首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To study the anisotropy of vegetation indices (VIs) and explore its influence on the retrieval accuracy of canopy soil-plant analyzer development (SPAD) value, the bidirectional reflectance distribution function (BRDF) models of soybean and maize are calculated from the multi-angle hyperspectral images acquired by UAV, respectively. According to the reflectance extracted from the BRDF model, the dependences of 16 commonly-used VIs on observation angles are analyzed, and the SPAD values of maize and soybean canopy are predicted by using the 16 VI values at different observation angles and their combinations as input parameters. The results show that the 16 VIs have different sensitivity to angle in the principal plane: green ratio vegetation index (GRVI), ratio vegetation index (RVI), red edge chlorophyll index (CIRE), and modified chlorophyll absorption in reflectance index/optimized soil-adjusted vegetation index (MCARI/OSAVI) are very sensitive to angles, among which MCARI/OSAVI of maize fluctuated the most (138.83 %); in contrast, the green optimal soil adjusted vegetation index (GOSAVI), normalized difference vegetation index (NDVI), and green normalized difference vegetation index (GNDVI) hardly change with the observation angles. In terms of SPAD prediction, the accuracy of different VI is different, the mean absolute error (MAE) showed that MCARI1 provided the highest accuracy of retrieval for soybean (MAE=1.617), while for maize it was MCARI/OSAVI (MAE=2.422). However, when using the same VI, there was no significant difference in the accuracy of the predicted results, whether the VI from different angles was used or the combination of multi-angles was used. The present results provide guiding significance and practical value for the retrieval of SPAD value in vegetation canopies and in-depth applications of multi-angular remote sensing.  相似文献   

2.
陈拉  黄敬峰  王秀珍 《遥感学报》2008,12(1):143-151
本研究利用水稻冠层高光谱数据,模拟NOAA-AVHRR,Terra-MODIS和Landsat-TM的可见光波段反射率数据,计算各传感器的多种植被指数(NDVI,RVI,EVI,GNDVI,GRVI和Red-edge RVI),比较植被指数模型对水稻LAI的估测精度,分析不同植被指数对LAI变化的敏感性.相对于红波段植被指数,红边比值植被指数(Red-edge RVI)和绿波段指数GRVI与LAI有更好的线性相关关系,而GNDVI和LAI呈现更好的对数相关关系.MODIS的Red-edge RVI指数不仅模型拟合的精度最高,还有独立数据验证的估测精度也最高,而且它的验证精度较拟合精度下降幅度最小;其次是绿波段构建的GNDVI和GRVI植被指数的估测精度,再次是NDVI和EVI的估测精度,而RVI的估测精度最差.敏感性分析发现,13个植被指数对水稻LAI的估测能力都随着LAI的增加而下降,但归一化类植被指数和比值类植被指数对LAI变化反应的差异明显,归一化类植被指数在LAI较低时(LAI<1.5)对LAI变化的反应开始非常敏感,但迅速下降,而比值类植被指数在LAI较低时,明显小于归一化类植被指数,之后随着LAI的增大(LAI>1.5)比值类植被指数对LAI的变化敏感性,则明显高于归一化类植被指数.Red-edge RVI和绿波段指数GRVI和LAI不仅表现了很好的线性相关关系,而且在LAI大于2.9左右保持较高的敏感性.  相似文献   

