首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 777 毫秒
1.
Accurate simulation of flow and transport processes in fractured rocks requires that flow in fractures and shear zones to be coupled with flow in the porous rock matrix. To this end, we will herein consider a single-continuum approach in which both fractures and the porous rock are represented as volumetric objects, i.e., as cells in an unstructured triangular grid with a permeability and a porosity value associated with each cell. Hence, from a numerical point of view, there is no distinction between flow in the fractures and the rock matrix. This enables modelling of realistic cases with very complex structures. To compute single-phase advective transport in such a model, we propose to use a family of higher-order discontinuous Galerkin methods. Single-phase transport equations are hyperbolic and have an inherent causality in the sense that information propagates along streamlines. This causality is preserved in our discontinuous Galerkin discretization. We can therefore use a simple topological sort of the graph of discrete fluxes to reorder the degrees-of-freedom such that the discretized linear system gets a lower block-triangular form, from which the solution can be computed very efficiently using a single-pass forward block substitution. The accuracy and utility of the resulting transport solver is illustrated through several numerical experiments.  相似文献   

2.
Various numerical methods have been used in the literature to simulate single and multiphase flow in fractured media. A promising approach is the use of the discrete-fracture model where the fracture entities in the permeable media are described explicitly in the computational grid. In this work, we present a critical review of the main conventional methods for multiphase flow in fractured media including the finite difference (FD), finite volume (FV), and finite element (FE) methods, that are coupled with the discrete-fracture model. All the conventional methods have inherent limitations in accuracy and applications. The FD method, for example, is restricted to horizontal and vertical fractures. The accuracy of the vertex-centered FV method depends on the size of the matrix gridcells next to the fractures; for an acceptable accuracy the matrix gridcells next to the fractures should be small. The FE method cannot describe properly the saturation discontinuity at the matrix–fracture interface. In this work, we introduce a new approach that is free from the limitations of the conventional methods. Our proposed approach is applicable in 2D and 3D unstructured griddings with low mesh orientation effect; it captures the saturation discontinuity from the contrast in capillary pressure between the rock matrix and fractures. The matrix–fracture and fracture–fracture fluxes are calculated based on powerful features of the mixed finite element (MFE) method which provides, in addition to the gridcell pressures, the pressures at the gridcell interfaces and can readily model the pressure discontinuities at impermeable faults in a simple way. To reduce the numerical dispersion, we use the discontinuous Galerkin (DG) method to approximate the saturation equation. We take advantage of a hybrid time scheme to alleviate the restrictions on the size of the time step in the fracture network. Several numerical examples in 2D and 3D demonstrate the robustness of the proposed model. Results show the significance of capillary pressure and orders of magnitude increase in computational speed compared to previous works.  相似文献   

3.
We present a method to determine equivalent permeability of fractured porous media. Inspired by the previous flow-based upscaling methods, we use a multi-boundary integration approach to compute flow rates within fractures. We apply a recently developed multi-point flux approximation Finite Volume method for discrete fracture model simulation. The method is verified by upscaling an arbitrarily oriented fracture which is crossing a Cartesian grid. We demonstrate the method by applying it to a long fracture, a fracture network and the fracture network with different matrix permeabilities. The equivalent permeability tensors of a long fracture crossing Cartesian grids are symmetric, and have identical values. The application to the fracture network case with increasing matrix permeabilities shows that the matrix permeability influences more the diagonal terms of the equivalent permeability tensor than the off-diagonal terms, but the off-diagonal terms remain important to correctly assess the flow field.  相似文献   

4.
In this study, a numerical manifold method (NMM) model is developed to analyze flow in porous media with discrete fractures in a non-conforming mesh. This new model is based on a two-cover-mesh system with a uniform triangular mathematical mesh and boundary/fracture-divided physical covers, where local independent cover functions are defined. The overlapping parts of the physical covers are elements where the global approximation is defined by the weighted average of the physical cover functions. The mesh is generated by a tree-cutting algorithm. A new model that does not introduce additional degrees of freedom (DOF) for fractures was developed for fluid flow in fractures. The fracture surfaces that belong to different physical covers are used to represent fracture flow in the direction of the fractures. In the direction normal to the fractures, the fracture surfaces are regarded as Dirichlet boundaries to exchange fluxes with the rock matrix. Furthermore, fractures that intersect with Dirichlet or Neumann boundaries are considered. Simulation examples are designed to verify the efficiency of the tree-cutting algorithm, the calculation's independency from the mesh orientation, and accuracy when modeling porous media that contain fractures with multiple intersections and different orientations. The simulation results show good agreement with available analytical solutions. Finally, the model is applied to cases that involve nine intersecting fractures and a complex network of 100 fractures, both of which achieve reasonable results. The new model is very practical for modeling flow in fractured porous media, even for a geometrically complex fracture network with large hydraulic conductivity contrasts between fractures and the matrix.  相似文献   

