首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The conservation of biological diversity is recognized as a fundamental component of sustainable development, and forests contribute greatly to its preservation. Structural complexity increases the potential biological diversity of a forest by creating multiple niches that can host a wide variety of species. To facilitate greater understanding of the contributions of forest structure to forest biological diversity, we modeled relationships between 14 forest structure variables and airborne laser scanning (ALS) data for two Italian study areas representing two common Mediterranean forests, conifer plantations and coppice oaks subjected to irregular intervals of unplanned and non-standard silvicultural interventions. The objectives were twofold: (i) to compare model prediction accuracies when using two types of ALS metrics, echo-based metrics and canopy height model (CHM)-based metrics, and (ii) to construct inferences in the form of confidence intervals for large area structural complexity parameters.Our results showed that the effects of the two study areas on accuracies were greater than the effects of the two types of ALS metrics. In particular, accuracies were less for the more complex study area in terms of species composition and forest structure. However, accuracies achieved using the echo-based metrics were only slightly greater than when using the CHM-based metrics, thus demonstrating that both options yield reliable and comparable results. Accuracies were greatest for dominant height (Hd) (R2 = 0.91; RMSE% = 8.2%) and mean height weighted by basal area (R2 = 0.83; RMSE% = 10.5%) when using the echo-based metrics, 99th percentile of the echo height distribution and interquantile distance. For the forested area, the generalized regression (GREG) estimate of mean Hd was similar to the simple random sampling (SRS) estimate, 15.5 m for GREG and 16.2 m SRS. Further, the GREG estimator with standard error of 0.10 m was considerable more precise than the SRS estimator with standard error of 0.69 m.  相似文献   

2.
A computational canopy volume (CCV) based on airborne laser scanning (ALS) data is proposed to improve predictions of forest biomass and other related attributes like stem volume and basal area. An approach to derive the CCV based on computational geometry, topological connectivity and numerical optimization was tested with sparse-density, plot-level ALS data acquired from 40 field sample plots of 500–1000 m2 located in a boreal forest in Norway. The CCV had a high correspondence with the biomass attributes considered when derived from optimized filtrations, i.e. ordered sets of simplices belonging to the triangulations based on the point data. Coefficients of determination (R2) between the CCV and total above-ground biomass, canopy biomass, stem volume, and basal area were 0.88–0.89, 0.89, 0.83–0.97, and 0.88–0.92, respectively, depending on the applied filtration. The magnitude of the required filtration was found to increase according to an increasing basal area, which indicated a possibility to predict this magnitude by means of ALS-based height and density metrics. A simple prediction model provided CCVs which had R2 of 0.77–0.90 with the aforementioned forest attributes. The derived CCVs always produced complementary information and were mainly able to improve the predictions of forest biomass relative to models based on the height and density metrics, yet only by 0–1.9 percentage points in terms of relative root mean squared error. Possibilities to improve the CCVs by a further analysis of topological persistence are discussed.  相似文献   

3.
Airborne laser scanning (ALS) is a widely used technology in the mapping of environment and forests. Data acquisition costs and the accuracy of the forest inventory are closely dependent on some extrinsic parameters of the ALS survey. These parameters have been assessed in numerous studies about a decade ago, but since then ALS devices have developed and it is possible that previous findings do not hold true with newer technology. That is why, the effect of flying altitudes (2000, 2500 or 3000 m), scanning angles (±15° and ±20° off nadir) and scanning modes (single- and multiple pulses in air) with the area-based approach using a Leica ALS70HA-laser scanner was studied here. The study was conducted in a managed pine-dominated forest area in Finland, where eight separate discrete-return ALS data were acquired. The comparison of datasets was based on the bootstrap approach with 5-fold cross validation. Results indicated that the narrower scanning angle (±15° i.e. 30°) led to slightly more accurate estimates of plot volume (RMSE%: 21–24 vs. 22.5–25) and mean height (RMSE%: 8.5–11 vs. 9–12). We also tested the use case where the models are constructed using one data and then applied to other data gathered with different parameters. The most accurate models were identified using the bootstrap approach and applied to different datasets with and without refitting. The bias increased without refitting the models (bias%: volume 0 ± 10, mean height 0 ± 3), but in most cases the results did not differ much in terms of RMSE%. This confirms previous observations that models should only be used for datasets collected under similar data acquisition conditions. We also calculated the proportions of echoes as a function of height for different echo categories. This indicated that the accuracy of the inventory is affected more by the height distribution than the proportions of echo categories.  相似文献   