3.
The vegetation index is derived using many remote sensing sensors. Vegetation Index is extensively used and remote sensing has become the primary data source. Number of vegetation indices (VIs) have been developed during the past decades in order to assess the state of vegetation qualitatively and quantitatively. Analysis of vegetation indices has been carried out by many investigators scaling from regional level to global level using the remote sensing data of varying spatial, temporal and radiometric resolutions. There are as many as 14 VIs in use. Globally operational algorithms for generation of NDVI have utilized digital counts, at sensor radiances, ‘normalized’ reflectance (top of the atmosphere), and more recently, partially atmospheric corrected (ozone absorption and molecular scattering) reflectance. Presently NDVI and EVI are standard MODIS data products which are widely used by the scientific community for environmental studies. The OCM sensor in Oceansat 2 is designed for ocean colour studies. The OCM sensor has been used for studying ocean phytoplankton, suspended sediments and aerosol optical depth by many investigators. In addition to its capability of studying the ocean surface, OCM sensor has also the potential to study the land surface features. In a past EVI has been retrieved using OCM sensor of Oceansat 1. However, there is slight change in the band width of Oceansat 2—OCM sensor compared with OCM of Oceansat 1 sensor. In the present paper an attempt has been made to derive EVI using Oceansat 2 OCM sensor and the results have been compared with MODIS data. The enhanced vegetation index (EVI) is calculated using the reflectance values obtained after removing molecular scattering and ozone absorption component from the total radiance detected by the sensor. The band-2, Band-3, band-6 and band-8 corresponding to Blue, Red and Infrared part of the visible spectrum have been used to determine EVI. The result shows that Oceansat 2 derived EVI and MODIS derived EVI are well correlated.  相似文献   

4.
Remote sensing images are widely used to map leaf area index (LAI) continuously over landscape. The objective of this study is to explore the ideal image features from Chinese HJ-1 A/B CCD images for estimating winter wheat LAI in Beijing. Image features were extracted from such images over four seasons of winter wheat growth, including five vegetation indices (VIs), principal components (PC), tasseled cap transformations (TCT) and texture parameters. The LAI was significantly correlated with the near-infrared reflectance band, five VIs [normalized difference vegetation index, enhanced vegetation index (EVI), modified nonlinear vegetation index (MNLI), optimization of soil-adjusted vegetation index, and ratio vegetation index], the first principal component (PC1) and the second TCT component (TCT2). However, these image features cannot significantly improve the estimation accuracy of winter wheat LAI in conjunction with eight texture measures. To determine the few ideal features with the best estimation accuracy, partial least squares regression (PLSR) and variable importance in projection (VIP) were applied to predict LAI values. Four remote sensing features (TCT2, PC1, MNLI and EVI) were chosen based on VIP values. The result of leave-one-out cross-validation demonstrated that the PLSR model based on these four features produced better result than the ten features’ model, throughout the whole growing season. The results of this study suggest that selecting a few ideal image features is sufficient for LAI estimation.  相似文献   

5.
The retrieval of canopy biophysical variables is known to be affected by confounding factors such as plant type and background reflectance. The effects of soil type and plant architecture on the retrieval of vegetation leaf area index (LAI) from hyperspectral data were assessed in this study. In situ measurements of LAI were related to reflectances in the red and near-infrared and also to five widely used spectral vegetation indices (VIs). The study confirmed that the spectral contrast between leaves and soil background determines the strength of the LAI–reflectance relationship. It was shown that within a given vegetation species, the optimum spectral regions for LAI estimation were similar across the investigated VIs, indicating that the various VIs are basically summarizing the same spectral information for a given vegetation species. Cross-validated results revealed that, narrow-band PVI was less influenced by soil background effects (0.15 ≤ RMSEcv ≤ 0.56). The results suggest that, when using remote sensing VIs for LAI estimation, not only is the choice of VI of importance but also prior knowledge of plant architecture and soil background. Hence, some kind of landscape stratification is required before using hyperspectral imagery for large-scale mapping of vegetation biophysical variables.  相似文献   