5.
This study introduces the dispersive fluid flux of total fluid mass to the density-driven flow equation to improve thermohaline modeling of salt and heat transports in porous media. The dispersive fluid flux in the flow equation is derived to account for an additional fluid flux driven by the density gradient and mechanical dispersion. The coupled flow, salt transport and heat transport governing equations are numerically solved by a fully implicit finite difference method to investigate solution changes due to the dispersive fluid flux. The numerical solutions are verified by the Henry problem and the thermal Elder problem under a moderate density effect and by the brine Elder problem under a strong density effect. It is found that increment of the maximum ratio of the dispersive fluid flux to the advective fluid flux results in increasing dispersivity for the Henry problem and the brine Elder problem. The effects of the dispersive fluid flux on salt and heat transports under high density differences and high dispersivities are more noticeable than under low density differences and low dispersivities. Values of quantitative indicators such as the Nusselt number, mass flux, salt mass stored and maximum penetration depth in the brine Elder problem show noticeable changes by the dispersive fluid flux. In the thermohaline Elder problem, the dispersive fluid flux shows a considerable effect on the shape and the number of developed fingers and makes either an upwelling or a downwelling flow in the center of the domain. In conclusion, for the general case that involves strong density-driven flow and transport modeling in porous media, the dispersive fluid flux should be considered in the flow equation.  相似文献   

6.
An efficient and accurate numerical model for multicomponent compressible single-phase flow in fractured media is presented. The discrete-fracture approach is used to model the fractures where the fracture entities are described explicitly in the computational domain. We use the concept of cross flow equilibrium in the fractures. This will allow large matrix elements in the neighborhood of the fractures and considerable speed up of the algorithm. We use an implicit finite volume (FV) scheme to solve the species mass balance equation in the fractures. This step avoids the use of Courant–Freidricks–Levy (CFL) condition and contributes to significant speed up of the code. The hybrid mixed finite element method (MFE) is used to solve for the velocity in both the matrix and the fractures coupled with the discontinuous Galerkin (DG) method to solve the species transport equations in the matrix. Four numerical examples are presented to demonstrate the robustness and efficiency of the proposed model. We show that the combination of the fracture cross-flow equilibrium and the implicit composition calculation in the fractures increase the computational speed 20–130 times in 2D. In 3D, one may expect even a higher computational efficiency.  相似文献   

7.
This article provides a partial answer to the question “What is the relation between excess hydraulic head and volume flux of water in a conduit within a porous matrix?”, focusing on the case that the forcing is steady. The conduit is modelled as a horizontal circular cylinder, imbedded within a porous matrix of rectangular cross section, having constant head prescribed on the sidewalls and being confined top and bottom. Laminar flow in the matrix is assumed to obey Darcy's law, while turbulent flow in the conduit is quantified using the Darcy–Weisbach equation. Analysis of the latter equation shows that the length scale of variations in the direction of the conduit is large compared with the scale of lateral and vertical variations. This permits separation of the full three-dimensional non-linear problem into a two-dimensional linear problem for head within the matrix and a one-dimensional non-linear problem for head within the conduit. Analytic solutions are obtained for the distribution of head in the matrix and in a conduit of either infinite or finite length. In both cases, the volume flux of water is proportional to the excess head to the 2/3 power, the conduit radius to the 5/3 power, the matrix permeability to the 1/3 power and gravity to the 1/3 power. The scale of variation of head along the conduit is proportional to the excess head to the ?1/3 power, the conduit radius to the 5/3 power, the matrix permeability to the ?2/3 power and gravity to the 1/3 power.  相似文献   