4.
Site productivity and forest growth are critical inputs into projecting wood volume and biomass accumulation over time. Site productivity, which is determined most commonly using site index models is also the primary criterion to consider many forest management decisions. Most of the previous research utilizing the remote sensing data for assessment of site index with forest height are based on the existing site index models developed with traditional dendrometric methods. However, these traditional methods are both time-consuming and expensive. This study demonstrates how bi-temporal airborne laser scanning (ALS) data collected within the 8-year period can be used for the development of site index models for Scots pine. The accuracy of ALS-derived models was assessed by comparison to the reference site index model developed based on data from stem analysis of 174 felled Scots pine trees. We evaluated the effect of different height metrics and grid cell size on the trajectory of site index models developed from ALS-derived measurements. Four methods of estimating top height from ALS point clouds were evaluated: 95th, 99th and 100th percentiles of point clouds and an individual tree detection approach (ITD). The models were created for a range of grid cell sizes: 10 × 10 m, 30 × 30 m, and 50 × 50 m. The results indicate that bitemporal ALS data could substitute traditional methods that have been applied to date for stand growth modelling. It was found that top height increment can be estimated by using both ITD approach and the 100th percentile of point cloud giving an appropriate top height (TH) increment estimation. Observed growth curves of reference trees agreed best with the trajectories that were obtained based on TH calculated using ITD method (R2 = 0.892) and 100th percentile (R2 = 0.797). In case of TH obtained from 99th and 95th percentiles only weak correlation was found: R2 = 0.358 and R2 = 0.213, accordingly. The height growth models developed with 95th and 99th percentiles of point cloud were not compatible with the reference model. We also found that grid cell size did not affect the model height growth trajectories. Irrespective of the grid cell size, the obtained model trajectories for the given method of TH estimation are nearly identical for cells 10 × 10, 30 × 30 and 50 × 50 m.  相似文献   

5.
Three-dimensional (3D) data from airborne laser scanning (ALS) and, more recently, digital aerial photogrammetry (DAP) have been successfully used to model forest attributes. While multi-temporal, wall-to-wall ALS data is not usually available, aerial imagery is regularly acquired in many regions. Thus, the combination of ALS and DAP data provide a sufficient temporal resolution to properly monitor forests. However, field data is needed to fit new forest attribute models for each 3D data acquisition, which is not always affordable. In this study, we examined whether transferability of growing stock volume (GSV) models may provide an improvement in the efficiency of forest inventories updating. We used two available ALS datasets acquired with different characteristics in 2009 and 2010, respectively, generated two DAP point clouds from imagery collected in 2010 and 2017, and utilized field data from two ground surveys conducted in 2009 and 2016-2017. We first analyzed the stability of point cloud derived metrics. Then, Support Vector Regression models based on the most stable metrics were fitted to assess model transferability by applying them to other datasets in four different cases: (1) ALS-ALS, (2) DAP-DAP temporal, (3) ALS-DAP and (4) ALS-DAP temporal. Some metrics were found to be enough stable in each case, so they could be used interchangeably between datasets. The application of models to other datasets resulted in unbiased predictions with relative root mean square error differences ranging from -8.27% to 14.59%. Results demonstrated that 3D-based GSV models may be transferable between point clouds of the same type as well as point clouds acquired using different technologies such as ALS and DAP, suggesting that DAP data may be used as a cost-efficient source of information for updating ALS-assisted forest inventories.  相似文献   

