首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
Ignacio Romeo  Ramón Capote 《Icarus》2005,175(2):320-334
The tectonic system of the southern margin of Central Ovda Regio, a crustal plateau which straddles Venus equator, has been interpreted as a dextral strike-slip array, on the basis of evidence clearly identifiable, as are Riedel fracture patterns of different scales, en échelon folds and brittle strike-slip faults. This transcurrent regime developed two main shear belts (Inner and Outer, on respectively thicker and thinner crust), whose minimum dextral displacement has been estimated in 30-50 km. Since the up or downwelling models for plateau formation cannot easily explain tectonic shears of this magnitude along their margins, an alternative hypothesis has been built, which stands on the proposed collisional belt which could form Ovda northern border (King et al., 1998, Lunar Planet. Sci. Conf. 29, Abstract 1209; Tuckwell and Ghail, 2002, Lunar Planet. Sci. Conf. 33, Abstract 1566). Within this framework, the shear would represent a transcollisional transcurrent zone, similar to the strike-slip zones produced in the foreland of the Himalayas-Tibet collision front. Eastern Ovda would be an independent area of thickened crust, pushed to the SSE by the northern collision, with the deformation concentrated at its margins, and experiencing a shear strain on its southern margin. None of the data, however, either supports nor helps to discard theoretical subduction events as a cause of the collision. On the contrary, image relationships could be interpreted as evidence that the main shear deformation took place during the last global resurfacing event on the planet.  相似文献   

2.
The rheology of the Martian mantle and the planet's initial temperature is constrained with thermal evolution models that include crust growth and test the conditions for magnetic field generation in the core. As observations we use the present-day average crustal thickness of 50-120 km as estimated from the Mars Global Surveyor gravity and topography data, the evidence for the crust being produced mostly early, with a rate declining from the Noachian to the Hesperian, and the evidence for an early magnetic field that likely existed for less than a billion years. We use the fact that the rate of crust growth is a function of temperature, which must be above the solidus in the sub-lithosphere mantle, and the mantle convection speed because the latter determines the rate at which melt can be replenished. The convection speed is a strong function of viscosity which, in turn, is a strong function of temperature and also of the water content of the mantle. We use a viscosity parameterization with a reference viscosity evaluated at 1600 K the value of which can be characteristic of either a dry or a wet mantle. We further consider the Fe-FeS phase diagram for the core and compare the core liquidus estimated for a sulphur content of 14% as suggested by the SNC meteorite compositions with the core temperatures calculated for our cooling models. Two data sets of the Fe-FeS eutectic temperature have been used that differ by about 200 K [Böhler, R., 1996. Fe-FeS eutectic temperatures at 620 kbar. Phys. Earth Planet. Inter. 96, 181-186; Fei, Y., Bertka, C.M., Finger, L.W., 1997. High-pressure iron-sulphur compound, Fe3S2, and melting relations in the Fe-FeS system. Science 275, 1621-1623] at Martian core-mantle boundary pressure and in the eutectic composition by 5 wt%. The differences in eutectic temperature and composition translate into a difference of about 400 K in liquidus temperature for 14 wt% sulphur.We find it premature to rule out specific mantle rheologies on the basis of the presently available crustal thickness and crust growth evidence. Rather a trade-off exists between the initial mantle temperature and the reference viscosity. Both a wet mantle rheology with a reference viscosity less than 1020 Pas and a dry mantle rheology with a reference viscosity of 1021 Pas or more can be acceptable if initial mantle temperatures between roughly 1700 and 2000 K are allowed. To explain the magnetic field history, the differences in liquidus temperatures matter. For a liquidus temperature of about 1900 K at the Martian core-mantle boundary as calculated from the Böhler et al. eutectic, a dry mantle rheology can best explain the lack of a present-day dynamo. For a liquidus temperature of about 1500 K at the core-mantle boundary as calculated from the Fei et al. eutectic all models are consistent with the observed lack of dynamo action. The reason lies with the fact that at 14 wt% S the Martian core would be close to the eutectic composition if the Fei et al. data are correct. As inner core growth is unlikely for an almost eutectic core, the early field would have been generated by a thermally driven dynamo. Together with the measured strength of the Martian crustal magnetization this would prove the feasibility of a strong thermally driven dynamo.  相似文献   

3.
Based on fieldwork and terrace ages, which were determined using 14C, TL and paleosol stratigraphy, a general model was established for the development of the Yellow River terrace system. The ages for the terraces and valley flats of the Yellow River system are T6—1.67–0.85 Ma BP, T5—0.85–0.47 Ma BP, T4—0.47–0.10 Ma BP, T3—0.10–0.007 Ma BP, T2—7.0–0.7 ka BP, T1—0.7–0.3 ka BP, the higher valley flat—0.3–0.15 ka BP and the lower valley flat 0.15–0 ka BP, respectively. Each terrace or valley flat and corresponding paleo-valley represents a river erosion/deposition cycle. Using this model and selected geomorphic parameters of terraces and paleo-valleys from 10 typical cross sections of Luohe River, a tributary of the Yellow River, an attempt is made here to estimate paleo-river erosion since the Pleistocene on the Loess Plateau.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号