首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 0 毫秒
1.
Land-use/land-cover information constitutes an important component in the calibration of many urban growth models. Typically, the model building involves a process of historic calibration based on time series of land-use maps. Medium-resolution satellite imagery is an interesting source for obtaining data on land-use change, yet inferring information on the use of urbanised spaces from these images is a challenging task that is subject to different types of uncertainty. Quantifying and reducing the uncertainties in land-use mapping and land-use change model parameter assessment are therefore crucial to improve the reliability of urban growth models relying on these data. In this paper, a remote sensing-based land-use mapping approach is adopted, consisting of two stages: (i) estimating impervious surface cover at sub-pixel level through linear regression unmixing and (ii) inferring urban land use from urban form using metrics describing the spatial structure of the built-up area, together with address data. The focus lies on quantifying the uncertainty involved in this approach. Both stages of the land-use mapping process are subjected to Monte Carlo simulation to assess their relative contribution to and their combined impact on the uncertainty in the derived land-use maps. The robustness to uncertainty of the land-use mapping strategy is addressed by comparing the most likely land-use maps obtained from the simulation with the original land-use map, obtained without taking uncertainty into account. The approach was applied on the Brussels-Capital Region and the central part of the Flanders region (Belgium), covering the city of Antwerp, using a time series of SPOT data for 1996, 2005 and 2012. Although the most likely land-use map obtained from the simulation is very similar to the original land-use map – indicating absence of bias in the mapping process – it is shown that the errors related to the impervious surface sub-pixel fraction estimation have a strong impact on the land-use map's uncertainty. Hence, uncertainties observed in the derived land-use maps should be taken into account when using these maps as an input for modelling of urban growth.  相似文献   

2.
Identification of tree crowns from remote sensing requires detailed spectral information and submeter spatial resolution imagery. Traditional pixel-based classification techniques do not fully exploit the spatial and spectral characteristics of remote sensing datasets. We propose a contextual and probabilistic method for detection of tree crowns in urban areas using a Markov random field based super resolution mapping (SRM) approach in very high resolution images. Our method defines an objective energy function in terms of the conditional probabilities of panchromatic and multispectral images and it locally optimizes the labeling of tree crown pixels. Energy and model parameter values are estimated from multiple implementations of SRM in tuning areas and the method is applied in QuickBird images to produce a 0.6 m tree crown map in a city of The Netherlands. The SRM output shows an identification rate of 66% and commission and omission errors in small trees and shrub areas. The method outperforms tree crown identification results obtained with maximum likelihood, support vector machines and SRM at nominal resolution (2.4 m) approaches.  相似文献   

3.
虚拟仿真技术背景下测绘实践类活动的软件研发和应用是当前测绘发展的时代追求,直至广州南方测绘科技有限公司研发并推出的"数字测图仿真试验软件"的问世,初步满足了当前测绘虚拟仿真试验教学改革的平台要求.本文通过对基于"数字测图仿真试验软件"实践教学的具体活动,进一步提出了基于虚拟仿真试验平台的数字测图教学改革的教学组织方法和...  相似文献   

4.
With the high deforestation rates of global forest covers during the past decades, there is an ever-increasing need to monitor forest covers at both fine spatial and temporal resolutions. Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat series images have been used commonly for satellite-derived forest cover mapping. However, the spatial resolution of MODIS images and the temporal resolution of Landsat images are too coarse to observe forest cover at both fine spatial and temporal resolutions. In this paper, a novel multiscale spectral-spatial-temporal superresolution mapping (MSSTSRM) approach is proposed to update Landsat-based forest maps by integrating current MODIS images with the previous forest maps generated from Landsat image. Both the 240 m MODIS bands and 480 m MODIS bands were used as inputs of the spectral energy function of the MSSTSRM model. The principle of maximal spatial dependence was used as the spatial energy function to make the updated forest map spatially smooth. The temporal energy function was based on a multiscale spatial-temporal dependence model, and considers the land cover changes between the previous and current time. The novel MSSTSRM model was able to update Landsat-based forest maps more accurately, in terms of both visual and quantitative evaluation, than traditional pixel-based classification and the latest sub-pixel based super-resolution mapping methods The results demonstrate the great efficiency and potential of MSSTSRM for updating fine temporal resolution Landsat-based forest maps using MODIS images.  相似文献   

5.
Geospatial distribution of population at a scale of individual buildings is needed for analysis of people's interaction with their local socio-economic and physical environments. High resolution aerial images are capable of capturing urban complexities and considered as a potential source for mapping urban features at this fine scale. This paper studies population mapping for individual buildings by using aerial imagery and other geographic data. Building footprints and heights are first determined from aerial images, digital terrain and surface models. City zoning maps allow the classification of the buildings as residential and non-residential. The use of additional ancillary geographic data further filters residential utility buildings out of the residential area and identifies houses and apartments. In the final step, census block population, which is publicly available from the U.S. Census, is disaggregated and mapped to individual residential buildings. This paper proposes a modified building population mapping model that takes into account the effects of different types of residential buildings. Detailed steps are described that lead to the identification of residential buildings from imagery and other GIS data layers. Estimated building populations are evaluated per census block with reference to the known census records. This paper presents and evaluates the results of building population mapping in areas of West Lafayette, Lafayette, and Wea Township, all in the state of Indiana, USA.  相似文献   