6.
Inventories of temperate forests of Central Europe mainly rely on terrestrial measurements. Rapid alterations of forests by disturbances and multilayer silvicultural systems increasingly challenge the use of conventional plot based inventories, particularly in protected areas. Airborne LiDAR offers an alternative or supplement to conventional inventories, but despite the possibility of obtaining such remote sensing data, its operational use for broader areas in Central Europe remains experimental. We evaluated two methods of forest inventory that use LiDAR data at the landscape level: the single tree segment-based method and an area-based method. We compared a set of structural forest attributes modeled by these methods with a conventional forest inventory of the highly heterogeneous forest of the Bavarian Forest National Park (Germany), which partially includes stands affected by severe natural disturbances. Area-based models were accurate for all structural attributes, with cross-validated average root mean squared error ranging from ∼3.4 to ∼13.4 in the best modeling case. The coefficients of variation for the mapped area-based estimations were mostly minor. The area-based estimations were varied but highly correlated (Pearson’s correlations between ∼ 0.56 and 0.85) with single tree segmentation estimations; undetected trees in the single tree segmentat-based method were the main sources of inconsistency. The single tree segment-based method was highly correlated (∼ 0.54 to 0.90) with data from ground-based forest inventories. The single tree-based algorithm delivered highly reliable estimates for a set of forest structural attributes that are of interest in forest inventories at the landscape scale. We recommend LiDAR forest inventories at the landscape scale in both heterogeneous commercial forests and large protected areas in the central European temperate sites.  相似文献   

7.
Light Detection And Ranging (LiDAR) has a unique capability for estimating forest canopy height, which has a direct relationship with, and can provide better understanding of the aboveground forest carbon storage. The full waveform data of the large-footprint LiDAR Geoscience Laser Altimeter System (GLAS) onboard the Ice, Cloud, and land Elevation Satellite (ICESat), combined with field measurements of forest canopy height, were employed to achieve improved estimates of forest canopy height over sloping terrain in the Changbai mountains region, China. With analyzing ground-truth experiments, the study proposed an improved model over Lefsky's model to predict maximum canopy height using the logarithmic transformation of waveform extent and elevation change as independent variables. While Lefsky's model explained 8–89% of maximum canopy height variation in the study area, the improved model explained 56–92% of variation within the 0–30° terrain slope category. The results reveal that the improved model can reduce the mixed effects caused by both sloping terrain and rough land surface, and make a significant improvement for accurately estimating maximum canopy height over sloping terrain.  相似文献   

8.
In this study, the potential of remote sensing in tropical forests is examined in relation to the diversification of sensors. We report here on the comparison of alternative methods that use multisource data from Airborne Laser Scanning (ALS), Airborne CIR and ALOS AVNIR-2 to estimate stem volume and basal area, in Laos. Multivariate linear regression analyses with stepwise selection of predictors were implemented for modelling. The predictors of ALS metrics were calculated by means of the canopy height distribution approach, while predictors from both spectral and textual features were respectively generated for Airborne CIR and ALOS AVNIR-2 data. With respect to the estimation capacity from individual data sources after leave-one-out cross-validation, the ALS data proved superior, with the lowest RMSE of 36.92% for stem volume and 47.35% for basal area, whereas Airborne CIR and ALOS AVNIR-2 remained at similar accuracy levels, but fell well behind the ALS data. By integrating ALS metrics with other predictors from Airborne CIR or ALOS AVNIR-2, hybrid modelling was further tested respectively. The results showed that only the hybrid model for stem volume involving ALS and Airborne CIR improved the accuracy of 1.9% in terms of relative RMSE than that of using ALS alone.  相似文献   

9.
10.
The aim of study is to map the carbon dioxide (CO2) emission of the aboveground tree biomass (AGB) in case of a fire event. The suitability of low point density, discrete, multiple-return, Airborne Laser Scanning (ALS) data and the influence of several characteristics of these data and the study area on the results obtained have been evaluated. A sample of 45 circular plots representative of Pinus halepensis Miller stands were used to fit and validate the model of AGB. The ALS point clouds were processed to obtain the independent variables and a multivariate linear regression analysis between field data and ALS-derived variables allowed estimation of AGB. Then, the influence of several characteristics on the residuals of the model was analyzed. Finally, conversion factors were applied to obtain the CO2 values. The AGB model presented a R2 value of 0.84 with a relative root-mean-square error of 27.35%. This model included ALS variables related to vegetation height variability and to canopy density. Terrain slope, aspect, canopy cover, scan angle and the number of laser returns did not influence AGB estimations at plot level.  相似文献   