8.
在实际的水力压裂过程中,裂缝总是沿着垂直于最小地应力的方向扩展,地应力的分布形式和多个压裂段之间的互相影响(应力阴影效应)对于形成复杂的裂缝网络具有重要的影响。本文基于扩展有限单元法(XFEM)模拟页岩等多孔介质在水压作用下裂缝的任意扩展,由于在传统有限元法的基础上引入了扩充自由度和可以描述间断的位移阶跃函数,所以裂缝可以独立于网格扩展,而不需要重新剖分网格。通过引入一维流动假设,求解润滑方程,并考虑流体在裂缝内的流动。同时也考虑裂缝向基质中流动的滤失效应。研究实际施工中不同段间距下裂缝的扩展模式和段间距对裂缝形态的影响,结果表明,压裂段间距过小时中间的裂缝会被屏蔽;此外,裂缝会由于应力阴影效应而发生转向。  相似文献   

9.
In this paper, we describe an efficient approach for quantifying uncertainty in two-phase flow applications due to perturbations of the permeability in a multiscale heterogeneous porous medium. The method is based on the application of the multiscale finite element method within the framework of Monte Carlo simulation and an efficient preprocessing construction of the multiscale basis functions. The quantities of interest for our applications are the Darcy velocity and breakthrough time and we quantify their uncertainty by constructing the respective cumulative distribution functions. For the Darcy velocity we use the multiscale finite element method, but due to lack of conservation, we apply the multiscale finite volume element method as an alternative for use with the two-phase flow problem. We provide a number of numerical examples to illustrate the performance of the method.  相似文献   

10.
In this paper, the solution of a problem in potential theory is presented, in the context of flow through a porous medium into gaps in an otherwise impervious layer. An exact solution for the flux ratio, suitable for numerical computation, is tound by Schwarz-Christoffel conformal transformation. An asymptotic expression derived for the flux ratio is found to be accurate except for quite small relative depth.  相似文献   

11.
在电缆地层测试器的测量过程中,油水两相共渗的情况普遍存在,此时其测量过程的数学模型是非线性的耦合场问题,无法用解析方法求解.加上测量中存在抽吸探针与地层、井筒接触面几何形状复杂、探针与地层尺寸相差悬殊等问题,使得应用渗流力学中较为成熟的有限差分方法求解数学模型也不能获得理想的结果.本文应用适合于处理复杂几何形状计算的有限元方法,根据地层测试器测试过程中油水两相渗流的数学模型,首次建立了地层测试器测量油水两相渗流的有限元模型,给出了验证和求解的实例.运用本文所建立的计算模型可以更准确地模拟测试过程中压力和饱和度随时间和空间变化的情况,为正确使用地层测试器提供指导.  相似文献   

12.
In fractured reservoirs, seismic wave velocity and amplitude depend on frequency and incidence angle. Frequency dependence is believed to be principally caused by the wave‐induced flow of pore fluid at the mesoscopic scale. In recent years, two particular phenomena, i.e., patchy saturation and flow between fractures and pores, have been identified as significant mechanisms of wave‐induced flow. However, these two phenomena are studied separately. Recently, a unified model has been proposed for a porous rock with a set of aligned fractures, with pores and fractures filled with two different fluids. Existing models treat waves propagating perpendicular to the fractures. In this paper, we extend the model to all propagation angles by assuming that the flow direction is perpendicular to the layering plane and is independent of the loading direction. We first consider the limiting cases through poroelastic Backus averaging, and then we obtain the five complex and frequency‐dependent stiffness values of the equivalent transversely isotropic medium as a function of the frequency. The numerical results show that, when the bulk modulus of the fracture‐filling fluid is relatively large, the dispersion and attenuation of P‐waves are mainly caused by fractures, and the values decrease as angles increase, almost vanishing when the incidence angle is 90° (propagation parallel to the fracture plane). While the bulk modulus of fluid in fractures is much smaller than that of matrix pores, the attenuation due to the “partial saturation” mechanism makes the fluid flow from pores into fractures, which is almost independent of the incidence angle.  相似文献   