6.
利用深蓝算法从HJ-1数据反演陆地气溶胶   总被引:8,自引:1,他引:7  
大气气溶胶是环境空气污染监测的重要指标,在利用环境一号卫星CCD相机进行气溶胶监测时,暗目标法和结构函数法都有相应的不足。本文从Hsu等人(2004)提出的深蓝算法出发,以MODIS的地表反射率产品为基础建立反射率库,并利用地面观测数据分析了各种典型地物在CCD相机与MODIS蓝波段反射率之间关系,提出了将MODIS地表反射率修正到CCD相机的方法,进而实现地气解耦,反演气溶胶光学厚度。选择北京地区为实验区,进行了算法实验,并用AERONET/PHOTONS北京站的数据进行了验证,结果表明,(1)光学厚度较大时(>0.5),深蓝算法精度能够较好的满足环境一号卫星CCD相机对气溶胶日常监测的要求;(2)气溶胶模式会对结果产生较大的影响,尤其是城市型气溶胶。  相似文献   

7.
HJ-1A CCD与TM数据及其估算草地LAI和鲜生物量效果比较分析   总被引:2,自引:1,他引:1  
基于地面实测和PROSAIL模型模拟数据,研究了新型传感器HJ-1ACCD与TM数据一致性问题,分析了传感器天顶角和光谱相应函数差异的影响,对比两种传感器数据估算草地LAI和鲜生物量的效果,得出以下结论:(1)HJ-1ACCD和TM反射率数据的拟合系数R2在0.7322和0.9205左右,在反射率较小时,两种传感器数据一致性较好;随着反射率增大,HJ-1ACCD数值逐渐高于TM。总体而言,在可见光和近红外波段,两种传感器较为接近,其中红波段最接近。(2)两种传感器的NDVI数据一致性非常高,且受传感器天顶角和光谱响应函数影响作用较小(相对误差约为0.34%—0.53%),而反射率的相对差别在3.34%—9.54%。(3)传感器天顶角较光谱响应函数对反射率影响更大。(4)基于HJ-1ACCD反射率数据估算草地LAI和鲜生物量效果较好,其中以CCD2传感器估算效果最好。  相似文献   

8.
ABSTRACT

We designed a unique hyperspectral experiment from the Earth Observing One (EO-1) orbit change to evaluate solar illumination effects over tropical forests in Brazil. Ten nadir-viewing Hyperion images collected over a fixed site and period of the year (July to August) were selected for analysis. We evaluated variations in reflectance and in 16 narrowband vegetation indices (VIs) with increasing solar zenith angle (SZA) from the pre-drift (2004–2008) to the EO-1 drift period (2011–2016). To detect changes in reflectance and shadows, we applied spectral mixture analysis (SMA) and principal component analysis (PCA) and calculated the similarity spectral angle (θ) between the vegetation spectra measured with variable SZA. The magnitude of the illumination effects was also evaluated from change-point analysis and nonparametric Mann-Whitney U tests applied over the time series. Finally, we complemented our experiment using the PROSAIL model to simulate the VIs variation with increasing SZA resultant from satellite drift. The results showed significant changes in Hyperion reflectance and VIs, especially when the EO-1 crossed the study area at earlier times and larger SZA in 2015 (9:05 a.m.; SZA = 59°) and 2016 (8:30 a.m.; SZA = 67°). Compared to the pre-drift period (10:30 a.m.; SZA = 45°), the SZA differences of 14° (2015) and 22° (2016) increased the shade fractions and decreased the vegetation brightness. PCA separated the pre-drift and drift reflectance datasets, showing shifts in scores due to changes in brightness. θ increased with SZA, indicating changes in the shape of the vegetation spectra with drift. For most VIs, the change-point analysis indicated 2015 (SZA = 59°) as the predominant year of detected changes. Compared to the EO-1 original orbit, the Plant Senescence Reflectance Index (PSRI), Anthocyanin Reflectance Index (ARI) and Structure Insensitive Pigment Index (SIPI) presented the largest positive changes during drift, while the Photochemical Reflectance Index (PRI), Visible Atmospherically Resistant Index (VARI) and Enhanced Vegetation Index (EVI) had the largest negative changes. The effect size of the illumination geometry on these VIs was large, as indicated by increasing values of the Cohen’s r metric toward 2016. The anisotropy of the Hyperion VIs was generally consistent with that from PROSAIL in the simulated pre-drift and drift periods. Focusing on structural indices, it affected the relationships between VIs and simulated leaf area index (LAI) at large SZA.  相似文献   