11.
We propose 3D triangulations of airborne Laser Scanning (ALS) point clouds as a new approach to derive 3D canopy structures and to estimate forest canopy effective LAI (LAIe). Computational geometry and topological connectivity were employed to filter the triangulations to yield a quasi-optimal relationship with the field measured LAIe. The optimal filtering parameters were predicted based on ALS height metrics, emulating the production of maps of LAIe and canopy volume for large areas. The LAIe from triangulations was validated with field measured LAIe and compared with a reference LAIe calculated from ALS data using logarithmic model based on Beer’s law. Canopy transmittance was estimated using All Echo Cover Index (ACI), and the mean projection of unit foliage area (β) was obtained using no-intercept regression with field measured LAIe. We investigated the influence species and season on the triangulated LAIe and demonstrated the relationship between triangulated LAIe and canopy volume. Our data is from 115 forest plots located at the southern boreal forest area in Finland and for each plot three different ALS datasets were available to apply the triangulations. The triangulation approach was found applicable for both leaf-on and leaf-off datasets after initial calibration. Results showed the Root Mean Square Errors (RMSEs) between LAIe from triangulations and field measured values agreed the most using the highest pulse density data (RMSE = 0.63, the coefficient of determination (R2) = 0.53). Yet, the LAIe calculated using ACI-index agreed better with the field measured LAIe (RMSE = 0.53 and R2 = 0.70). The best models to predict the optimal alpha value contained the ACI-index, which indicates that within-crown transmittance is accounted by the triangulation approach. The cover indices may be recommended for retrieving LAIe only, but for applications which require more sophisticated information on canopy shape and volume, such as radiative transfer models, the triangulation approach may be preferred.  相似文献   

12.
The prediction of tropical forest attributes using airborne laser scanning (ALS) is becoming attractive as an alternative to traditional field measurements. Area-based ALS inventories require a set of representative field plots from the study area, which may be difficult to obtain in tropical forests with limited accessibility. This study investigates the effect of sample-plot selection in Nepal, based on two accessibility factors: distance to road and degree of slope. The sparse Bayesian method was employed in the model to estimate above-ground biomass (AGB) with an independent validation dataset for model validation. Study findings showed that the sample plot distance and slope had a considerable effect on the accuracy of the AGB estimation, because the forest structure varied according to the level of accessibility. Thus, the field sample plots that are used in model construction should cover the full range of sample plot distances and slopes occurring within the area.  相似文献   

13.
This study presents a hybrid framework for single tree detection from airborne laser scanning (ALS) data by integrating low-level image processing techniques into a high-level probabilistic framework. The proposed approach modeled tree crowns in a forest plot as a configuration of circular objects. We took advantage of low-level image processing techniques to generate candidate configurations from the canopy height model (CHM): the treetop positions were sampled within the over-extracted local maxima via local maxima filtering, and the crown sizes were derived from marker-controlled watershed segmentation using corresponding treetops as markers. The configuration containing the best possible set of detected tree objects was estimated by a global optimization solver. To achieve this, we introduced a Gibbs energy, which contains a data term that judges the fitness of the objects with respect to the data, and a prior term that prevents severe overlapping between tree crowns on the configuration space. The energy was then embedded into a Markov Chain Monte Carlo (MCMC) dynamics coupled with a simulated annealing to find its global minimum. In this research, we also proposed a Monte Carlo-based sampling method for parameter estimation. We tested the method on a temperate mature coniferous forest in Ontario, Canada and also on simulated coniferous forest plots with different degrees of crown overlap. The experimental results showed the effectiveness of our proposed method, which was capable of reducing the commission errors produced by local maxima filtering, thus increasing the overall detection accuracy by approximately 10% on all of the datasets.  相似文献   

14.
Indigenous forest biome in South Africa is highly fragmented into patches of various sizes (most patches < 1 km2). The utilization of timber and non-timber resources by poor rural communities living around protected forest patches produce subtle changes in the forest canopy which can be hardly detected on a timely manner using traditional field surveys. The aims of this study were to assess: (i) the utility of very high resolution (VHR) remote sensing imagery (WorldView-2, 0.5–2 m spatial resolution) for mapping tree species and canopy gaps in one of the protected subtropical coastal forests in South Africa (the Dukuduku forest patch (ca.3200 ha) located in the province of KwaZulu-Natal) and (ii) the implications of the map products to forest conservation. Three dominant canopy tree species namely, Albizia adianthifolia, Strychnos spp. and Acacia spp., and canopy gap types including bushes (grass/shrubby), bare soil and burnt patches were accurately mapped (overall accuracy = 89.3 ± 2.1%) using WorldView-2 image and support vector machine classifier. The maps revealed subtle forest disturbances such as bush encroachment and edge effects resulting from forest fragmentation by roads and a power-line. In two stakeholders’ workshops organised to assess the implications of the map products to conservation, participants generally agreed amongst others implications that the VHR maps provide valuable information that could be used for implementing and monitoring the effects of rehabilitation measures. The use of VHR imagery is recommended for timely inventorying and monitoring of the small and fragile patches of subtropical forests in Southern Africa.  相似文献   