6.
Landsat8和MODIS融合构建高时空分辨率数据识别秋粮作物   总被引:2,自引:0,他引:2  
本文利用Wu等人提出的遥感数据时空融合方法 STDFA(Spatial Temporal Data Fusion Approach)以Landsat 8和MODIS为数据源构建高时间、空间分辨率的遥感影像数据。以此为基础,构建15种30 m分辨率分类数据集,然后利用支持向量机SVM(Support Vector Machine)进行秋粮作物识别,验证不同维度分类数据集进行秋粮作物识别的适用性。实验结果显示,不同分类数据集的秋粮作物分类结果均达到了较高的识别精度。综合各项精度指标分析,Red+Phenology数据组合对秋粮识别效果最好,水稻识别的制图精度和用户精度分别达到91.76%和82.49%,玉米识别的制图精度和用户精度分别达到85.80%和74.97%,水稻和玉米识别的总体精度达到86.90%。  相似文献   

7.
Abstract

Land use/land cover monitoring and mapping is crucial to efficient management of the land and its resources. Since the late 1980s increased attention has been paid to the use of coarse resolution optical data. The Moderate Resolution Imaging Spectroradiometer (MODIS) has features, which make it particularly suitable to earth characterization purposes. MODIS has 10 products dedicated mainly to land cover characterization and provides three kinds of data: angular, spectral and temporal. MODIS data also includes information about the data quality through the ‘Quality Assessment’ product. In this paper, we review how MODIS data are used to map land cover including the preferred MODIS products, the preprocessing and classification approaches, the accuracy assessment, and the results obtained.  相似文献   

8.
The urban environment has been dramatically changed by artificial constructions. How the modified urban geometry affects the urban climate and therefore human thermal comfort has become a primary concern for urban planners. The present study takes a simulation approach to analyze the influence of urban geometry on the urban climate and maps this climatic understanding from a quantitative perspective. A geographical building database is used to characterize two widely discussed aspects: urban heat island effect (UHI) and wind dynamics. The parameters of the sky view factor (SVF) and the frontal area density (FAD) are simulated using ArcGIS-embedded computer programs to link urban geometry with the UHI and wind dynamic conditions. The simulated results are synergized and classified to evaluate different urban climatic conditions based on thermal comfort consideration. A climatic map is then generated implementing the classification. The climatic map shows reasonable agreement with thermal comfort understanding, as indicated by the biometeorological index of the physiological equivalent temperature (PET) obtained in an earlier study. The proposed climate mapping approach can provide both quantitative and visual evaluation of the urban environment for urban planners with climatic concerns. The map could be used as a decision support tool in planning and policy-making processes. An urban area in Hong Kong is used as a case study.  相似文献   

9.
Prescribed fire is crucial to the ecology and maintenance of tallgrass prairie, and its application affects a variety of human and natural systems. Consequently, maps showing the location and extent of these fires are critical to managing tallgrass prairies in a manner that balances the needs of all stakeholders. Satellite-based optical remote sensing can provide the necessary input for this mapping, but it requires the development mapping methods that are specific to tallgrass prairie. In this research, we devise and test a suitable mapping method by comparing the efficacy of seven combinations of bands and indices from the MODIS sensor using both pixel and object-based classification methods. Due to the relatively small size of many prescribed fires in tallgrass prairie, scenarios based on the 250 m spatial resolution red and NIR bands outperformed those based on the coarser 500 m spatial resolution bands, and a combination of both red and NIR performed better than each 250 m band individually. Object-based classification offered no improvement over pixel-based classification, and performed poorer in some cases. Our results suggest that mapping burned areas in tallgrass prairie should be done at a minimum of 250 m spatial resolution, should used a pixel-based classification technique, and should use a combination of red and NIR.  相似文献   

10.
面向支撑自然资源部“两统一”职责履行和基础测绘“两支撑、一提升”根本定位,测绘行业更新、技术创新、产品革新体现出更加聚焦应用服务导向的特点。在新型测绘智能化转型的视角下,本文聚焦自然资源管理中国土空间规划实施与监督环节,针对城市尺度规划实施场景预警指标的多样性和场景构建的复杂性等问题,探索了一套服务于山地城市规划实施场景预警模拟的技术框架,并在典型区域开展建(构)筑物水位动态淹没预警模拟应用示范,支撑规划编制与动态维护的后续环节,助力国土空间规划形成闭环管理。  相似文献   

11.
In this study, we test the potential of two different classification algorithms, namely the spectral angle mapper (SAM) and object-based classifier for mapping the land use/cover characteristics using a Hyperion imagery. We chose a study region that represents a typical Mediterranean setting in terms of landscape structure, composition and heterogeneous land cover classes. Accuracy assessment of the land cover classes was performed based on the error matrix statistics. Validation points were derived from visual interpretation of multispectral high resolution QuickBird-2 satellite imagery. Results from both the classifiers yielded more than 70% classification accuracy. However, the object-based classification clearly outperformed the SAM by 7.91% overall accuracy (OA) and a relatively high kappa coefficient. Similar results were observed in the classification of the individual classes. Our results highlight the potential of hyperspectral remote sensing data as well as object-based classification approach for mapping heterogeneous land use/cover in a typical Mediterranean setting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号