9.
HJ-1A星HSI数据2级产品处理流程研究   总被引:4,自引:1,他引:3  
研究了HJ-1A星HSI数据2级产品的数据预处理流程及相关算法,包括绝对辐亮度值转换、条纹去除、大气校正及几何纠正,得到了具有精确地理位置信息的地表光谱反射率图像; 基于相同位置同期的一景Hyperion数据标准化处理流程得到的地表反射率,进行了HSI数据的光谱模拟,并将模拟的地表反射率与真实HSI数据的地表反射率进行...  相似文献   

10.
杜鹤娟  柳钦火  李静  杨乐 《遥感学报》2013,17(6):1587-1611
光学遥感是目前反演植被叶面积指数LAI(Leaf Area Index)的主要手段,但是当叶面积指数较大时存在光学遥感信息饱和、反演精度显著降低的问题。叶面积指数和平均叶倾角对光学、微波波段范围内反射和散射特性都有重要影响,主要表现在植被结构参数的变化可以引起冠层孔隙率和消光截面大小的改变。本文以典型农作物玉米为例,通过构建统一的PROSAIL和MIMICS模型输入参数,生成一套玉米全生长期光学二向反射率和全极化微波后向散射系数模拟库和冠层参数库。通过对模拟数据与LAI敏感性和相关性分析得出:(1)光学植被指数MNDVI(800 nm,2000 nm),在LAI为0—3时敏感,基于MNDVI与LAI的回归模型可以估算LAI变化 0.4的情况,RMSE是0.33,R2是0.958。(2)微波植被指数SARSRVI(1.4 GHz HH,9.6 GHz HV),在LAI为3—6时敏感,基于SARSRVI与LAI的回归模型可以估算LAI变化1的情况,RMSE为0.22,R2是0.9839。研究表明,采用分段敏感的植被指数,协同光学和微波遥感反演玉米全生长期叶面积指数是可行的。  相似文献   

11.
Reduced availability of plant nutrients such as nitrogen (N) and phosphorous (P) has detrimental effects on plant growth. Plant N:P ratio, calculated as the quotient of N and P concentrations, is an ecological indicator of relative N and P limitation. Remote sensing has already been widely used to detect plant traits in foliage, particularly canopy N and P concentrations and could be used to detect canopy N:P faster and at lower cost than traditional destructive methods. Despite the potential opportunity of applying remote sensing techniques to detect canopy N:P, studies investigating canopy N:P remote detection are scarce. In this study, we examined if vegetation indices developed for canopy N or P detection can also be used for canopy N:P detection. Using in situ spectrometry, we measured the reflectance of a common grass species, Yorkshire fog (Holcus lanatus L.), grown under different nutrient ratios and levels. We calculated 60 VIs found in literature and compared them to optimized VIs developed specifically for this study. The VIs were calculated using both the original narrow band spectra and the spectra resampled to the band properties of six satellite sensors (MSI – Sentinel 2, OLCI – Sentinel 3, MODIS – Terra/Aqua, OLI – Landsat 8, WorldView 4 and RapidEye) to investigate the influence of bandwidths and band positions. The results showed that canopy N:P was significantly related to both existing VIs (r2 = 0.16 - 0.48) and optimized VIs (r2 = 0.59 – 0.72) with correlations similar to what was observed for canopy N or canopy P. Existing VIs calculated with MSI and OLI sensors bands showed higher correlation with canopy N:P compared to the other sensors while the correlation with optimized VIs was not affected by the differences in sensors’ bands. This study might lead to future practical applications using in situ reflectance measurements to sense canopy N:P in grasslands.  相似文献   