15.
第三次国土调查与自然资源专项调查成果的分析集成,是自然资源管理工作的重要基础。本文以南京市林地调查数据的整合为切入点,进行第三次国土调查与森林资源规划设计调查数据交叉分析、林地分类标准梳理及映射、空间冲突规则制定、林地调查数据整合流程探索,为构建自然资源调查“一张底图”提供借鉴。  相似文献   

16.
17.
Airborne LiDAR (Light Detection and Ranging) provides opportunities to generate high-quality digital elevation models (DEMs) even in wetland environments. Our project, performed over the Okefenokee Swamp in Georgia during the spring of 2010, shows that several, distinctive factors must be considered to ensure successful wetland LiDAR projects. Some of the challenges include selecting optimal flight times in accordance with weather variability and water levels, having effective and quality control protocols, applying and developing filtering and interpolation algorithms, breaklines in swamps and accounting for data striping and noise. While some of these issues are faced in any airborne LiDAR acquisition, many of these require special consideration in a low-slope wetland environment with water saturated soils, widespread shallow water, and sediments and extensive vegetation. An examination of these issues and how they were handled will help in ensuring the success of future LiDAR acquisitions and, in particular, will advance knowledge of producing quality DEMs in wetland environments.  相似文献   

18.
During 2011, Mexico experienced record figures in terms of forest fires, with an affected area of 956,405 ha, and an association between this activity and the meteorological conditions is suspected. We addressed the question: Are the burned areas in Mexico associated with the duration and accumulation of drought? Using the G statistic, the cluster zones of burned areas in Mexico in 2011 were analyzed, and the value of accumulated drought that was most related to these cluster zones was determined. Global and local regression models were used to evaluate the drought-burned areas association. Two cluster zones were found (zones A and B). Accumulated drought of 24 and 12 months significantly explained the burned areas of zones A and B, respectively. The burned areas of Mexico in 2011 were non-randomly distributed, and accumulated drought significantly explained the magnitude of the areas affected by fire.  相似文献   

19.
The aim of this paper was to analyze the ground and low vegetation points of a Light Detection and Ranging (LiDAR) point cloud from the aspect of the generated digital terrain model (DTM). We determined the height difference between the surveyed surface and the DTM and the level of interspersion of ground and low vegetation points in a floodplain. Finally, we performed a supervised classification with topographic (elevation, slope and aspect) variables and an Normalized Difference Vegetation Index (NDVI) layer to identify swales and point bars as floodplain forms. Cross sections of field surveys provided reference data to express the magnitude of the bias on the DTM caused by the vegetation, and we proved that the bias can reach the 60% of the relative height and depth of the floodplain forms (mean error was 0.15 ± 0.12 m). A landscape metric, the Aggregation Index, provided an appropriate tool to analyze and quantify the interspersion of the ground and vegetation points: indicating a high level of interspersion of the classified points, i.e. proved that vegetation points where the last echoes reflected from the vegetation became ground points. Floodplain classification performed best with the common use of DTM, slope, aspect and NDVI coverages, with 71% overall accuracy.  相似文献   

20.
基于MODIS二向反射分布函数(BRDF)模型参数产品数据,利用4-scale模型建立查找表,以中国东北大兴安岭加格达奇地区为研究区,反演森林背景反射率,并分析不同森林类型二向反射与背景反射率特性及其季节变化。研究结果表明:(1)研究区针叶林和混交林二向反射特征较为相似,夏季阔叶林在红光波段的二向反射率值均低于针叶林和混交林,而在近红外波段则相反;不同森林类型二向反射率均存在明显的季节变化,其中阔叶林二向反射率季节变化最为明显;(2)研究区夏季森林背景反射率在红光波段较低,均在0.1以下,近红外波段背景反射率普遍高于0.3,且空间差异较大;(3)不同森林类型的背景反射率季节变化趋势大致相同,但变化幅度存在差异:阔叶林的背景反射率值季节差异最大,尤其在近红外波段。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号