首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Brown  D.S.  Priest  E.R. 《Solar physics》1999,190(1-2):25-33
It is important to understand the complex topology of the magnetic field in the solar corona in order to be able to comprehend the mechanisms which give rise to phenomena such as coronal loop structures and x-ray bright points. A key feature of the magnetic topology is a separator. A magnetic separator is a field line which connects two magnetic null points, places where the magnetic field becomes zero. A stable magnetic separator is important as it is the intersection of two separatrix surfaces. These surfaces divide the magnetic field lines into regions of different connectivity, so a separator usually borders four regions of field-line connectivity. This work examines the topological behaviour of separators that appear in a magnetic field produced by a system of magnetic sources lying in a plane (the photosphere). The questions of how separators arise and are destroyed, the topological conditions for which they exist, how they interact and their relevance to the coronal magnetic field are addressed.  相似文献   

2.
It has been widely conjectured that solar flares are energized by the magnetic energy stored in complex active regions. Paradoxically, however, in attempting to show that magnetic changes cause or characterize flares, solar magnetic observations have produced equivocal results.In previous attempts at resolving the paradox, it has been contended that magnetic measurements are simply imprecise or that magnetic theories of flares are incorrect. We present an alternative explanation: the present use of magnetograms to examine active region structure through numerical integration of miscellaneous field lines (under various force-free assumptions) provides qualitative information only and does not utilize the quantitative information available. Therefore, we propose a new approach to the analysis of magnetograms which is illustrated with a highly symmetrized example that permits integration in closed form. The proposed approach exploits the cellular structure of the flux of field lines present in a complex active region. The various topological connectivities distinguish parent and daughter flux cells. A function F is developed expressing the flux partitioned into the daughter cell of interconnected field lines in a potential field. This F is a function of the location, strength, and relative motions of the photospheric sources. Then dF/dt is used as an EMF in the direct calculation of the stored magnetic energy available for flare production. In carrying out this program the flux partitioning surface (separatrix) is calculated along with its line of self-intersection (separator). The separator is the location of the principal energy release site.  相似文献   

3.
Galsgaard  K.  Priest  E.R.  Nordlund  Å. 《Solar physics》2000,193(1-2):1-16
In two dimensions magnetic energy release takes place at locations where the magnetic field strength becomes zero and has an x-point topology. The x-point topology can collapse into two y-points connected by a current sheet when the advection of magnetic flux into the x-point is larger than the dissipation of magnetic flux at the x-point. In three dimensions magnetic fields may also contain singularities in the form of three-dimensional null points. Three-dimensional nulls are created in pairs and are therefore, at least in the initial stages, always connected by at least one field line – the separator. The separator line is defined by the intersection of the fan planes of the two nulls. In the plane perpendicular to a single separator the field line topology locally has a two dimensional x-point structure. Using a numerical approach we find that the collapse of the separator can be initiated at the two nulls by a velocity shear across the fan plane. It is found that for a current concentration to connect the two nulls along the separator, the current sheet can only obtain two different orientations relative to the field line structure of the nulls. The sheet has to have an orientation midway between the fan plane and the spine axis of each null. As part of this process the spine axes are found to lose their identity by transforming into an integrated part of the separator surfaces that divide space into four magnetically independent regions around the current sheet.  相似文献   

4.
Yun-Tung Lau 《Solar physics》1993,148(2):301-324
We study the magnetic field-line topology in a class of solar flare models with four magnetic dipoles. By introducing a series of symmetry-breaking perturbations to a fully symmetric potential field model, we show that isolated magnetic nulls generally exist above the photosphere. These nulls are physically important because they determine the magnetic topology above the photosphere. In some special cases, there may be a single null above the photosphere with quasi two-dimensional properties. For such a model, aquasi null line connects the null to the photosphere. In the limit of small non-ideal effects, boundary layers and current sheetsmay develop along the quasi null line and the associated separatrix surfaces. Field lines can then reconect across the quasi null line, as in two-dimensional reconnection. In a more general force-free case, the field contains a pair of nulls above the photosphere, with a field line (theseparator) connecting the two nulls. In the limit of small non-ideal effects, boundary layers and current sheets develop along the separator and the associated separatrix surfaces. The system exhibits three-dimensional reconnection across the separator, over which field lines exchange identity. The separatrices are related to preferable sites of energy release during solar flares.  相似文献   

