials,P , is calculated with the help of a solar dynamo model studied earlier. The model is of the Babcock–Leighton type, i.e., the surface eruptions of the toroidal magnetic field – through the tilt angle, , formed by the magnetic axis of a bipolar magnetic region with the east-west line – are the sources for the poloidal field. In this paper it is assumed that the tilt angle is subject to fluctuations of the form, = ()+ <> where <> is the average value and () is a random normal fluctuation with standard deviation which is taken from Howard's observations of the distribution of tilt angles. For numerical considerations, negative values of were not allowed. If this occurred, was recalculated. The numerical integrations were started with a toroidal magnetic field antisymmetric across the equator, large enough to generate eruptions, and a negligible poloidal field. The fluctuations in the tilt angle destroy the antisymmetry as time increases. The power of the antisymmetric modes across the equator (i.e., odd values of ) is concentrated in frequencies, p, corresponding to the cycle period. The maximum power lies in the =3 mode with considerable power in the =5 mode, in broad agreement with Stenflo's results who finds a maximum power at =5. For the symmetric modes, there is considerable power in frequencies larger than p, again in broad agreement with Stenflo's power spectrum.  相似文献   

7.
8.
We determine the momentum distribution of the relativistic particles near the Crab pulsar from the observed X- and -ray spectra (103109 eV), provided that the curvature radiation is responsible for it. The power law spectrum for the relativistic electrons,f() –5, reproduces a close fit to the observed high-energy photon spectrum. The theoretically determined upper limit to the momentum (due to radiation damping), M 8×106, corresponds to the upper cut-off energy of the -ray spectrum, 109 eV. The lower limit to the momentum, m 1.8×105, is chosen such that flattening of the X-ray spectrum below 10 keV is simulated. The number density of these electrons is found to be much higher than the Goldreich-Julian density. We also discuss pulse shape and polarization of high-energy photons. The extremely high density of particles and the steep momentum spectrum are difficult to understand. This may imply that another, more efficient, mechanism is in operation.  相似文献   

9.
10.
11.
. - . . , . - . - , , , -. ., , .
The structure of rotating magnetic polytropes is considered in Roche approximation. Investigation of the influence of poloidal as well as toroidal magnetic fields on the conditions of the beginning of matter outflow due to rotational instability is carried out. The influence of the turbulent convection and twisting of magnetic force-lines on the time of smoothing of differential rotation is considered. The estimate of the magneto-turbulence energy generated by differential rotation is presented. Both maximum possible energy output and duration of the quasi-statical evolution phase up to the appearance of hydrodynamic instability due to the effects of general relativity are calculated for supermassive magnetic polytropes of index three with uniform or differential rotation. The radius-mass relation is obtained for supermassive differentially-rotating magnetic polytropes referring to the longest part of the quasi-statistical evolution stage; some consequences are pointed out, including the period-luminosity relation.The evolution of the considered models of supermassive rotating magnetic polytropes with different character of rotation and different geometry of a magnetic field is discussed.The results obtained are summarized in the last section.


English translation will appear in the next issue ofAstrophys. Space Sci.

Receipt delayed by postal strike in Great Britain  相似文献   

12.
13.
Based on a general planetary theory, the secular perturbations in the motion of the eight major planets (excluding Pluto) have been derived in polynomial form. The results are presented in the tables. The linear terms of second order with respect to the planetary masses and the nonlinear terms of first order up to the fifth (and partly seventh) degree with respect to eccentricities and inclinations were taken into account in the right-hand members of the secular system. Calculations were carried out by computer with the use of a system that performed analytic operations on power series with complex coefficients.
qA ( ). . ( ) . .
  相似文献   

14.
, ii (2000–3000 Å) i . , i . i (. 2). i i i i + ( 7–10). ii (. 13). ii i i (, 2400 Å) (. 14 15). i i i , iu , i (. 1). i i ii i i . .  相似文献   

15.
The empirical evidence for a connection between type and relative angular momentum of galaxies is reviewed and some constraints for the theoretical explanation are discussed.
.
  相似文献   

16.
The general conception of the critical inclinations and eccentricities for theN-planet problem is introduced. The connection of this conception with the existence and stability of particular solutions is established. In the restricted circular problem of three bodies the existence of the critical inclinations is proved for any values of the ratio of semiaxes . The asymptotic behaviour of the critical inclinations as 1 is investigated.
. . . 1.
  相似文献   

17.
2800 Mgii (. 1). (N +/N 11000) , , (N +/N 110). , . —, , . — . : ; 0.002 1 , 0.1 ; () 100 –3; ; ; , 10 ; 10–4 1 . 2800 Mgii .  相似文献   

18.
19.
20.
. , , . , t>1010 ( z<105) .
In this paper we continue the work of Weymann, investigating the causes of distortion of the spectrum of the residual radiation from the Planck curve. We discuss the distortion to the spectrum, resulting from recombination of primeval plasma.We then derive an analytic expression for the distortion to the equilibrium spectrum due to Compton scattering by hot electrons. On the basis of the observational data we conclude that a period of the existence of neutral hydrogen is inescapable in the hot model of the universe. It is concluded that any injection of energy att>1010 sec (red shiftz<105) give the distortions of the equilibrium spectrum.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号