12.
Vegetation indices (VIs) calculated from remotely sensed reflectance are widely used tools for characterizing the extent and status of vegetated areas. Recently, however, their capability to monitor the Amazon forest phenology has been intensely scrutinized. In this study, we analyze the consistency of VIs seasonal patterns obtained from two MODIS products: the Collection 5 BRDF product (MCD43) and the Multi-Angle Implementation of Atmospheric Correction algorithm (MAIAC). The spatio-temporal patterns of the VIs were also compared with field measured leaf litterfall, gross ecosystem productivity and active microwave data. Our results show that significant seasonal patterns are observed in all VIs after the removal of view-illumination effects and cloud contamination. However, we demonstrate inconsistencies in the characteristics of seasonal patterns between different VIs and MODIS products. We demonstrate that differences in the original reflectance band values form a major source of discrepancy between MODIS VI products. The MAIAC atmospheric correction algorithm significantly reduces noise signals in the red and blue bands. Another important source of discrepancy is caused by differences in the availability of clear-sky data, as the MAIAC product allows increased availability of valid pixels in the equatorial Amazon. Finally, differences in VIs seasonal patterns were also caused by MODIS collection 5 calibration degradation. The correlation of remote sensing and field data also varied spatially, leading to different temporal offsets between VIs, active microwave and field measured data. We conclude that recent improvements in the MAIAC product have led to changes in the characteristics of spatio-temporal patterns of VIs seasonality across the Amazon forest, when compared to the MCD43 product. Nevertheless, despite improved quality and reduced uncertainties in the MAIAC product, a robust biophysical interpretation of VIs seasonality is still missing.  相似文献   

13.
The objective of this study was to investigate the relationship between crown closure and tree density in mixed forest stands using Landsat Thematic Mapper (TM) reflectance values (TM 1- TM 5 and TM 7) and six vegetation indices (SR, DVI, SAVI, NDVI, TVI and NLI). In this study, multiple regression analysis was used to estimate the relationships between the crown closure and tree density (number of tree stems per hectare) using reflectance values and vegetation indices (VIs). The results demonstrated that the model that used SR and DVI had the best performances in terms of crown closure (R2?=?0.674) and the model that used the DVI and SAVI had the best performances in terms of tree density (R2?=?0.702). The regression model that used TM 1, TM 3 together with TM 4 showed the performances of the crown closure (R2?=?0.610) and the regression model that used TM 1 showed the performances of the tree density (0.613). Results obtained from this research show that vegetation indices (VIs) were a better predictor of crown closure and tree density than other TM bands.  相似文献   

14.
Due to its ability to penetrate the cloud, Synthetic Aperture Radar (SAR) has been a great resource for crop mapping. Previous research has verified the applicability of SAR imagery in object-oriented crop classification, however, speckle noise limits the generation of optimal segmentation. This paper proposed an innovative SAR-based maize mapping method supported by optical image, Gaofen-1 PMS, based segmentation, named as parcel-based SAR classification assisted by optical imagery-based segmentation (os-PSC). Polarimetric decomposition was applied to extract polarimetric parameters from multi-temporal RADARSAT-2 data. One Gaofen-1 image was then used for parcel extraction, which was the basic unit for SAR image analysis. The final step was a multi-step classification for final maize mapping including: the potential maize mask extraction, pure/mixed maize parcel division and an integrated maize map production. Results showed that the overall accuracy of the os-PSC method was 89.1%, higher than those of pixel-level classification and SAR-based segmentation methods. The comparison between optical- and SAR-based segmentation demonstrated that optical-based segmentation would be better at representing maize field boundaries than the SAR-based segmentation. Moreover, the parcel- and pixel-level integrated classification will be suitable for many agricultural systems with small landownership where inter-cropping is common. Through integrating advantages of the SAR and optical data, os-PSC shows promising potentials for crop mapping.  相似文献   