5.
Y. R. Chou  B. C. Low 《Solar physics》1994,153(1-2):255-285
Three-dimensional, quasi-static evolutions of coronal magnetic fields driven by photospheric flux emergence are modeled by a class of analytic force-free magnetic fields. Our models relate commonly observed photospheric magnetic phenomena, such as the formation and growth of sunspots, the emergence of an X-type separator, and the collision and merging of sunspots, to the three-dimensional magnetic fields in the corona above. By tracking the evolution in terms of a continuous sequence of force-free states, we show that flux emergence and submergence along magnetic neutral lines in the photosphere are essential processes in all these photospheric phenomena. The analytic solutions we present have a parametric regime within which the magnetic energy attained by an evolving force-free field may be of the order of 1030 ergs to several 1031 ergs, depending on the magnetic environment into which an emerging flux intrudes. The commonly used indicators of magnetic shear in magnetogram interpretation are discussed in terms of field connectivity in our models. It is demonstrated that the crossing angle of the photospheric transverse magnetic field with the neutral line may not be a reliable indicator of the magnetic shear in the coronal field above, due to the complexity of three-dimensionality. The poorly understood constraint of magnetic-helicity conservation on the availability of magnetic free energy for a flare is briefly discussed.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

6.
We study the magnetic field evolution and topology of the active region NOAA 10486 before the 3B/X1.2 flare of October 26, 2003, using observational data from the French–Italian THEMIS telescope, the Michelson Doppler Imager (MDI) onboard Solar and Heliospheric Observatory (SOHO), the Solar Magnetic Field Telescope (SMFT) at Huairou Solar Observation Station (HSOS), and the Transition Region and Coronal Explorer (TRACE). Three dimensional (3D) extrapolation of photospheric magnetic field, assuming a potential field configuration, reveals the existence of two magnetic null points in the corona above the active region. We look at their role in the triggering of the main flare, by using the bright patches observed in TRACE 1600 Å images as tracers at the solar surface of energy release associated with magnetic reconnection at the null points. All the bright patches observed before the flare correspond to the low-altitude null point. They have no direct relationship with the X1.2 flare because the related separatrix is located far from the eruptive site. No bright patch corresponds to the high-altitude null point before the flare. We conclude that eruptions can be triggered without pre-eruptive coronal null point reconnection, and the presence of null points is not a sufficient condition for the occurrence of flares. We propose that this eruptive flare results from the loss of equilibrium due to persistent flux emergence, continuous photospheric motion and strong shear along the magnetic neutral line. The opening of the coronal field lines above the active region should be a byproduct of the large 3B/X1.2 flare rather than its trigger.  相似文献   

7.
Longcope  D. W. 《Solar physics》1996,169(1):91-121
Magnetic field enters the corona from the interior of the Sun through isolated magnetic features on the solar surface. These features correspond to the tops of submerged magnetic flux tubes, and coronal field lines often connect one flux tube to another, defining a pattern of inter-linkage. Using a model field, in which flux tubes are represented as point magnetic charges, it is possible to quantify this inter-linkage. If the coronal field were current-free then motions of the magnetic features would change the inter-linkage through implicit (vacuum) magnetic reconnection. Without reconnection the conductive corona develops currents to avoid changing the flux linkage. This current forms singular layers (ribbons) flowing along topologically significant field lines called separators. Current ribbons store magnetic energy as internal stress in the field: the amount of energy stored is a function of the flux tube displacement. To explore this process we develop a model called the minimum-current corona (MCC) which approximates the current arising on a separator in response to displacement of photospheric flux. This permits a model of the quasi-static evolution of the corona above a complex active region. We also introduce flaring to rapidly change the flux inter-linkage between magnetic features when the internal stress on a separator becomes too large. This eliminates the separator current and releases the energy stored by it. Implementation of the MCC in two examples reveals repeated flaring during the evolution of simple active regions, releasing anywhere from 1027–1029 ergs, at intervals of hours. Combining the energy and frequency gives a general expression for heat deposition due to flaring (i.e., reconnection).  相似文献   