13.
A numerical method is developed for accurately approximating head and flux covariances and cross-covariances in finite two- and three-dimensional domains using the mixed finite element method. The method is useful for determining head and flux covariances for non-stationary flow fields, for example those induced by injection or extraction wells, impermeable subsurface barriers, or non-stationary hydraulic conductivity fields. Because the numerical approximations to the flux covariances are obtained directly from the solution to the coupled problem rather than having to differentiate head covariances, the approximations are in general more accurate than those obtained from conventional finite difference or finite element methods. Results for uniform flow example problems are consistent with results from previously published finite domain analyses and demonstrate that head variances and covariances are quite sensitive to boundary conditions and the size of the bounded domain. Flux variances and covariances are less sensitive to boundary conditions and domain size. Results comparing approximations from lower-order Raviart–Thomas–Nedelec and higher order Brezzi–Douglas–Marini[9] finite element spaces indicate that higher order element space improve the estimate of the flux covariances, but do not significantly affect the estimate of the head covariances.  相似文献   

14.
A numerical procedure is presented to deal with solution of transient free-surface flows in porous media. The governing boundary-value problem for the piezometric potential is solved by the finite element method. The initial-value problem which describes the transient motion of the free-surface is solved by the method of quasi-linearization. The numerical scheme has been applied to isotropic and anisotropic earth dam problem and also to a ditch drainage problem. Excellent agreements have been reached when compared with known solutions. This computational procedure is shown to be stable and suitable for this class of problems with the aid of a digital computer.  相似文献   

15.
Flow and displacement of non-Newtonian fluids in porous media occurs in many subsurface systems, related to underground natural resource recovery and storage projects, as well as environmental remediation schemes. A thorough understanding of non-Newtonian fluid flow through porous media is of fundamental importance in these engineering applications. Considerable progress has been made in our understanding of single-phase porous flow behavior of non-Newtonian fluids through many quantitative and experimental studies over the past few decades. However, very little research can be found in the literature regarding multi-phase non-Newtonian fluid flow or numerical modeling approaches for such analyses.For non-Newtonian fluid flow through porous media, the governing equations become nonlinear, even under single-phase flow conditions, because effective viscosity for the non-Newtonian fluid is a highly nonlinear function of the shear rate, or the pore velocity. The solution for such problems can in general only be obtained by numerical methods.We have developed a three-dimensional, fully implicit, integral finite difference simulator for single- and multi-phase flow of non-Newtonian fluids in porous/fractured media. The methodology, architecture and numerical scheme of the model are based on a general multi-phase, multi-component fluid and heat flow simulator — TOUGH2. Several rheological models for power-law and Bingham non-Newtonian fluids have been incorporated into the model. In addition, the model predictions on single- and multi-phase flow of the power-law and Bingham fluids have been verified against the analytical solutions available for these problems, and in all the cases the numerical simulations are in good agreement with the analytical solutions. In this presentation, we will discuss the numerical scheme used in the treatment of non-Newtonian properties, and several benchmark problems for model verification.In an effort to demonstrate the three-dimensional modeling capability of the model, a three-dimensional, two-phase flow example is also presented to examine the model results using laboratory and simulation results existing for the three-dimensional problem with Newtonian fluid flow.  相似文献   

16.
Different theoretical and laboratory studies on the propagation of elastic waves in layered hydrocarbon reservoir have shown characteristic velocity dispersion and attenuation of seismic waves. The wave‐induced fluid flow between mesoscopic‐scale heterogeneities (larger than the pore size but smaller than the predominant wavelengths) is the most important cause of attenuation for frequencies below 1 kHz. Most studies on mesoscopic wave‐induced fluid flow in the seismic frequency band are based on the representative elementary volume, which does not consider interaction of fluid flow due to the symmetrical structure of representative elementary volume. However, in strongly heterogeneous media with unsymmetrical structures, different courses of wave‐induced fluid flow may lead to the interaction of the fluid flux in the seismic band; this has not yet been explored. This paper analyses the interaction of different courses of wave‐induced fluid flow in layered porous media. We apply a one‐dimensional finite‐element numerical creep test based on Biot's theory of consolidation to obtain the fluid flux in the frequency domain. The characteristic frequency of the fluid flux and the strain rate tensor are introduced to characterise the interaction of different courses of fluid flux. We also compare the behaviours of characteristic frequencies and the strain rate tensor on two scales: the local scale and the global scale. It is shown that, at the local scale, the interaction between different courses of fluid flux is a dynamic process, and the weak fluid flux and corresponding characteristic frequencies contain detailed information about the interaction of the fluid flux. At the global scale, the averaged strain rate tensor can facilitate the identification of the interaction degree of the fluid flux for the porous medium with a random distribution of mesoscopic heterogeneities, and the characteristic frequency of the fluid flux is potentially related to that of the peak attenuation. The results are helpful for the prediction of the distribution of oil–gas patches based on the statistical properties of phase velocities and attenuation in layered porous media with random disorder.  相似文献   