15.
In this study, an object-based image analysis (OBIA) approach was developed to classify field crops using multi-temporal SPOT-5 images with a random forest (RF) classifier. A wide range of features, including the spectral reflectance, vegetation indices (VIs), textural features based on the grey-level co-occurrence matrix (GLCM) and textural features based on geostatistical semivariogram (GST) were extracted for classification, and their performance was evaluated with the RF variable importance measures. Results showed that the best segmentation quality was achieved using the SPOT image acquired in September, with a scale parameter of 40. The spectral reflectance and the GST had a stronger contribution to crop classification than the VIs and GLCM textures. A subset of 60 features was selected using the RF-based feature selection (FS) method, and in this subset, the near-infrared reflectance and the image acquired in August (jointing and heading stages) were found to be the best for crop classification.  相似文献   

16.
Large-scale crop yield prediction is critical for early warning of food insecurity, agricultural supply chain management, and economic market. Satellite-based Solar-Induced Chlorophyll Fluorescence (SIF) products have revealed hot spots of photosynthesis over global croplands, such as in the U.S. Midwest. However, to what extent these satellite-based SIF products can enhance the performance of crop yield prediction when benchmarking against other existing satellite data remains unclear. Here we assessed the benefits of using three satellite-based SIF products in yield prediction for maize and soybean in the U.S. Midwest: gap-filled SIF from Orbiting Carbon Observatory 2 (OCO-2), new SIF retrievals from the TROPOspheric Monitoring Instrument (TROPOMI), and the coarse-resolution SIF retrievals from the Global Ozone Monitoring Experiment-2 (GOME-2). The yield prediction performances of using SIF data were benchmarked with those using satellite-based vegetation indices (VIs), including normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), and near-infrared reflectance of vegetation (NIRv), and land surface temperature (LST). Five machine-learning algorithms were used to build yield prediction models with both remote-sensing-only and climate-remote-sensing-combined variables. We found that high-resolution SIF products from OCO-2 and TROPOMI outperformed coarse-resolution GOME-2 SIF product in crop yield prediction. Using high-resolution SIF products gave the best forward predictions for both maize and soybean yields in 2018, indicating the great potential of using satellite-based high-resolution SIF products for crop yield prediction. However, using currently available high-resolution SIF products did not guarantee consistently better yield prediction performances than using other satellite-based remote sensing variables in all the evaluated cases. The relative performances of using different remote sensing variables in yield prediction depended on crop types (maize or soybean), out-of-sample testing methods (five-fold-cross-validation or forward), and record length of training data. We also found that using NIRv could generally lead to better yield prediction performance than using NDVI, EVI, or LST, and using NIRv could achieve similar or even better yield prediction performance than using OCO-2 or TROPOMI SIF products. We concluded that satellite-based SIF products could be beneficial in crop yield prediction with more high-resolution and good-quality SIF products accumulated in the future.  相似文献   

17.
In this study we combined selected vegetation indices (VIs) and plant height information to estimate biomass in a summer barley experiment. The VIs were calculated from ground-based hyperspectral data and unmanned aerial vehicle (UAV)-based red green blue (RGB) imaging. In addition, the plant height information was obtained from UAV-based multi-temporal crop surface models (CSMs). The test site is a summer barley experiment comprising 18 cultivars and two nitrogen treatments located in Western Germany. We calculated five VIs from hyperspectral data. The normalised ratio index (NRI)-based index GnyLi (Gnyp et al., 2014) showed the highest correlation (R2 = 0.83) with dry biomass. In addition, we calculated three visible band VIs: the green red vegetation index (GRVI), the modified GRVI (MGRVI) and the red green blue VI (RGBVI), where the MGRVI and the RGBVI are newly developed VI. We found that the visible band VIs have potential for biomass prediction prior to heading stage. A robust estimate for biomass was obtained from the plant height models (R2 = 0.80–0.82). In a cross validation test, we compared plant height, selected VIs and their combination with plant height information. Combining VIs and plant height information by using multiple linear regression or multiple non-linear regression models performed better than the VIs alone. The visible band GRVI and the newly developed RGBVI are promising but need further investigation. However, the relationship between plant height and biomass produced the most robust results. In summary, the results indicate that plant height is competitive with VIs for biomass estimation in summer barley. Moreover, visible band VIs might be a useful addition to biomass estimation. The main limitation is that the visible band VIs work for early growing stages only.  相似文献   