8.
Priest  E.R.  Schrijver  C.J. 《Solar physics》1999,190(1-2):1-24
In this review paper we discuss several aspects of magnetic reconnection theory, focusing on the field-line motions that are associated with reconnection. A new exact solution of the nonlinear MHD equations for reconnective annihilation is presented which represents a two-fold generalization of the previous solutions. Magnetic reconnection at null points by several mechanisms is summarized, including spine reconnection, fan reconnection and separator reconnection, where it is pointed out that two common features of separator reconnection are the rapid flipping of magnetic field lines and the collapse of the separator to a current sheet. In addition, a formula for the rate of reconnection between two flux tubes is derived. The magnetic field of the corona is highly complex, since the magnetic carpet consists of a multitude of sources in the photosphere. Progress in understanding this complexity may, however, be made by constructing the skeleton of the field and developing a theory for the local and global bifurcations between the different topologies. The eruption of flux from the Sun may even sometimes be due to a change of topology caused by emerging flux break-out. A CD-ROM attached to this paper presents the results of a toy model of vacuum reconnection, which suggests that rapid flipping of field lines in fan and separator reconnection is an essential ingredient also in real non-vacuum conditions. In addition, it gives an example of binary reconnection between a pair of unbalanced sources as they move around, which may contribute significantly to coronal heating. Finally, we present examples in TRACE movies of geometrical changes of the coronal magnetic field that are a likely result of large-scale magnetic reconnection. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1005248007615  相似文献   

9.
季海生  宋慕陶 《天文学报》2000,41(3):257-269
用时间缓变的非线性无力场模拟超级活动区(弧岛式大型δ黑子)的磁场位形。这个复杂磁场包含了向量磁场的主要观测特征:正负磁流极端不平衡性(正负磁流之比为1:6),U形磁反变线,局域磁场的二极子、四极子差异性。模拟结果厅用来解释一些观测结果:(1)大耀斑主要产生在U形中性线的磁性混杂区或四极子区(2)U形反变线的准双极性区几乎没有大耀斑很小。(3)活动区内部的大型旋转运动和磁沲运动会导致四极子场磁拓扑分  相似文献   

10.
Recent observations of Martin, Bilimoria, and Tracadas (1995) have revealed two new magnetic and structural classes for solar filaments and filament channels. The magnetic classes are called sinistral and dextral, while the structural classes are left-bearing and right-bearing. Dextral filaments dominate in the northern hemisphere and sinistral in the southern. A model consistent with the observations is developed with magnetic sources that represent the network flux on both sides of the channel and extra concentrations of flux that produce the strong field component along the channel. We suggest that it is the imbalance of flux locations along the channel that creates the field of a filament channel. The resulting separatrix surfaces have distinct upper and lower boundaries that may produce the upper boundary of the filament cavity or filament and the lower boundary of the filament. The model is applied to a specific filament channel, with discrete sources and sinks that represent the flux observed in a photospheric magnetogram. The resulting three-dimensional field lines near the filament location are low-lying and possess dips.  相似文献   

11.
Tyan Yeh 《Solar physics》1987,107(2):247-262
This paper elucidates the topological relationship between the distribution of polarity neutral lines on the solar surface and the interspersion of closed field lines among open field lines in the corona. The solar surface contains polarity neutral lines, that are spatially nested in a series-and-parallel hierarchy. The corona is partitioned by separatrix surfaces into a corresponding hierarchy of nested magnetic cells. The complexity of the magnetic structure of the corona consists in the embedding of magnetic cells of closed field lines amid open field lines.Polarity neutral lines lie necessarily on the foot surfaces of magnetic cells that are filled with closed field lines. There are two topologically distinct types of magnetic cells of closed field lines: closed and open. Only the open cells are overlain by current sheets. Each of the heliospheric current sheets separates the open field lines encircled by an open cells from the open field lines encircling the cell. Since closed cells have no images in the outer corona, the cell structure of the latter reflects those polarity neutral lines associated with the open cells in the lower corona. Accordingly, there are fewer heliospheric current sheets, as revealed by magnetic neutral lines on the source surface, in interplanetary space than polarity neutral lines on the solar surface.  相似文献   