17.
Richards’ equation (RE) is commonly used to model flow in variably saturated porous media. However, its solution continues to be difficult for many conditions of practical interest. Among the various time discretizations applied to RE, the method of lines (MOL) has been used successfully to introduce robust, accurate, and efficient temporal approximations. At the same time, a mixed-hybrid finite element method combined with an adaptive, higher order time discretization has shown benefits over traditional, lower order temporal approximations for modeling single-phase groundwater flow in heterogeneous porous media. Here, we extend earlier work for single-phase flow and consider two mixed finite element methods that have been used previously to solve RE using lower order time discretizations with either fixed time steps or empirically based adaption. We formulate the two spatial discretizations within a MOL context for the pressure head form of RE as well as a fully mass-conservative version. We conduct several numerical experiments for both spatial discretizations with each formulation, and we compare the higher order, adaptive time discretization to a first-order approximation with formal error control and adaptive time step selection. Based on the numerical results, we evaluate the performance of the methods for robustness and efficiency.  相似文献   

18.
In general, the accuracy of numerical simulations is determined by spatial and temporal discretization levels. In fractured porous media, the time step size is a key factor in controlling the solution accuracy for a given spatial discretization. If the time step size is restricted by the relatively rapid responses in the fracture domain to maintain an acceptable level of accuracy in the entire simulation domain, the matrix tends to be temporally over-discretized. Implicit sub-time stepping applies smaller sub-time steps only to the sub-domain where the accuracy requirements are less tolerant and is most suitable for problems where the response is high in only a small portion of the domain, such as within and near the fractures in fractured porous media. It is demonstrated with illustrative examples that implicit sub-time stepping can significantly improve the simulation efficiency with minimal loss in accuracy when simulating flow and transport in fractured porous media. The methodology is successfully applied to density-dependent flow and transport simulations in a Canadian Shield environment, where the flow and transport is dominated by discrete, highly conductive fracture zones.  相似文献   

19.
《Advances in water resources》2004,27(11):1045-1059
Transient and steady-state analytical solutions are derived to investigate solute transport in a fractured porous medium consisting of evenly spaced, parallel discrete fractures. The solutions incorporate a finite width strip source, longitudinal and transverse dispersion in the fractures, source decay, aqueous phase decay, one-dimensional diffusion into the matrix, sorption to fracture walls, and sorption within the matrix. The solutions are derived using Laplace and Fourier transforms, and inverted by interchanging the order of integration and utilizing a numerical Laplace inversion algorithm. The solutions are verified for simplified cases by comparison to solutions derived by Batu [Batu V. A generalized two-dimensional analytical solution for hydrodynamic dispersion in bounded media with the first-type condition at the source. Wat Resour Res 1989;25(6):1125] and Sudicky and Frind [Sudicky EA, Frind EO. Contaminant transport in fractured porous media: analytical solutions for a system of parallel fractures. Wat Resour Res 1982;18(6):1634]. The application of the solutions to a fractured sandstone demonstrates that narrower source widths and larger values of transverse dispersivity both lead to lower downstream concentrations in the fractures and shorter steady-state plumes. The incorporation of aqueous phase decay and source concentration decay both lead to lower concentrations and shorter plumes, with even moderate amounts of decay significantly shortening the persistence of contamination.  相似文献   

20.
本文采用有限元方法研究含湿孔隙岩石的有效热导率,即随机划分网格并指定材料性质,建立三维含湿孔隙岩石的有限元模型,模型的上下表面施加不同的温度,侧面绝热,计算出总热流,然后结合上下表面的温度梯度计算出岩石的有效热导率.考虑到单个随机模型不一定具有代表性,对给定的孔隙率和饱和度均生成了200种矿物、水、空气随机分布的岩石模型,进行Monte Carlo实验和统计分析,统计分析结果与前人实验结果吻合良好.数值分析结果表明,孔隙岩石的有效热导率与岩石的孔隙率、饱和度、固体矿物组分及孔隙的分布情况有关,数值计算的误差随着网格数目的增加而减小.此有限元方法可以用来估算岩石的有效热导率,在已知组分性质的多矿物岩石物性计算方面有广阔应用前景.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号