18.
The aim of this study is to estimate leaf area index (LAI) in different type of plants using vegetation indices (VIs) and neural network algorithms retrieved from MODIS data. Four VI were calculated, and neural networks were built up based on MODIS surface reflectance products. Among the tested VIs, normalized difference vegetation index (NDVI) and chlorophyll index (CI) appeared to be the best candidate indices in estimating LAI across sites with different vegetation types. The models having the highest accuracy were CI for grassland and deciduous broad leaf forest with determination coefficients (R-square above 0.70, and NDVI for crop R-square?=?0.78). Neural network showed better results than VI methods except in grassland sites. The added VI information showed no significant improvement of model accuracy for the neural networks in most sites.  相似文献   

19.
Soil salinization is a worldwide environmental problem with severe economic and social consequences. In this paper, estimating the soil salinity of Pingluo County, China by a partial least squares regression (PLSR) predictive model was carried out using QuickBird data and soil reflectance spectra. At first, a relationship between the sensitive bands of soil salinity acquired from measured reflectance spectra and the spectral coverage of seven commonly used optical sensors was analyzed. Secondly, the potentiality of QuickBird data in estimating soil salinity by analyzing the correlations between the measured reflectance spectra and reflectance spectra derived from QuickBird data and analyzing the contributions of each band of QuickBird data to soil salinity estimation Finally, a PLSR predictive model of soil salinity was developed using reflectance spectra from QuickBird data and eight spectral indices derived from QuickBird data. The results indicated that the sensitive bands covered several bands of each optical sensor and these sensors can be used for soil salinity estimation. The result of estimation model showed that an accurate prediction of soil salinity can be made based on the PLSR method (R2 = 0.992, RMSE = 0.195). The PLSR model's performance was better than that of the stepwise multiple regression (SMR) method. The results also indicated that using spectral indices such as intensity within spectral bands (Int1, Int2), soil salinity indices (SI1, SI2, SI3), the brightness index (BI), the normalized difference vegetation index (NDVI) and the ratio vegetation index (RVI) as independent model variables can help to increase the accuracy of soil salinity mapping. The NDVI and RVI can help to reduce the influences of vegetation cover and soil moisture on prediction accuracy. The method developed in this paper can be applied in other arid and semi-arid areas, such as western China.  相似文献   

20.
Leaf pigment content provides valuable insight into the productivity, physiological and phenological status of vegetation. Measurement of spectral reflectance offers a fast, nondestructive method for pigment estimation. A number of methods were used previously for estimation of leaf pigment content, however, spectral bands employed varied widely among the models and data used. Our objective was to find informative spectral bands in three types of models, vegetation indices (VI), neural network (NN) and partial least squares (PLS) regression, for estimating leaf chlorophyll (Chl) and carotenoids (Car) contents of three unrelated tree species and to assess the accuracy of the models using a minimal number of bands. The bands selected by PLS, NN and VIs were in close agreement and did not depend on the data used. The results of the uninformative variable elimination PLS approach, where the reliability parameter was used as an indicator of the information contained in the spectral bands, confirmed the bands selected by the VIs, NN, and PLS models. All three types of models were able to accurately estimate Chl content with coefficient of variation below 12% for all three species with VI showing the best performance. NN and PLS using reflectance in four spectral bands were able to estimate accurately Car content with coefficient of variation below 14%. The quantitative framework presented here offers a new way of estimating foliar pigment content not requiring model re-parameterization for different species. The approach was tested using the spectral bands of the future Sentinel-2 satellite and the results of these simulations showed that accurate pigment estimation from satellite would be possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号