12.
Preflare current sheets in the solar atmosphere   总被引:1,自引:0,他引:1  
Neutral current sheets are expected to form in the solar atmosphere when photospheric motions or the emergence of new magnetic flux causes oppositely directed magnetic fields to be pressed together. Magnetic energy may thus be stored slowly in excess of the minimum energy associated with a purely potential field and released suddenly during a solar flare. For simplicity, we investigate the neutral sheet which forms between two parallel line dipoles when either the distance between them decreases or their dipole moments increase. It is found that, when the dipoles have approached by an amount equal to a tenth of their original separation distance, the stored energy is comparable with that released in a major flare. In addition, a similarity solution for one-dimensional magnetohydro-dynamic flow within such a neutral sheet is presented; it demonstrates that rapid conversion of magnetic energy into heat is possible provided conditions at the edge of the neutral sheet are changing sufficiently quickly.  相似文献   

13.
Large-scale solar activity is considered as a manifestation of 3 types of magnetic field activity which is demonstrated in the 22-year cycle (a) of small-scale flux emergence (polar faculae at latitudes > 40°), (b) of somewhat larger scale flux emergence (sunspots at latitudes < 40°), and (c) of the global magnetic neutral lines at all latitudes. The migration (poleward or equatorward) of the place of birth and/or of the phenomena themselves of these three types of manifestation of magnetic field is discussed. The poleward migration of the global field is explained in a phenomenological way.  相似文献   

14.
Concurrent observations of the solar flare of March 12, 1969 by two spacecrafts separated in solar longitude by 38° show that the accessibility at 1 AU to cosmic ray particles is not a simple function of the relative solar longitude. The cosmic ray flux, degree of anisotropy, and rise time all indicate that the favored path for cosmic ray propagation in this event was some 40° to the east of the nominal Archimedes spiral line of force from the flare location. This is interpreted as evidence for either (a) extreme stochastical wandering of the lines of force of the interplanetary magnetic field, or (b) the redistribution of the cosmic rays in coronal magnetic fields prior to escape onto the nominal Archimedes spiral lines of force.Now at CSIRO, G.P.O. Box 124, Port Melbourne, Victoria 3207, Australia.Now at Physical Research Laboratory, Ahmedabad, India.  相似文献   

15.
B. Inhester  J. Birn  M. Hesse 《Solar physics》1992,138(2):257-281
It has been demonstrated in the past that single, two-dimensional coronal arcades are very unlikely driven unstable by a simple shear of the photospheric footpoints of the magnetic field lines. By means of two-dimensional, time-dependent MHD simulations, we present evidence that a resistive instability can result if in addition to the footpoint shear a slow motion of the footpoints towards the photospheric neutral line is included. Unlike the model recently proposed by van Ballegooijen and Martens (1989), the photospheric footpoint velocity in our model is nonsingular and the shear dominates everywhere. Starting from a planar potential field geometry for the arcade, we find that after some time a current sheet is formed which is unstable with respect to the tearing instability. The time of its onset scales with the logarithm of the magnetic diffusivity assumed in our calculation. In its nonlinear phase, a quasi-stationary situation arises in the vicinity of the x-line with an almost constant reconnection rate. The height of the x-line above the photosphere and the distance of the separatrix footpoints remain almost constant in this phase, while the helical flux tube, formed above the neutral line, continuously grows in size.  相似文献   

16.
The role of null-point reconnection in a three-dimensional numerical magnetohydrodynamic (MHD) model of solar emerging flux is investigated. The model consists of a twisted magnetic flux tube rising through a stratified convection zone and atmosphere to interact and reconnect with a horizontal overlying magnetic field in the atmosphere. Null points appear as the reconnection begins and persist throughout the rest of the emergence, where they can be found mostly in the model photosphere and transition region, forming two loose clusters on either side of the emerging flux tube. Up to 26 nulls are present at any one time, and tracking in time shows that there is a total of 305 overall, despite the initial simplicity of the magnetic field configuration. We find evidence for the reality of the nulls in terms of their methods of creation and destruction, their balance of signs, their long lifetimes, and their geometrical stability. We then show that due to the low parallel electric fields associated with the nulls, null-point reconnection is not the main type of magnetic reconnection involved in the interaction of the newly emerged flux with the overlying field. However, the large number of nulls implies that the topological structure of the magnetic field must be very complex and the importance of reconnection along separators or separatrix surfaces for flux emergence cannot be ruled out.  相似文献   

17.
Zhao and Kosovichev (Astrophys. J. 591, 446, 2003) found two opposite sub-photospheric vortical flows in the depth range of 0 – 12 Mm around a fast rotating sunspot. So far there is no theoretical model explaining such flow motions. In this paper, we try to explain this phenomenon from the point of view of magnetic flux tubes interacting with large-scale vortical motions of plasma. In the deeper zone under the photosphere, the magnetic force may be less than the nonmagnetic force of plasma. The vortical flow located there twists the flux tube and magnetic free energy is built up in the tube. In the shallower zone under the photosphere, the magnetic force may be greater than the nonmagnetic force. Thus, part of the stored magnetic free energy is released to drive the plasma to rotate in two opposite directions, e.g., in the depth ranges of 0 – 3(5) and 9 – 12 Mm. In addition, we also define a vector of nonpotential magnetic stress τ, which can be related to flare occurrence. It is calculated for the active region NOAA 10930 on 11 December 2006. We find that: i) the integral of its line-of-sight (LOS) stress successively increases around the magnetic neutral line (MNL) prior to and during the flare and decreases to a minimum after the flare; ii) the integral of its transverse stress exceeds the integral of its LOS component by one order of magnitude over the whole field of view; iii) the transverse stress first points toward the MNL, then along it, and finally it points away from it. We need other data to verify whether or not the magnetic energy is transported in the horizontal direction to the neutral line, and then partly changes into the energy in LOS direction before and during the flare.  相似文献   

18.
Trajectories of test particles are studied numerically in two types of reconnection magnetic field configurations, a single X-line magnetic field configuration and a tearing magnetic field configuration. Both adiabatic and nonadiabatic motions are examined, with special emphasis on net energy gain and time spent in the neutral line regions. They spend typically one characteristic gyroperiod in the X-line region and are ejected predominantly along field lines in the vicinity of the separatrix. Both adiabatic and nonadiabatic test particles in the tearing-type field configuration are channelled into and accelerated along the O-line region. It may be inferred from these test particle results that particle energizations are significant along the O-line region, but not along the X-line region. These results are in qualitative agreement with those obtained by a self-consistent particle simulation.  相似文献   

19.
Topology of Magnetic Field and Coronal Heating in Solar Active Regions   总被引:2,自引:0,他引:2  
Force-free magnetic fields can be computed by making use of a new numerical technique, in which the fields are represented by a boundary integral equation based on a specific Green's function. Vector magnetic fields observed on the photospheric surface can be taken as the boundary conditions of this equation. In this numerical computation, the following two points are emphasized: (1) A new method for data reduction is proposed, for removing uncertainties in boundary data and determining the parameter in this Green's function, which is important for solving the boundary integral equation. In this method, the transverse components of the observed boundary field are calibrated with a linear force-free field model without changing their azimuth. (2) The computed 3-D fields satisfy the divergence-free and force-free conditions with high precision. The alignment of these field lines is mostly in agreement with structures in Hα and Yohkoh soft X-ray images. Since the boundary data are calibrated with a linear force-free field model, the computed 3-D magnetic field can be regarded as a quasi-linear force-free field approximation. The reconstruction of 3-D magnetic field in active region NOAA 7321 was taken as an example to quantitatively exhibit the capability of our new numerical technique.  相似文献   

20.
We have modeled the magnetosphere by superimposing a dipole field, a uniform field and a perturbation field due to a simple current system. This current system consists of a ring current in the neutral line of the dipole plus uniform fields, together with vertical currents representing field-aligned currents to the neutral line. The current circuit is closed by two additional ring currents above and below the equatorial plane representing distributed adiabatic perpendicular currents. This system produces many magnetospheric features including a magnetopause, bending of magnetic field lines in the anti-solar direction, a magnetotail, and cusps on the day-side of the Earth. Our aim is to demonstrate that it is not necessary to think of the magnetic field topology as being caused by the flowing plasma carrying field lines. The fundamental physical problem is to derive the current system from the self-consistent interaction of the solar-wind and magnetospheric plasmas and fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号